

March 8, 2022 Project No. GL21461064

Kent Walters

Geologist
Materials Management Division
Grand Rapids District Office
Michigan Department of Environment Great Lakes and Energy
350 Ottawa Avenue, NW
Unit 10
Grand Rapids, MI 49503

FOURTH QUARTER 2021 MONITORING REPORT, FORMER JB SIMS GENERATING STATION, UNIT 3 A&B IMPOUNDMENTS – REPSPONSE TO COMMENTS

Dear Mr. Walters,

Golder Associates USA Inc. a member of WSP USA, Inc. (Golder) is providing this letter to the Michigan Department of Environment, Great Lakes and Energy (EGLE) as a response to the February 16, 2022 emailed comments provided to Golder by EGLE on the Fourth Quarter 2021 Monitoring Report, Former JB Sims Generating Station, Unit 3 A&B Impoundments (dated January 25, 2022).

Golder has provided EGLE's comments below **in bold**, with responses directly below the comment. The revised Fourth Quarter 2021 Monitoring Report for the Former JB Sims Generating Station, Unit 3 A&B Impoundments as well as the Fourth Quarter 2021 Monitoring Report for the Former JB Sims Generating Station Inactive 1&2 Impoundment and 2021 Annual Groundwater Monitoring & Corrective Action Report for the Former JB Sims Generating Station are attached.

Response to comments from email dated February 16, 2022:

Comment 1 - The report states that stilling wells and staff gauges were not used in the generation of groundwater contours and each of the four groundwater contour maps in the report indicate staff gauges were not included in the evaluation of groundwater contours. After review of the diagrams, it appears some staff gauges were used in developing the groundwater contours. Can you clarify and confirm which maps were generated with staff gauges/stilling wells (if any)?

Response:

Stilling wells were used for the contouring when they were measured. On October 25, 2021 they were not measured as noted in Table 2 of the Fourth Quarter 2021 Monitoring Report.

Staff gauges were not used to generate contour maps. As noted below, some staff gauges were not measured because they are either damaged or the water level was below the measuring post. In EGLE's request to add stilling wells to the work plan (email from EGLE dated June 3, 2021), EGLE's opinion concluded that staff gauges may not be reliable in large bodies of water. Therefore, as noted in the annual report, it is recommended to remove the staff gauges from future gauging activities.

Comment 2 - The report indicates some staff gauges were damaged. Are there plans to repair the gauges to be used for future sampling events?

Response:

There is no current plan to replace staff gauges. As noted in comment 1, it is recommended to discontinue the use of staff gauges because the data being received may be not reliable.

Comment 3 - Some of the generated contour lines appear to be inaccurate. For example, on the October 1, 2021 map at PZ-12 the groundwater elevation is listed as 581.5 however the 581.2 contour line directly bisects this point.

Response:

Based on EGLE's comment, Golder suggests the following edits:

<u>Figure 3</u> – MW-20 label should be removed as this is not an installed location. PZ-12 should be 581.20 as noted on Table 2, in addition, SG-02 should be 581.99 as noted on Table 2. The staff gauges were the only locations not used for contouring.

<u>Figure 4</u> – MW-20 label should be removed as this is not an installed location. Six piezometers, all staff gauges and all stilling wells were not measured as noted in the text of the Fourth Quarter 2021 Monitoring Report with a letter included in Appendix B. Trace could not locate the field forms. Therefore, these locations are not part of the contour maps.

<u>Figure 5</u> – MW-20 label should be removed as this is not an installed location. Based on the review of the data from Table 2 the following information was added to Figure 5 for the following locations

- SG-01 = not measured (NM)
- SG-02 = 581.93 (but not used to generate contour)
- SG-03 = 581.65 (but not used to generate contour)
- SG-04R = 581.56 (but not used to generate contour)
- SG-05 = NM
- SG-06 = NM
- STW-01 = 580.20 (no contour changes were needed when adding this measurement to the map)
- STW-02 = 580.12 (adding this measurement it is noted that the contour line for 580.25 is now around MW-07 on the eastern side)
- STW-03 = 580.24 (adding this measurement it is noted that the 580.50 and 580.25 lines along the Grand River's edge shifted slightly)

With the edits noted above there are resulting minor shifts for the contour lines, but this does not alter the general presentation of groundwater flow.

<u>Figure 6</u> – MW-01R is missing the groundwater elevation (582.09). The stilling wells are not identified on the map, however, no changes to the contour map are required since they were evaluated when drawing the contour lines. The elevations from Table 2 are provided below.

- STW-01 = 580.53
- STW-02 = 580.17
- STW-03 = 580.29

Golder has provided updated figures for the previously submitted quarterly reports and annual report and the complete revised reports are attached.

Comment 4 - On the November 23, 2021 map some of the stilling wells, staff gauges and piezometers have measurements of 0.00, I assume this is meant to indicate it was not measured, and doesn't actually mean 0.00 was recorded at this location? Please clarify.

Response:

The 0.00 notation is a default for AutoCAD when there is no measurement added to the AutoCAD surface file, however this did not affect the contouring. Suggested edits are identified above in the response to comment 3.

We trust that this additional information addresses the comments provided by EGLE on February 16, 2022. Please contact the City of Grand Haven team if you have further questions.

Sincerely,

Golder Associates Inc.

Carolyn Powrozek, C.P.G.

Caroly Eloudo

Lead Consultant

Tiffany Johnson, P.E.

Hamplamson

Director

CC: Lara Zawaideh, P.E. – HDR, Inc.

Molly Reeves, C.P.G. – HDR, Inc. Derek Gajdos – City of Grand Haven

Erik Booth, P.E. - GHBLP

Attachments: Revised Fourth Quarter 2021 Monitoring Report, Former JB Sims Generating Station, Unit 3 A&B Impoundments (revision dated March 8, 2022)

Revised Fourth Quarter 2021 Monitoring Report, Former JB Sims Generating Station, Inactive 1/2 Impoundment (revision dated March 8, 2022)

Revised 2021 Annual Groundwater Monitoring & Corrective Action Report, Former JB Sims Generating Station (revision dated March 8, 2022)

https://golderassociates.sharepoint.com/sites/149932/project files/7 correspondence/response to egle - 2021 gw reports 3-8-22.docx

APPENDIX A

Revised Fourth Quarter 2021 Monitoring Report, Former JB Sims Generating Station, Unit 3 A&B Impoundments

REPORT

Fourth Quarter 2021 Monitoring Report

Former JB Sims Generating Station Unit 3 A&B Impoundments

Submitted to:

Grand Haven Board of Light and Power

1700 Eaton Drive Grand Haven, Michigan

Submitted by:

Golder Associates Inc.

27200 Haggerty Road, Suite B-12 Farmington Hills, Michigan, USA 48331-5719 +1 248 295-0135

21461064

January 25, 2022 (Revised March 8, 2022)

Distribution List

Grand Haven Board of Light and Power

Michigan Department of Environment, Great Lakes, and Energy

i

Table of Contents

1.0	INTR	ODUCTION	1
	1.1	Site Description and Background	1
	1.2	Geologic and Hydrogeologic Setting	2
	1.3	Groundwater Monitoring Well Network	2
2.0	GRO	UNDWATER MONITORING ACTIVITIES	3
	2.1	Sample Methodology and Analysis	3
	2.2	Groundwater Elevation Measurements	3
	2.3	Groundwater Gradient and Flow Velocity	4
	2.4	Groundwater Sampling	5
	2.5	Laboratory Analyses	5
3.0	ANAI	YTICAL RESULTS AND STATISTICAL ANALYSES	5
	3.1	Statistical Methodology	6
	3.1.1	Detection Monitoring	6
	3.1.2	Assessment Monitoring	7
	3.2	Statistical Analysis Results	9
	3.2.1	Data Screening	9
	3.2.2	Detection Monitoring Statistical Results	10
	3.2.3	Assessment Monitoring Statistical Results	10
4.0	CON	CLUSIONS	11
5.0	REFE	RENCES	12

TABLES

TABLE 1

Summary of Locations

TABLE 2

Groundwater Elevation Summary

TABLE 3

Analytical Results Summary

FIGURES

FIGURE 1

Site Location Map

FIGURE 2

Site Plan

FIGURE 3

Groundwater Contour Map - October 1, 2021

FIGURE 4

Groundwater Contour Map – October 25, 2021 (Fourth Quarter Monitoring Event)

FIGURE 5

Groundwater Contour Map - November 23, 2021

FIGURE 6

Groundwater Contour Map - December 17, 2021

APPENDICES

APPENDIX A

Statistical Summary

APPENDIX B

Laboratory Reports and Field Forms

1.0 INTRODUCTION

Grand Haven Board of Light and Power (GHBLP) began groundwater monitoring at the former JB Sims Generating Station (JB Sims, Site) in 2017 with the implementation of United States Environmental Protection Agency (USEPA) coal combustion residual (CCR) rule (40 Code of Federal Regulations [CFR] 257 Subpart D; published in 80 FR 21302-21501, April 17, 2015) for CCR Units.

On December 28, 2018, the State of Michigan enacted Public Act No. 640 of 2018 (PA 640) to amend the Natural Resources and Environmental Protection Act, also known as Part 115 of PA 451 of 1994, as amended (Michigan Part 115 Solid Waste Rules, Part 115 amendment).

The CCR units at JB Sims as defined by the Federal CCR Rule includes:

- Inactive Units 1/2 surface impoundment (Inactive 1/2 Impoundment)
 - Unlined surface impoundment
 - Ceased receiving CCR materials in 2012
 - Monitored following the Federal CCR Rule, not included in this monitoring report
- Former Unit 3A and 3B surface impoundments (Former 3A/B Impoundments)
 - Two engineered and clay lined surface impoundments
 - Ceased receiving CCR material in July 2020
 - CCR material was removed from within the surface impoundments in 2020
 - Monitored following the Federal CCR Rule and PA 640 Part 115 amendment
 - Quarterly interim statistical evaluation included in this monitoring report in accordance with PA 640 Part
 115 amendment

In accordance with PA 640 Part 115 amendment, this *Fourth Quarter 2021 Monitoring Report* has been prepared to document groundwater monitoring activities conducted for only the former 3A/B Impoundments at JB Sims, the groundwater monitoring activities for the Inactive 1/2 Impoundment is included in a separate report submittal. Further discussions regarding the monitoring well networks for both inactive 1/2 Impoundment and former 3A/B impoundments is ongoing. Specifically, piezometers and stilling wells were recently installed and a *Field Summary Report* with recommendations for background groundwater data is forth coming. As such, statistical analysis results may change significantly based on a revised monitoring well network.

As described above, the detection monitoring well network is currently being evaluated, alternate/additional background monitoring wells are being considered, and statistical results are expected to change. Therefore, the purpose of this report is to comply with Rule 907(11) and Rule 908(6) and monitoring well MW-07 was used as an interim background well until a better understanding of the groundwater flow can be established.

1.1 Site Description and Background

The Site is located on the southwestern portion of Harbor Island in Grand Haven, Michigan, and is operated by GHBLP. JB Sims is situated on west end of Harbor Island with the Grand River and South Channel of the Grand River surrounding the island, which flows westerly toward Lake Michigan, approximately one mile west of the Site. Figure 1, Site Location Map, depicts the location of the Site relative to the surrounding area.

The Site is a former coal-fired power generation facility which ceased operations in February 2020. The inactive 1/2 Impoundment ceased receiving CCR materials in 2012. The coal-fired power generation facility ceased operations in February 2020 and ceased accepting CCR materials in the now former 3A/B Impoundments in July

2020. Figure 2, Site Plan depicts the general configuration of the former and inactive CCR surface impoundments and site monitoring wells.

1.2 Geologic and Hydrogeologic Setting

As described in the *Groundwater Monitoring System Certification* (ERM, 2017), the Site is located in an area of glacial drift (consisting of fine to medium sand with occasional beds of gravel) which is underlain by Marshall Sandstone. The glacial drift is between 100 to 200 feet thick in the area.

The former 3A/B Impoundments were engineered clay lined aboveground CCR units built over ash used as structural fill from Units 1 & 2. The unlined Units 1 & 2 impoundment were formed from sluicing ash to low lying areas on the Site in the 1960's and part of the 1970's. The Site was also previously used as the city dump. Materials documented from the former dump consist of a layer of mixed debris which includes glass, wood, plastic, ceramic, concrete, hides, brick and metal within a matrix of dark-grey to black, fine grained sand. The extent of the historic trash dump is detailed in *Coal Ash Delineation Sampling Results*, *Grand Haven Board of Light & Power, Grand Haven, Michigan* (ERM, 2016).

Portions of Harbor Island were developed by creating land with the use of unconsolidated fill, beneficial use of historical ash fill, and solid waste. Specifically, borings consist of a mixture of unconsolidated fine sand fill with intervals of silt and sand, historical ash fill, and municipal solid waste within the first 20 feet below ground surface (bgs). The fine sand fill was underlain by silt and clay to the bottom of each boring. The silt and clay represent the confining unit beneath the CCR units.

Groundwater was encountered between 5 and 15 feet bgs within the unconsolidated fill material, which consists of fine sand, ash, and municipal solid waste, located above a silt and clay unit. As described in the *Groundwater Monitoring System Certification* (ERM, 2017), sand in the uppermost aquifer assumes an effective porosity of 30 percent (%) and consists of poorly-graded fine sand with an estimated hydraulic conductivity of 27 feet per day and well-graded fine sand with an estimated hydraulic conductivity of 53 feet per day. Golder conducted site aquifer performance testing in September of 2021. The results of the aquifer performance testing provide additional data for updating the hydraulic conductivity. The recently calculated hydraulic conductivity for the Site is an average range of 0.19 feet per day to 242 feet per day. This wide range of variability is the result of the varying fill materials that form Harbor Island. In addition, a calculated hydraulic conductivity for the piezometers located on the eastern side of the wetland is an average 8.34 feet per day. A field summary report including the aquifer performance testing will be submitted under separate cover and is forth coming.

1.3 Groundwater Monitoring Well Network

The original monitoring well network was developed in 2017 for the former 3A/B Impoundments, which consisted of 4 monitoring wells [1 upgradient (MW-01R) and 3 downgradient monitoring wells (MW-02, MW-03, and MW-04)]. It was later determined that in accordance with the Federal CCR Rule, Inactive 1/2 Impoundment is subject to the groundwater monitoring and corrective action requirements and four additional monitoring wells were installed (MW-05 through MW-08). Based on correspondence with EGLE, two additional monitoring wells were installed in 2019 (MW-09 and MW-10). As a result, two groundwater monitoring networks are installed to monitor groundwater passing the CCR unit boundary of the inactive and former surface impoundments within the uppermost aquifer. The current groundwater monitoring well networks for the former 3A/B Impoundments as well as the inactive 1/2 Impoundment is included on Table 1, Summary of Locations. Only the groundwater monitoring well network for the former 3A/B Impoundments is discussed within this report.

The current groundwater monitoring well network for the former 3A/B impoundments includes the following monitoring wells:

- Interim background well: MW-07
 - MW-07 is currently identified as outside the flow path of the Unit 3 impoundments. However, with the revised Inactive 1/2 Impoundment boundary agreed to by EPA/EGLE/GHBLP/Golder in January 2021, monitoring well MW-07 may be influenced by the Inactive 1/2 Impoundment. As such EGLE has indicated that this well cannot be utilized as background for statistical evaluation of Unit 3. Since EPA agreed that this well can be used to evaluate data from the Unit 3 monitoring system, it remains as the interim background well for statistical evaluations.
 - Statistical analyses presented in this report utilize data from MW-07 as the interim background data set for interwell comparisons until the groundwater flow is further refined and additional/alternate background monitoring wells are established.
 - An additional 22 site piezometers were installed at the site in August/September 2021 based on the workplan approved by EGLE and EPA on June 22, 2021. Additional piezometers are expected to provide sufficient data to establish a site wide flow direction that will allow for EGLE to approve an alternate detection monitoring well network.
- Detection Monitoring Wells: MW-01R, MW-02, MW-03, and MW-04
- Assessment Monitoring Well: MW-09
 - Additional assessment monitoring wells may be added to the corrective action monitoring program but cannot be established until a detection monitoring well network is defined and statistical analyses completed.

Figure 2 depicts the current monitoring well network for the former 3A/B Impoundments as well as the network wells for the inactive Units 1 & 2 impoundment and additional site piezometers and stilling wells.

2.0 GROUNDWATER MONITORING ACTIVITIES

In accordance with PA 640 Part 115 amendment, the following describes the monitoring-related activities performed during the fourth quarter 2021 monitoring period and presents the status of the monitoring program. Samples were collected from each monitoring well in the current groundwater monitoring network for the former 3A/B impoundments.

As described in Part 115 Rule 907 (11), the data collected from each monitoring well must be submitted to EGLE within 30 days of the end of the calendar quarter in which sampling and analysis was conducted. As stated in the introduction, the statistical analysis provided in this report (as Appendix A – Statistical Summary) should be considered preliminary as the monitoring network in under evaluation.

2.1 Sample Methodology and Analysis

Groundwater analytical data, field sampling forms, and chain of custody records from this fourth quarter 2021 monitoring event are presented in Appendix B, Laboratory Reports and Field Forms. Although the laboratory report includes the analytical results for both the Inactive 1/2 Impoundment and the Former 3A/B Impoundments, only the results for monitoring wells associated with the Former 3A/B Impoundments were statistically evaluated (MW-1R, MW-2, MW-3, MW-4, MW-7, and MW-9) as part of this *Fourth Quarter 2021 Monitoring Report*.

2.2 Groundwater Elevation Measurements

Prior to sampling, groundwater elevations were recorded October 25, 2021 from each monitoring well and select piezometers. Trace misplaced the field forms for the water level measurements from PZ-11, PZ-12, PZ-21, PZ-

22, PZ-29, and PZ-30, all staff gauges and all stilling wells. As a result, these elevations are notably absent from the groundwater contour map for October 25, 2021. Three additional gauging events were conducted during the fourth quarter monitoring period on October 1, 2021, November 23, 2021, and December 17, 2021.

During the three additional gauging events water levels were only collected from two or three of the six staff gauges. Lack of measurements from the staff gauges were due to damaged staff gauge (SG-03, SG-05, and SG-06) or water level below the staff gauge (SG-01). With the recent installation of piezometers and stilling wells, measurements from staff gauges were evaluated and deemed inappropriate for use in generating groundwater contour maps given the level of uncertainty in the data with recent documentation of influence from freeze and thaw conditions, damaged staff gauges, and water level fluctuation near the staff gauge.

Groundwater elevations for each of water level events for the fourth quarter 2021 monitoring period are summarized in Table 2, Groundwater Elevation Summary. The elevation data were used to develop potentiometric surface elevation contour maps (Figure 3, Groundwater Contour Map, October 1, 2021, Figure 4, Groundwater Contour Map, October 25, 2021(Fourth Quarter Monitoring Event), Figure 5, Groundwater Contour Map, November 23, 2021, and Figure 6, Groundwater Contour Map, December 17, 2021).

Groundwater flow across the island is influenced by the elevation of the Grand River and the south channel. Localized flow is radially inward when river levels are high and radially outward when river level are low. Localized flow direction and gradients across the Site property are also influenced by precipitation and surface infiltration, particularly in wetland areas. The fill material that has historically been placed on the island is variable across the site in both thickness and permeability resulting in variably infiltration rates from precipitation. As a result, the surface water feature within the boundary of the inactive 1/2 Impoundment will have a faster infiltration rate than other areas of the island causing a mounding effect. In the area surrounding the inactive 1/2 Impoundment, the groundwater flow direction shifts from a radial outward to radial inward depending on precipitation. Overall, the regional general direction of groundwater flow across the Harbor Island is west to southwest towards Lake Michigan.

2.3 Groundwater Gradient and Flow Velocity

Groundwater flow rates at the site have been calculated based on hydraulic gradients, hydraulic conductivity, and an estimated effective porosity of the screened horizon as provided in the *Groundwater Monitoring System Certification* (ERM, 2017). Based on the information provided by ERM, hydraulic conductivity ranges from 27 to 53 feet per day with an assumed effective porosity of 30 percent. As described above, the recently calculated hydraulic conductivity for the Site is an average range of 0.19 feet per day to 242 feet per day and is highly dependent on the fill materials at each location. This wide range of variability is the result of the varying fill materials that form Harbor Island. In addition, a calculated hydraulic conductivity for the piezometers located on the eastern side of the wetland is an average 8.34 feet per day.

Horizontal flow velocity was calculated using the commonly-used derivative of Darcy's Law:

Specifically,

Using this equation, groundwater flow velocities were calculated for the site from three well pairs (MW-01R/MW-03, MW-01R/PZ-13, and MW-01R/PZ-18). Groundwater flow velocity at the site ranges from 0.3 to 1,200 feet per

year around the mounding observed around the substation. In addition, groundwater flow velocities were calculated from three well pairs (PZ-12/PZ-27, PZ-27/PZ-25, and PZ-27/PZ-26) on the eastside of the wetland. Groundwater flow velocity at the site ranges from 0.01 to 7 feet per year on the eastside of the wetland.

The calculated flow velocities are best estimates based on field data and default data for soils, and therefore, these velocities should not be taken as absolute values, but rather as estimated values that may vary with future data collected at the site. The field summary report will include the detailed aquifer performance testing. An updated Hydrogeologic Monitoring Plan (HMP) and Groundwater Monitoring System Certification will be submitted following the collection of background groundwater quality data from the proposed detection monitoring locations.

2.4 Groundwater Sampling

Groundwater samples were collected in accordance with the PA 640 Part 115 amendment. Monitoring wells were purged and sampled using a peristaltic pump following low-flow sampling procedures. A multi parameter meter was used to monitor field parameters, namely: pH, temperature, conductivity, dissolved oxygen (DO), and oxidation-reduction potential (ORP), during well purging to verify stabilization prior to sampling. Turbidity is also recorded during purging using a field meter to verify stabilization. Groundwater samples were collected when the following general stabilization criteria were met:

- 0.2 standard units for pH
- 5% for specific conductance
- 0.2 milligrams per liter (mg/L) or 10% for DO > 0.5 mg/L (whichever is greater)
- Turbidity measurements less than 5 Nephelometric Turbidity Units (NTU)

Any deviation from stabilization criteria, if applicable, is identified on field sampling forms. Following well stabilization, unfiltered samples were collected directly into appropriately preserved laboratory supplied sample containers, placed in iced coolers, and submitted to the laboratory following standard chain-of-custody protocol. Field information forms as well as chain-of-custody records are included in Appendix B.

2.5 Laboratory Analyses

Groundwater samples collected for each monitoring well included both detection and assessment monitoring constituents pursuant to the PA 640 Part 115 amendment. Laboratory analyses were performed by Trace in Muskegon, Michigan with the radium laboratory analysis subcontracted to Eurofins, Eaton Analytical (Eurofins) in South Bend, Indiana. Analytical methods used for groundwater sample analysis are listed on the analytical laboratory reports included in Appendix B.

3.0 ANALYTICAL RESULTS AND STATISTICAL ANALYSES

Statistical analysis of detection and assessment monitoring constituents was performed on samples collected from the current groundwater monitoring network pursuant to the PA 640 Part 115 Amendment and following the appropriate certified statistical methodology.

As described in Part 115 Rule 908 (6), statistical analysis at each monitoring well must be completed and submitted to EGLE within 30 days of the end of the calendar quarter in which sampling and analysis was conducted. As stated in the Introduction, this statistical analysis is a preliminary evaluation since a revised detection monitoring well network is still being established. A separate field summary report with a list of proposed new detection monitoring locations as well as a proposed sampling frequency for background groundwater quality data collection is forth coming.

The statistical methodology used for the Site was developed in accordance with the PA 640 Part 115 Amendment using methods presented in *Statistical Analysis of Groundwater Data at RCRA Facilities, Unified Guidance*, March 2009, EPA 530/R-09-007 (USEPA, 2009).

3.1 Statistical Methodology

The Sanitas[™] groundwater statistical software was used to perform the statistical analyses on detection and assessment monitoring constituents during the fourth quarter 2021 monitoring period. Sanitas[™] is a decision support software package that incorporates the statistical tests required of Subtitle C and D facilities by USEPA regulations.

The following table provides a summary of the statistical methodology used for the former 3A/B impoundments groundwater monitoring.

	STATISTICAL METHODOLOGY SUMMARY							
Former 3A/B	Background Wells	MW-07 (interim background location)						
Impoundments Monitoring	Detection Monitoring Wells	MW-01R, MW-02, MW-03, and MW-04 (pending further evaluation)						
Well Network	Assessment Monitoring Wells	MW-09 (pending further evaluation)						
CCR	Detection Monitoring (PA 640 Sec. 11511a(3)(c))	Boron, Calcium, Chloride, Fluoride, Iron, pH, Sulfate, and TDS						
Monitoring Constituents	Assessment Monitoring (PA 640 Sec. 11519b(2) plus above listed Detection Monitoring)	Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Copper, combined Radium 226 + 228, Fluoride, Lead, Lithium, Nickel, Mercury, Molybdenum, Selenium, Silver, Thallium, Vanadium, and Zinc						
	Data Screening on Proposed Background	Evaluate outliers, trends, and seasonality when sufficient data are available						
Statistical Methodology	Statistical Limits	Interwell statistical limits will be applied on a constituent basis, depending on the appropriateness of the method as determined by the Analysis of Variance						
	Confidence Intervals	Used in Assessment and Corrective Action monitoring.						
	No Statistical Testing	Statistical testing is not required for constituents with 100% non-detects.						
Statistical Methodology - continued	Verification Resample Plan (Optional)	1-of-2 with minimum of 8 samples per well for interwell testing. Initial statistical exceedance warrants independent resampling within 90 days. If resample passes, well/constituents is not a confirmed SSI. If resample exceeds, well/constituents has a confirmed SSI. If no resample is collected, the original result is deem verified.						

3.1.1 Detection Monitoring

Groundwater quality data was evaluated through use of interwell prediction limits for detection monitoring constituents. The Interwell Prediction Limit Plots are presented in Appendix A-1, Interwell Prediction Limits and Tolerance Limit Plots. Using these methods, upgradient well data was pooled to establish a background

statistical limit. Data are compared to the statistical limit to determine whether any concentrations exceed background levels. The selected statistical methodology uses an optional 1-of-2 verification resample plan. When an initial statistically significant increase (SSI) or questionable result occurs, a second sample may be collected to verify the initial result or determine if the result was an outlier.

If resampling is performed and the initial finding is not verified by resampling, the resampled value will replace the initial finding. When the resample confirms the initial finding, both values remain in the database and an SSI is declared.

The following guidance is also applicable to the statistical analysis methods:

- Statistical analyses are not performed on analytes containing 100% non-detects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain less than or equal to 15% non-detects in background, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the practical quantitation limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, a non-detect adjustment such as the Kaplan-Meier or Regression on Order Statistics (ROS) method for adjustment of the mean and standard deviation will be used prior to constructing a parametric prediction limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

3.1.2 Assessment Monitoring

Following the above statistical methodology, groundwater protection standards (GWPS) have been established for statistical comparison of assessment monitoring constituents. Parametric tolerance limits were used to calculate background limits from pooled upgradient well data for assessment monitoring constituents with a target of 95% confidence and 95% coverage to determine the site-specific background level. The interwell tolerance limit plots are presented in Appendix A-1. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. These limits were used to identify the GWPS established under Rule 441(9).

As described in Rule 441, the GWPS is:

- The lower of the following
 - The maximum contaminant level (MCL) established under 40 CFR § 141.62 and § 141.66 of this title;
 - Where an MCL has not been established, background concentration for the constituent established in accordance with 40 CFR § 257.91; or a rule specified limit (RSL) identified for Cobalt, Lead, Lithium, or Molybdenum;
 - Applicable Michigan Part 201 Generic Cleanup Criteria and Screening Levels
 - Ground Surface Water Interface (GSI) criteria is applicable
 - Drinking Water Criteria (residential and non-residential criteria) may not be an applicable criterion. It is Golder's opinion that since drinking water wells will not be installed at the site nor on the Island since there is known impacts on Harbor Island that the DWC does not apply. Plus, the City of Grand Haven has a city ordinance preventing drinking water wells on properties with historical impacts. In addition, GHBLP is considering filing a restrictive covenant for the property to further prevent the installation of drinking water wells on the property.
 - Indoor Air Criteria, Ambient Air Criteria, Direct Contact Criteria, and Soil Saturation Concentration Screening Levels (Csat) is not applicable since GSI is more strict

Background level for constituents where the background concentration is higher than the MCL, RSL, or Michigan Part 201 screening levels.

Following the above rule requirements, GWPS have been established for statistical comparison of assessment monitoring constituents. Site-Specific GWPS summarizes the background limit established at each monitoring well and the GWPS used for statistical comparison.

Interim Site-Specific Groundwater Protection Standards						
	Screening Levels [2]					
Analyte	Units [1]	RSL	MCL	Michigan Part 201 GSI	Interim Site-Specific Background	Interim GWPS
F	art 115 De	tection Mo	nitoring Co	nstituents (PA 6	40 Sec. 11511a(3)(c))	
Boron ^[3]	mg/L	N/R	N/R	7.2	16	16
Calcium ^[3]	mg/L	N/R	N/R	N/R	200	200
Chloride ^[3]	mg/L	N/R	N/R	150	15	150
Fluoride ^[4]	mg/L	N/R	4	2.67	0.2254	2.67
pH ^[3]	S.U.	N/R	N/R	6.5-9.0	5.9-8.6	6.5-9.0
Iron ^[3]	mg/L	N/R	N/R	N/R	25.01	25.01
Sulfate ^[3]	mg/L	N/R	N/R	370	84.74	370
Total Dissolved Solids[3]	mg/L	N/R	N/R	500	867	867
Part 115 Assessment	Monitoring	g Constitue	ents (PA 640	Sec. 11519b(2)	plus Detection Monitor	ring Constituents)
Antimony	mg/L	N/R	0.006	0.13	0.0016	0.006
Arsenic	mg/L	N/R	0.01	0.01	0.0048	0.01
Barium ^[4]	mg/L	N/R	2	1.2	0.52	1.2
Beryllium	mg/L	N/R	0.004	0.031	0.002	0.004
Cadmium ^[4]	mg/L	N/R	0.005	0.0025	0.0006	0.0025
Chromium ^[4]	mg/L	N/R	0.1	0.011	0.0028	0.01
Cobalt	mg/L	0.006	N/R	0.1	0.001	0.006
Copper ^{[3][5]}	mg/L	N/R	1.3	0.020	0.0040	0.02
Fluoride ^[4]	mg/L	N/R	4	2.67	0.2254	2.67
Lead	mg/L	0.015	N/R	0.014	0.0029	0.014
Lithium	mg/L	0.04	N/R	0.44	0.059	0.059
Mercury	mg/L	N/R	0.002	0.0000013	0.00014	0.00014
Molybdenum	mg/L	0.1	N/R	3.2	0.007	0.1
Nickel ^{[3][5]}	mg/L	N/R	N/R	0.11	0.0022	0.11
Radium (226 + 228)	pCi/L	N/R	5	N/R	2.12	5
Selenium ^[4]	mg/L	N/R	0.05	0.005	0.002	0.005
Silver ^{[3][5]}	mg/L	N/R	0.1	0.00006	0.001	0.001
Thallium	mg/L	N/R	0.002	0.0037	0.001	0.002

Interim Site-Specific Groundwater Protection Standards								
	[2]							
Analyte	Units [1]	RSL	MCL	Michigan Part 201 GSI	Interim Site-Specific Background	Interim GWPS		
Vanadium ^[3] mg/L		N/R	N/R	0.027	0.00089	0.027		
Zinc ^{[3][5]}	mg/L	N/R	5.0	0.27				

Notes:

- [1] Units for each constituent: mg/L = milligram per liter, S.U. = standard units, pCi/L = picocuries per liter
- [2] N/R = no reported screening level.
- [3] State of Michigan only, not part of the Federal CCR Rule.
- [4] State of Michigan criteria is stricter than the applicable criteria for the Federal CCR Rule.
- [5] insufficient number of observations available for calculating site specific background using interwell tolerance limits, therefore interwell prediction limits is used.

Using the calculated GWPS as identified above, confidence intervals were then constructed on downgradient wells for each of the detection and assessment monitoring constituents. Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard and a statistically significant level (SSL) is declared.

3.2 Statistical Analysis Results

Analytical data from the fourth quarter 2021 monitoring event were statistically analyzed in accordance with the Statistical Analysis Plan (Golder, 2017). Verification resampling to confirm initial SSIs was not performed; therefore, the one (1) initial statistical exceedance from total dissolved solids at monitoring well MW-04 is considered an SSI.

3.2.1 Data Screening

The initial step in the statistical evaluation is identifying potential outliers, trends, and seasonality with the analytical data. A summary of the analytical data is provided on Table 3, Analytical Results Summary. There were no outliers identified for the fourth quarter 2021 analytical data.

In addition, Mann-Kendall/Sen's Slope trend tests were performed for the monitoring wells. The significant trend plots for the constituents for the downgradient monitoring wells is presented in Appendix A-2, Trend Plots and Summary. Only statistically significant positive trends are considered problematic; statistically significant negative trends generally are interpreted to indicate improving groundwater quality. Of the significant trends noted during the fourth quarter 2021 monitoring period, the majority were significant decreasing or negative trends while four (4) were significant increasing or positive trends. A summary of the four (4) significant positive trends for the monitoring wells is included below.

- Calcium in MW-02
- Chromium in MW-03
- Combined Radium in MW-03 and MW-07

Based on review of the trend plots presented in Appendix A-2, the identified trends noted above are the result of geochemical variability in the subsurface likely influenced by historical ash and waste fill on the island coupled with varying groundwater elevations and flow directions influence by site recharge and elevations of the Grand River. Additionally, laboratory variability and changes to geochemical variability following the installation of the well can account for the some of the trends noted when including all the monitoring well data to evaluate overall trends. Thus, no data correction is necessary at this time, and the data, as reported, are useable for further statistical evaluation.

3.2.2 Detection Monitoring Statistical Results

Analytical data from the fourth quarter 2021 monitoring event for the former 3A/B impoundment detection monitoring constituents have been statistically analyzed in accordance with the site's Statistical Analysis Plan.

The interwell prediction limit plots for detection monitoring constituents are presented in Appendix A-1. Review of the Sanitas[™] results indicates that the following SSIs were identified during the fourth quarter 2021 monitoring event:

Inter-Well Prediction Limit Statistically Significant Increase Summary							
Detection Monitoring Constituents	Former 3A/B Impoundments Network						
Boron	MW-01R and MW-02						
Calcium	MW-01R, MW-03, and MW-04						
Chloride	MW-01R, MW-02, MW-03, and MW-04						
Fluoride	MW-01R and MW-02						
Iron	No SSIs observed						
рН	No SSIs observed						
Sulfate	MW-01R and MW-04						
Total Dissolved Solids	MW-01R, MW-02, MW-03, and MW-04						

Based on the SSIs identified at the site, assessment monitoring was originally initiated on April 9, 2018.

3.2.3 Assessment Monitoring Statistical Results

Review of the statistical results for the fourth quarter 2021 monitoring event indicates that SSLs were identified for assessment monitoring constituents using confidence intervals. The confidence intervals using the site specific GWPS are presented in Appendix A-3, Confidence Intervals. A summary of the SSLs is provided below.

Confidence Interval Exceedance Summary									
Assessment Monitoring Constituents	Assessment Monitoring Constituents Former 3A/B Impoundments Network								
Part 115 Detection	on Monitoring Constituents (PA 640 Sec. 11511a(3)(c))								
Boron	MW-01R and MW-02								
Calcium	MW-03, MW-04, and MW-09								
Chloride	MW-01R, MW-03, and MW-04								
Sulfate	MW-01R, MW-03, and MW-04								
Total Dissolved Solids	MW-01R, MW-02, MW-03, and MW-04								
Part 115 Assess	ment Monitoring Constituents (PA 640 Sec. 11519b(2))								
Fluoride	MW-01R and MW-02								
Lithium MW-01R, MW-02, and MW-09									

In response to the SSLs identified for Unit 3A/B, assessment of corrective measures (ACM) was initiated on February 8, 2019. Since that time, an alternate source demonstration (ASD) has been prepared that addresses the groundwater impacts (Golder, 2020b). That ASD concluded that the source of elevated constituents in groundwater was the result of the historical fill and waste placed on the island and not a release from the Unit 3

A/B impoundments. The ASD has not been approved by EGLE and further evaluation of the groundwater monitoring well network and groundwater chemistry is ongoing. Following determination and concurrence of the revised detection monitoring well network, GHBLP will re-evaluate the statistical analyses and either revisit the ASD or prepare an ACM following guidance provided in § 257 and PA 640.

4.0 CONCLUSIONS

The detection monitoring well network is currently being re-evaluated, alternate background monitoring wells are being considered, and statistical results are expected to change. As stated previously, a field summary report with revised detection monitoring locations is forthcoming. Following concurrence from EGLE, GHBLP will implement background groundwater quality data from the revised detection monitoring locations. An updated HMP and Groundwater Monitoring System Certification is expected following review of the background groundwater quality data. Therefore, the purpose of this report is to comply with Rule 907(11) and Rule 908(6) and monitoring well MW-07 was used as an interim background well until a better understanding of groundwater flow is determined.

The preliminary statistical evaluations, using the interim background well location, of the groundwater monitoring data for the former 3A/B Impoundments identified SSIs of detection monitoring constituents above prediction limits and SSLs of assessment monitoring constituents above the GWPS.

The following SSLs were identified above the GWPS during the fourth quarter monitoring event.

- Boron (preliminary GWPS of 16 mg/L)
 - MW-01R (CI range 140-190 mg/L)
 - MW-02 (CI range 99-138 mg/L)
- Calcium (preliminary GWPS of 200 mg/L)
 - MW-03 (CI range 540-620 mg/L)
 - MW-04 (CI range 421-463 mg/L)
 - MW-09 (CI range 228-258 mg/L)
- Chloride (preliminary GWPS of 150 mg/L)
 - MW-01R (CI range 251-264 mg/L)
 - MW-03 (CI range 360-454 mg/L)
 - MW-04 (CI range 241-314 mg/L)
- Fluoride (preliminary GWPS of 2.67 mg/L)
 - MW-01R (CI range 20-26 mg/L)
 - MW-02 (CI range 10-13 mg/L)

- Lithium (preliminary GWPS of 0.059 mg/L)
 - MW-01R (CI range 2.4-3.1 mg/L)
 - MW-02 (CI range 1.2-1.5 mg/L)
 - MW-09 (CI range 0.16-0.26 mg/L)
- Sulfate (preliminary GWPS of 370 mg/L)
 - MW-01R (CI range 528-761 mg/L)
 - MW-03 (CI range 486-972 mg/L)
 - MW-04 (CI range 639-802 mg/L)
- TDS (preliminary GWPS of 867 mg/L)
 - MW-01R (CI range 3,200-3,500 mg/L)
 - MW-02 (CI range 1,900-2,400 mg/L)
 - MW-03 (CI range 2,800-3,500 mg/L)
 - MW-04 (CI range 1,900-2,400 mg/L)

There is evidence of other potential sources for the groundwater impacts observed in groundwater monitoring wells in the former 3A/B impoundments groundwater monitoring network, including:

- Historical ash documented to be placed beneath the former 3A/B impoundments
- Historical ash placed as beneficial fill outside the boundary of the Inactive 1/2 Impoundment
- Historical waste placement at the JB Sims site
- Unlined inactive Units 1/2 impoundment located upgradient of the former 3A/B impoundments

The Site has submitted an ASD (Golder, 2020b) for the former 3A/B Impoundments groundwater monitoring data, which has not been approved by EGLE. As a result, further evaluation of the groundwater monitoring well network and groundwater chemistry is ongoing. These other potential sources currently exist on the JB Sims site and should be considered as likely influences on the groundwater quality at the site. The Site will remain in

assessment monitoring until the groundwater quality has returned to background conditions or is below GWPS at each of the detection monitoring wells.

GHBLP is working with USEPA and EGLE to further evaluate the groundwater monitoring well networks at JB Sims. A field summary report with revised detection monitoring locations is forthcoming. GHBLP anticipates submitting a proposed expanded groundwater monitoring network in 2022. GHBLP will continue to address the groundwater impacts at JB Sims following the requirements of the PA 640 Part 115 amendment.

5.0 REFERENCES

- ERM, 2016. *Coal Ash Delineation Sampling Results* for the Grand Haven Board of Light and Power. Environmental Resources Management Michigan, Inc. February 8, 2016.
- ERM, 2017. *Groundwater Monitoring System Certification* for the Grand Haven Board of Light and Power, Environmental Resources Management Michigan, Inc. November 2017.
- Golder, 2017. Statistical Analysis Plan for the Grand Haven Board of Light and Power. Golder Associates Inc. October 17, 2017.
- Golder, 2019. Notice of Initiating Assessment of Corrective Measures. Golder Associates Inc. February 8, 2019.
- Golder, 2020a. JB Sims Generating Station Unit 3 Impoundments CCR Removal Documentation Report. Golder Associates Inc. December 11, 2020.
- Golder, 2020b. Alternate Source Demonstration for the JB Sims Generating Station Unit 3 Impoundments, Golder Associates Inc. December 28, 2020.
- PA 451, 1995. State of Michigan enacted Natural Resources and Environmental Protection Act, Public Act No. 451 of 1994. State of Michigan. Effective March 30, 1995.
- PA 640, 2018. State of Michigan enacted Public Act No. 640 of 2018 (PA 640) to amend the Natural Resources and Environmental Protection Act, also known as Part 115 of PA 451 of 1994, as amended (Part 115 amendment). State of Michigan. December 28, 2018.
- Sanitas, 2014. Groundwater Statistical Software. Sanitas Technologies, Shawnee, KS. 2014.
- State Waste Management Board, 2016. State Solid Waste Management Regulations (9VAC20-81 *et seq.*). January 2016.
- USEPA, 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities. Unified Guidance. USEPA 530/R-09-007.
- USEPA, 2015. Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule/ [EPA-HQ-RCRA-2009-0640; FRL-9919-44-OSWER] (2015), Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System.
- USEPA, 2016. *Disposal of Coal Combustion Residuals from Electric Utilities*; Amendment, Federal Register. Volume 81. No. 151. Friday August 5, 2016.
- USEPA, 2018. *Disposal of Coal Combustion Residuals from Electric Utilities*; Amendment, Federal Register. Volume 83. No. 146. Monday July 30, 2018.

Signature Page

Golder Associates Inc.

Carolyn E. Powrozek, C.P.G.

Senior Geologist

Dawn L. Prell, C.P.G.

Senior Consultant

CEP/DLP

Golder and the G logo are trademarks of Golder Associates Corporation

 $https://golder associates. share point.com/sites/27317g/deliverables/200 \ reports/2021\ annual\ report/4q2021/units\ 3a-b/final\ rp-ghblp\ unit\ 3\ 4q2021\ qmr.docx$

TABLES

Table 1 – Summary of Locations
Table 2 – Groundwater Elevation Summary
Table 3 – Analytical Results Summary

January 2022 **TABLE 1.** 21461064

SUMMARY OF LOCATIONS

JB Sims Generating Station

Fourth Quarter 2021 Monitoring Report

Location	Current Groundwater Monitoring Networks Inactive 1/2 Impoundment Impoundments		Coordinates		Date	Ground Surface	Top of Casing (Staff	Total Well Depth (Total	Screen Interval	Comments
Identification			Northing	Easting	Installed	Elevation (feet MSL)	Gauge) Elevation (feet MSL)	Boring Depth) (ft)	(ft)	Comments
				Monit	oring Wells					
MW-01R	Detection	Detection	578101.30	12624432.00	5/1/2020	585.73	588.45	10.00	5-10	
MW-02	Assessment	Detection	578241.91	12624222.64	1/18/2017	592.67	595.64	23.37	15-20	
MW-03	Assessment	Detection	578125.03	12624180.40	1/18/2017	590.42	593.08	20.34	12-17	
MW-04	Assessment	Detection	578003.96	12624165.24	1/18/2017	588.66	591.49	18.00	10-15	
MW-05	Detection	Piezometer	577970.06	12624634.16	5/22/2018	585.31	587.67	11.50	4-9	
MW-06	Detection	Piezometer	578229.40	12624525.24	5/22/2018	588.22	590.40	16.55	9-14	
MW-07	Detection	Detection/Background	577585.75	12625513.56	5/22/2018	583.65	586.49	18.80	11-16	
MW-08	Detection	Piezometer	578261.14	12625341.26	5/22/2018	582.74	585.40	11.85	4-9	
MW-09	Assessment	Assessment	578241.35	12624185.62	8/12/2019	586.80	589.65	12.00	7-12	
MW-10	Assessment	Piezometer	578367.40	12624470.20	8/12/2019	583.71	586.73	10.00	5-10	
				Pie	zometers					
PZ-11	Site-wide	e Water Levels	578236.87	12624377.19	8/19/2021	592.46	595.27	15 (40)	10-15	
PZ-12	Site-wide	e Water Levels	577987.57	12624312.28	8/17/2021	584.94	588.03	8 (40)	3-8	
PZ-13	Site-wide	e Water Levels	577623.94	12624190.94	8/17/2021	583.23	586.08	9 (34)	4-9	
PZ-14	Site-wide	e Water Levels	577191.85	12624160.04	8/16/2021	583.46	586.39	8 (35)	3-8	
PZ-15	Site-wide	e Water Levels	577062.51	12624730.23	8/25/2021	589.32	592.38	20 (40)	15-20	
PZ-16	Site-wide	e Water Levels	577273.65	12625194.83	8/25/2021	582.18	584.87	8 (35)	3-8	
PZ-17	Site-wide	e Water Levels	577652.81	12624744.16	8/17/2021	584.03	587.02	8 (40)	3-8	
PZ-18	Site-wide Water Levels		577919.12	12624742.18	8/18/2021	584.12	587.22	8 (34)	3-8	
PZ-19	Site-wide Water Levels		577938.05	12624957.16	8/20/2021	583.06	585.86	8 (25)	3-8	
PZ-20	Site-wide Water Levels		577722.50	12625131.40	8/18/2021	582.43	585.74	8 (34)	3-8	
PZ-21	Site-wide	e Water Levels	577941.39	12625280.33	8/30/2021	NA	583.32	9 (30)	4-9	Located in standing water
PZ-22	Site-wide	e Water Levels	578056.88	12625387.96	8/31/2021	NA	583.42	9 (22)	4-9	Located in standing water

TABLE 1. SUMMARY OF LOCATIONS

JB Sims Generating Station

Fourth Quarter 2021 Monitoring Report

Location Identification		ndwater Monitoring etworks Former 3 A/B Impoundments	Coor	rdinates Easting	Date Installed	Ground Surface Elevation (feet MSL)	Top of Casing (Staff Gauge) Elevation	Total Well Depth (Total Boring Depth) (ft)	Screen Interval (ft)	Comments
	podiranioni	impoundinonto					(feet MSL)	. ,,,		
				Piezomet	ters - contin	ued				
PZ-23	Site-wide	e Water Levels	577627.71	12625841.35	8/25/2021	584.39	587.21	9 (25)	4-9	
PZ-24	Site-wide	e Water Levels	577884.70	12625979.33	8/24/2021	583.92	587.34	9 (30)	4-9	
PZ-25	Site-wide	e Water Levels	577703.65	12626240.18	8/24/2021	583.46	586.37	8 (30)	3-8	
PZ-26	Site-wide	e Water Levels	578114.39	12626145.22	8/23/2021	583.81	586.27	8 (30)	3-8	
PZ-27	Site-wide	e Water Levels	578303.89	12626551.81	8/23/2021	581.87	585.09	8 (40)	3-8	
PZ-28	Site-wide	e Water Levels	578314.93	12625722.71	8/23/2021	585.11	588.07	9 (29.5)	4-9	
PZ-29	Site-wide	e Water Levels	578138.08	12625241.56	8/30/2021	NA	583.49	9 (35)	4-9	Located in standing water
PZ-30	Site-wide	e Water Levels	578196.17	12624990.23	8/19/2021	583.02	585.80	8 (34)	3-8	
PZ-31	Site-wide	e Water Levels	578307.16	12624752.70	9/1/2021	582.56	585.85	8 (27)	3-8	
PZ-32	Site-wide	e Water Levels	578348.32	12624980.14	8/30/2021	583.08	586.26	8 (40)	3-8	
				Sta	ff Gauges					
SG-01	Site-wide	e Water Levels	578234.49	12624159.06	8/12/2019	NA	585.10	NA	NA	Located in standing water
SG-02	Site-wide	e Water Levels	578287.85	12624784.61	8/12/2019	NA	583.43	NA	NA	Located in standing water
SG-03	Site-wide	e Water Levels	578201.99	12624858.11	8/12/2019	NA	584.37	NA	NA	Located in standing water
SG-04R	Site-wide	e Water Levels	577966.13	12624647.67	6/9/2020	NA	585.04	NA	NA	Located in standing water
SG-05	Site-wide	e Water Levels	577717.81	12624888.51	8/12/2019	NA	584.83	NA	NA	Damaged in 2021
SG-06	Site-wide	e Water Levels	578227.56	12625365.56	8/12/2019	NA	584.88	NA	NA	Damaged in 2021
				Stil	ling Wells					
STW-1	Site-wide	e Water Levels	578433.87	12625522.16	9/3/2021	NA	583.03	NA	NA	Located in standing water
STW-2	Site-wide	e Water Levels	577340.30	12625423.18	9/2/2021	NA	583.47	NA	NA	Located in standing water
STW-3	Site-wide	e Water Levels	577771.11	12624083.74	9/3/2021	NA	591.17	NA	NA	Located in standing water
STW-2	Site-wide	e Water Levels	577340.30	12625423.18	9/2/2021	NA	583.47	NA	NA	Located in standing

Notes:

MSL = mean sea level. NA = Not available

GROUNDWATER ELEVATION SUMMARY

JB Sims Generating StationFourth Quarter 2021 Monitoring Report

Page 1 of 2

Location	Top of Casing (Staff Gauge)		October 1, 20	021	C	october 25, 202	21
Identification	Elevation (feet MSL)	Date	Depth to Water (ft)	Groundwater Elevation	Date	Depth to Water (ft)	Groundwater Elevation
Monitoring Well	ls		<u> </u>				
MW-01R	588.45	10/1/2021	7.01	581.44	10/25/2021	6.23	582.22
MW-02	595.64	10/1/2021	14.70	580.94	10/25/2021	14.71	580.93
MW-03	593.08	10/1/2021	12.07	581.01	10/25/2021	11.90	581.18
MW-04	591.49	10/1/2021	10.46	581.03	10/25/2021	10.22	581.27
MW-05	587.67	10/1/2021	6.54	581.13	10/25/2021	5.90	581.77
MW-06	590.40	10/1/2021	9.26	581.14	10/25/2021	8.50	581.90
MW-07	586.49	10/1/2021	5.43	581.06	10/25/2021	5.25	581.24
MW-08	585.40	10/1/2021	4.31	581.09	10/25/2021	4.04	581.36
MW-09	589.65	10/1/2021	8.58	581.07	10/25/2021	8.49	581.16
MW-10	586.73	10/1/2021	5.70	581.03	10/25/2021	5.32	581.41
Piezometers							
PZ-11	595.27	10/1/2021	14.00	581.27	10/25/2021	NR	NM
PZ-12	588.03	10/1/2021	6.83	581.20	10/25/2021	NR	NM
PZ-13	586.08	10/1/2021	4.96	581.12	10/25/2021	4.60	581.48
PZ-14	586.39	10/1/2021	5.32	581.07	10/25/2021	4.70	581.69
PZ-15	592.38	10/1/2021	11.15	581.23	10/25/2021	10.84	581.54
PZ-16	584.87	10/1/2021	3.86	581.01	10/25/2021	3.67	581.20
PZ-17	587.02	10/1/2021	5.85	581.17	10/25/2021	5.42	581.60
PZ-18	587.22	10/1/2021	6.15	581.07	10/25/2021	5.62	581.60
PZ-19	585.86	10/1/2021	4.78	581.08	10/25/2021	4.53	581.33
PZ-20	585.74	10/1/2021	4.78	580.96	10/25/2021	4.53	581.21
PZ-21	583.32	10/1/2021	2.18	581.14	10/25/2021	NR	NM
PZ-22	583.42	10/1/2021	2.35	581.07	10/25/2021	NR	NM
PZ-23	587.21	10/1/2021	6.50	580.71	10/25/2021	5.76	581.45
PZ-24	587.34	10/1/2021	6.61	580.73	10/25/2021	6.13	581.21
PZ-25	586.37	10/1/2021	5.26	581.11	10/25/2021	5.00	581.37
PZ-26	586.27	10/1/2021	5.52	580.75	10/25/2021	4.60	581.67
PZ-27	585.09	10/1/2021	4.40	580.69	10/25/2021	3.24	581.85
PZ-28	588.07	10/1/2021	6.95	581.12	10/25/2021	6.70	581.37
PZ-29	583.49	10/1/2021	2.24	581.25	10/25/2021	NR	NM
PZ-30	585.80	10/1/2021	5.02	580.78	10/25/2021	NR	NM
PZ-31	585.85	10/1/2021	4.81	581.04	10/25/2021	4.10	581.75
PZ-32	586.26	10/1/2021	5.25	581.01	10/25/2021	4.95	581.31
Staff Gauges							1
SG-01	585.10	10/1/2021	NM	NM	10/25/2021	NR	NM
SG-02	583.43	10/1/2021	1.44	581.99	10/25/2021	NR	NM
SG-03	584.37	10/1/2021	NM	NM	10/25/2021	NR	NM
SG-04R	585.04	10/1/2021	3.38	581.66	10/25/2021	NR	NM
SG-05	584.83	10/1/2021	NM	NM	10/25/2021	NR	NM
SG-06	584.88	10/1/2021	NM	NM	10/25/2021	NR	NM
Stilling Wells							
STW-1	583.03	10/1/2021	1.88	581.15	10/25/2021	NR	NM
STW-2	583.47	10/1/2021	2.41	581.06	10/25/2021	NR	NM
STW-3	591.17	10/1/2021	10.10	581.07	10/25/2021	NR	NM

Notes: MSL = mean sea level.

NA = Not available

GROUNDWATER ELEVATION SUMMARY

JB Sims Generating StationFourth Quarter 2021 Monitoring Report

Page 2 of 2

Location	Top of Casing (Staff Gauge)	No	ovember 23, 20)21	December 17, 2021			
Identification	Elevation (feet MSL)	Date	Depth to Water (ft)	Groundwater Elevation	Date	Depth to Water (ft)	Groundwater Elevation	
Monitoring Well	ls					<u>'</u>		
MW-01R	588.45	11/23/2021	6.74	581.71	12/17/2021	6.36	582.09	
MW-02	595.64	11/23/2021	15.68	579.96	12/17/2021	15.88	579.76	
MW-03	593.08	11/23/2021	12.86	580.22	12/17/2021	12.61	580.47	
MW-04	591.49	11/23/2021	11.08	580.41	12/17/2021	10.82	580.67	
MW-05	587.67	11/23/2021	6.26	581.41	12/17/2021	6.28	581.39	
MW-06	590.40	11/23/2021	9.06	581.34	12/17/2021	8.86	581.54	
MW-07	586.49	11/23/2021	6.21	580.28	12/17/2021	6.02	580.47	
MW-08	585.40	11/23/2021	5.05	580.35	12/17/2021	4.94	580.46	
MW-09	589.65	11/23/2021	9.35	580.30	12/17/2021	9.09	580.56	
MW-10	586.73	11/23/2021	6.47	580.26	12/17/2021	6.21	580.52	
Piezometers								
PZ-11	595.27	11/23/2021	14.00	581.27	12/17/2021	13.75	581.52	
PZ-12	588.03	11/23/2021	6.85	581.18	12/17/2021	6.28	581.75	
PZ-13	586.08	11/23/2021	5.65	580.43	12/17/2021	5.45	580.63	
PZ-14	586.39	11/23/2021	5.64	580.75	12/17/2021	5.40	580.99	
PZ-15	592.38	11/23/2021	11.76	580.62	12/17/2021	11.58	580.80	
PZ-16	584.87	11/23/2021	4.64	580.23	12/17/2021	4.48	580.39	
PZ-17	587.02	11/23/2021	6.16	580.86	12/17/2021	6.00	581.02	
PZ-18	587.22	11/23/2021	6.51	580.71	12/17/2021	6.41	580.81	
PZ-19	585.86	11/23/2021	5.36	580.50	12/17/2021	5.23	580.63	
PZ-20	585.74	11/23/2021	5.30	580.44	12/17/2021	5.31	580.43	
PZ-21	583.32	11/23/2021	NM	NM	12/17/2021	2.85	580.47	
PZ-22	583.42	11/23/2021	NM	NM	12/17/2021	2.90	580.52	
PZ-23	587.21	11/23/2021	6.68	580.53	12/17/2021	6.48	580.73	
PZ-24	587.34	11/23/2021	6.64	580.70	12/17/2021	6.31	581.03	
PZ-25	586.37	11/23/2021	5.98	580.39	12/17/2021	5.90	580.47	
PZ-26	586.27	11/23/2021	5.47	580.80	12/17/2021	5.14	581.13	
PZ-27	585.09	11/23/2021	4.52	580.57	12/17/2021	3.99	581.10	
PZ-28	588.07	11/23/2021	7.78	580.29	12/17/2021	7.68	580.39	
PZ-29	583.49	11/23/2021	3.08	580.41	12/17/2021	2.83	580.66	
PZ-30	585.80	11/23/2021	5.28	580.52	12/17/2021	4.95	580.85	
PZ-31	585.85	11/23/2021	4.69	581.16	12/17/2021	4.66	581.19	
PZ-32	586.26	11/23/2021	5.59	580.67	12/17/2021	5.45	580.81	
Staff Gauges								
SG-01	585.10	11/23/2021	NM	NM	12/17/2021	NM	NM	
SG-02	583.43	11/23/2021	1.50	581.93	12/17/2021	1.68	581.75	
SG-03	584.37	11/23/2021	2.72	581.65	12/17/2021	2.80	581.57	
SG-04R	585.04	11/23/2021	3.48	581.56	12/17/2021	3.56	581.48	
SG-05	584.83	11/23/2021	NM	NM	12/17/2021	NM	NM	
SG-06	584.88	11/23/2021	NM	NM	12/17/2021	NM	NM	
Stilling Wells								
STW-1	583.03	11/23/2021	2.83	580.20	12/17/2021	2.50	580.53	
STW-2	583.47	11/23/2021	3.35	580.12	12/17/2021	3.30	580.17	
STW-3	591.17	11/23/2021	10.93	580.24	12/17/2021	10.88	580.29	

Notes: MSL = mean sea level.

NA = Not available

January 2022 21461064

TABLE 3. ANALYTICAL RESULTS SUMMARY JB Sims Generating Station

Fourth Quarter 2021

Analyte	Units	PQL	MDL	MW-01R	MW-02	MW-03	MW-04	MW-09
Detection Monitoring								
BORON, TOTAL	mg/L	0.050	0.017	140	100	4.4	3.7	6.8
CALCIUM, TOTAL	mg/L	0.50	0.16	220	190	490	370	220
CHLORIDE, TOTAL	mg/L	0.75	0.60	230	140	330	170	13
FLUORIDE, TOTAL	mg/L	0.10	0.055	13	9.4	0.89	1.3	2.5
IRON, TOTAL	mg/L	0.20	0.13	1.7	22	4.5	5.2	19
рН	S.U.	NA	NA	7.8	6.48	6.91	6.74	7.31
SULFATE, TOTAL	mg/L	3.0	0.41	530	< 0.41	23	450	14
TOTAL DISSOLVED SOLIDS	mg/L	40	NA	3,600	2,000	2,500	1,900	880
Assessment Monitoring								
ANTIMONY, TOTAL	mg/L	<0.00030	<0.00030	0.00044	<0.00030	<0.00030	<0.00030	<0.00030
ARSENIC, TOTAL	mg/L	0.0010	0.00050	0.0046	0.012	0.0012	0.0019	0.0025
BARIUM, TOTAL	mg/L	0.010	0.0013	0.20	0.50	0.47	0.12	5.0
BERYLLIUM, TOTAL	mg/L	0.0020	0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
CADMIUM, TOTAL	mg/L	0.0010	0.00060	<0.00060	<0.00060	<0.00060	<0.00060	<0.00060
CHROMIUM, TOTAL	mg/L	0.00090	0.00070	0.0022	0.040	0.0041	0.0033	0.0029
COBALT, TOTAL	mg/L	0.0016	0.00050	0.0022	0.0055	0.0014 J	0.00079 J	< 0.00050
COPPER, TOTAL	mg/L	0.0040	0.0018	< 0.0018	0.0022 J	< 0.0018	< 0.0018	< 0.0018
LEAD, TOTAL	mg/L	0.0020	0.00050	0.0024	0.0018 J	< 0.00050	< 0.00050	< 0.00050
LITHIUM, TOTAL	mg/L	0.010	0.0067	2.8	1.2	0.053	0.061	0.26
MERCURY, TOTAL	mg/L	0.0000005	0.00000016	0.0000019	0.0000028	0.00000079	<0.0000016	0.00000062
MOLYBDENUM, TOTAL	mg/L	0.00040	0.000093	0.0016	0.0045	0.00012 J	0.0015	0.017
NICKEL, TOTAL	mg/L	0.0050	0.0022	0.0039 J	0.017	0.0027 J	0.011	< 0.0022
RADIUM (226 + 228)	pCi/L	1.0	NA	0.41	2.27	1.01	1.87	2.56
SELENIUM, TOTAL	mg/L	0.0020	0.0090	0.00097 J	0.0017 J	< 0.00090	< 0.00090	< 0.00090
SILVER, TOTAL	mg/L	0.0010	0.0003	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
THALLIUM, TOTAL	mg/L	0.0010	0.0003	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
VANADIUM, TOTAL	mg/L	0.00080	0.00050	0.0017	0.0039	0.0014	0.0010	< 0.00050
ZINC, TOTAL	mg/L	0.020	0.018	<0.018	<0.018	<0.018	<0.018	<0.018

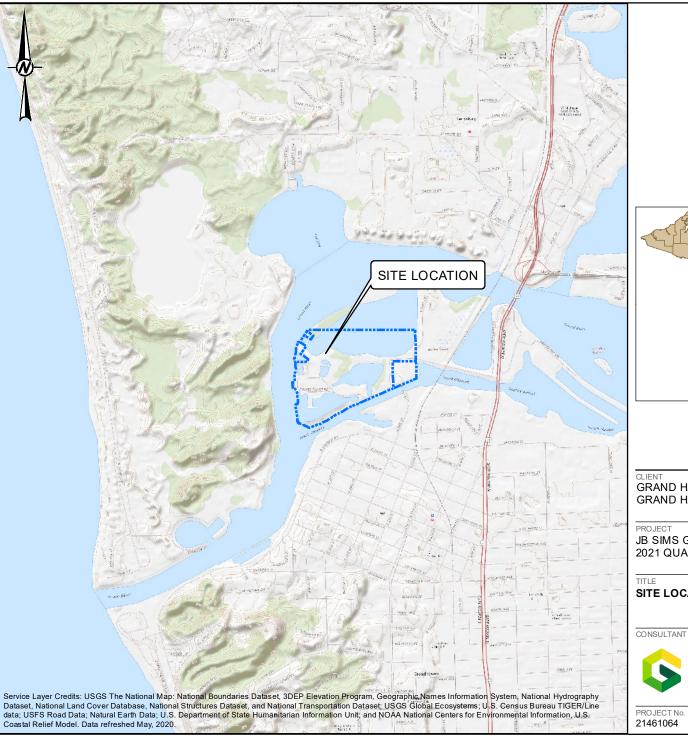
NOTES:

mg/L - Milligrams per Liter

S.U. - standard units

pCi/L - picocuries per Liter

NA - Not available


- J Result is an estimated value. The result is greater than or equal to the Method Detection Limit (MDL) and less than the Practical Quantitation Limit (PQL).
- < Constituent was analyzed, but was not detected above the MDL and is considered a non-detect.

FIGURES (Revised March 8, 2022)

Figure 1 - Site Location Map Figure 2 - Site Plan Figures 3-6 - Groundwater Contour Maps

GRAND HAVEN BOARD OF LIGHT AND POWER GRAND HAVEN, MICHIGAN

JB SIMS GENERATING STATION 2021 QUARTERLY GROUNDWATER MONITORING

SITE LOCATION MAP

GOLDER MEMBER OF WSP

YYYY-MM-DD	2021-04-05	
PREPARED	DJC	
DESIGN	CEP	
REVIEW	CEP	
APPROVED	DLP	

FIGURE PROJECT No. 21461064 20141048F000-GIS.mxd

NOTES

1. HORIZONTAL COORDINATE SYSTEM BASED ON MICHIGAN STATE PLANE SOUTH, INTERNATIONAL FEET. VERTICAL DATUM IS NAVD 1988.

2. MONITORING WELLS AND STAFF GAUGES WERE SURVEYED BY DRIESENGA & ASSOCIATES, INC. ON AUGUST 28, 2019. MW-1R AND SG-4R WERE SURVEYED BY DRIESENGA & ASSOCIATES, INC. ON JUNE 17, 2020. PIEZOMTER AND STILLING WELLS WERE SURVEYED BY GOLDER ASSOCIATES ON OCTOBER 1, 2021.

3. SG-05* HAS BEEN REMOVED

LEGEND

MONITORING WELL

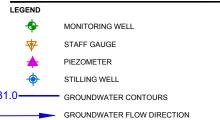
PIEZOMETER STILLING WELL GRAND HAVEN BOARD OF LIGHT AND POWER GRAND HAVEN, MICHIGAN

CONSULTANT

YYYY-MM-DD	2021-10-08	
DESIGNED	CEP	
PREPARED	DJC	
REVIEWED	CEP	
APPROVED	DLP	

JB SIMS GENERATING STATION 2021 QUARTERLY GROUNDWATER MONITORING

TITLE
SITE PLAN


-	PROJECT NO. 21464427	CONTROL 21464427A001.dwg	REV.	FIGUR
	21404421	2140442771001.dwg	0	

NOTES

- IN HORIZONTAL COORDINATE SYSTEM BASED ON MICHIGAN STATE PLANE SOUTH,
 INTERNATIONAL FEET. VERTICAL DATUM IS NAVD 1988.

 2. MONITORING WELLS AND STAFF GAUGES WERE SURVEYED BY DRIESENGA & ASSOCIATES,
 INC. ON AUGUST 28, 2019. MW-1R AND SG-4R WERE SURVEYED BY DRIESENGA &
 ASSOCIATES, INC. ON JUNE 17, 2020. PIEZOMTER AND STILLING WELLS WERE SURVEYED
 BY GOLDER ASSOCIATES ON OCTOBER 1, 2021.
- 3. STAFF GAUGES WERE NOT INCLUDED IN EVALUATION OF GROUNDWATER CONTOURS.

GRAND HAVEN BOARD OF LIGHT AND POWER GRAND HAVEN, MICHIGAN

CONSULTANT

YYYY-MM-DD	2021-10-08	
DESIGNED	CEP	
PREPARED	DJC	
REVIEWED	CEP	
APPROVED	DLP	

JB SIMS GENERATING STATION 2021 QUARTERLY GROUNDWATER MONITORING

TITLE
GROUNDWATER ELEVATION MAP

PROJECT NO.	CONTROL	REV.	FIGURE
21464427	21464427A002.dwg	0	3

NOTES

- 1. HORIZONTAL COORDINATE SYSTEM BASED ON MICHIGAN STATE PLANE SOUTH, INTERNATIONAL FEET. VERTICAL DATUM IS NAVD 1988.
 2. MONITORING WELLS AND STAFF GAUGES WERE SURVEYED BY DRIESENGA & ASSOCIATES, INC. ON AUGUST 28, 2019. MW-1R AND SG-4R WERE SURVEYED BY DRIESENGA & ASSOCIATES, INC. ON JUNE 17, 2020. PIEZOMTER AND STILLING WELLS WERE SURVEYED BY GOLDER ASSOCIATES ON OCTOBER 1, 2021.
 3. STAFF GAUGES WERE NOT INCLUDED IN EVALUATION OF GROUNDWATER CONTOURS.

GRAND HAVEN BOARD OF LIGHT AND POWER GRAND HAVEN, MICHIGAN

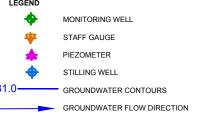
CONSULTANT

	YYYY-MM-DD	2022-01-07
	DESIGNED	CEP
)	PREPARED	DJC
	REVIEWED	CEP
	APPROVED	DLP

JB SIMS GENERATING STATION 2021 QUARTERLY GROUNDWATER MONITORING

GROUNDWATER ELEVATION MAP
OCTOBER 25, 2021

PROJECT NO. 21464427 FIGURE 4 CONTROL 21464427A003.dwg REV.


REFERENCE

AERIAL PHOTOGRAPH COURTESY OF GOOGLE EARTH PRO; IMAGE DATE: 2021-03-18.

NOTES

- IN HORIZONTAL COORDINATE SYSTEM BASED ON MICHIGAN STATE PLANE SOUTH,
 INTERNATIONAL FEET. VERTICAL DATUM IS NAVD 1988.

 2. MONITORING WELLS AND STAFF GAUGES WERE SURVEYED BY DRIESENGA & ASSOCIATES,
 INC. ON AUGUST 28, 2019. MW-1R AND SG-4R WERE SURVEYED BY DRIESENGA &
 ASSOCIATES, INC. ON JUNE 17, 2020. PIEZOMTER AND STILLING WELLS WERE SURVEYED
 BY GOLDER ASSOCIATES ON OCTOBER 1, 2021.
- 3. STAFF GAUGES WERE NOT INCLUDED IN EVALUATION OF GROUNDWATER CONTOURS.

GRAND HAVEN BOARD OF LIGHT AND POWER GRAND HAVEN, MICHIGAN

CONSULTANT

YYYY-MM-DD	2021-12-10	
DESIGNED	CEP	
PREPARED	DJC	
REVIEWED	CEP	
APPROVED	DLP	

JB SIMS GENERATING STATION 2021 QUARTERLY GROUNDWATER MONITORING

GROUNDWATER ELEVATION MAP

PROJECT NO.	CONTROL	REV.	FIGURE
21464427	21464427A004.dwg	0	5

NOTES

- IN HORIZONTAL COORDINATE SYSTEM BASED ON MICHIGAN STATE PLANE SOUTH,
 INTERNATIONAL FEET. VERTICAL DATUM IS NAVD 1988.

 2. MONITORING WELLS AND STAFF GAUGES WERE SURVEYED BY DRIESENGA & ASSOCIATES,
 INC. ON AUGUST 28, 2019. MW-1R AND SG-4R WERE SURVEYED BY DRIESENGA &
 ASSOCIATES, INC. ON JUNE 17, 2020. PIEZOMTER AND STILLING WELLS WERE SURVEYED
 BY GOLDER ASSOCIATES ON OCTOBER 1, 2021.
- 3. STAFF GAUGES WERE NOT INCLUDED IN EVALUATION OF GROUNDWATER CONTOURS.

GRAND HAVEN BOARD OF LIGHT AND POWER GRAND HAVEN, MICHIGAN

CONSULTANT

GOLDER MEMBER OF WSP

YYYY-MM-DD	2022-01-07	
DESIGNED	CEP	
PREPARED	DJC	
REVIEWED	CEP	
APPROVED	DLP	

JB SIMS GENERATING STATION 2021 QUARTERLY GROUNDWATER MONITORING

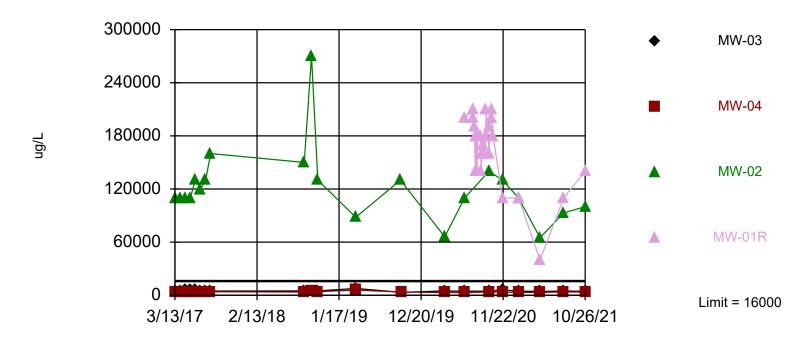
GROUNDWATER ELEVATION MAP

DECEMBER 17, 2021

	21464427A005.dwg	REV.	FIGURE 6
DBO IECT NO	CONTROL	DEV/	EIGLIDI

APPENDIX A

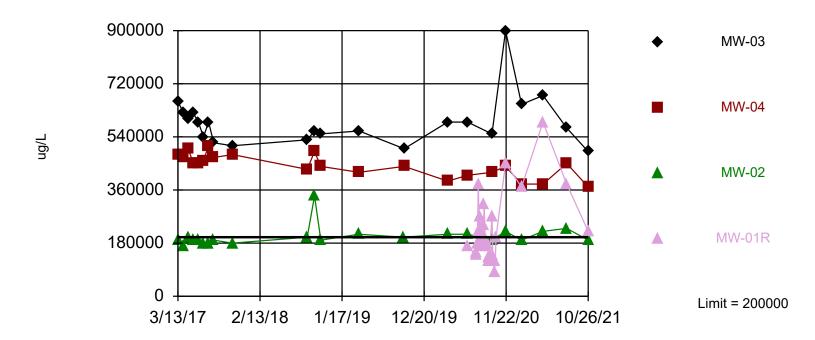
Statistical Summary


A-1 Interwell Prediction Limit and Tolerance Limit Plots
A-2 Trend Plots and Summary
A-3 Confidence Intervals

Exceeds Limit: MW-02, MW-01R

Prediction Limit

Interwell Non-parametric

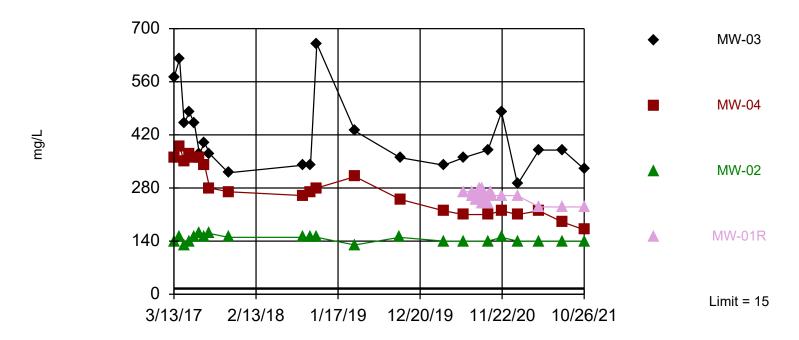

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 18 background values. Report alpha = 0.1818. Individual comparison alpha = 0.04893. Most recent point for each compliance well compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Boron Analysis Run 1/3/2022 1:17 PM View: Appendix III

Exceeds Limit: MW-03, MW-04, MW-01R

Prediction Limit

Interwell Non-parametric

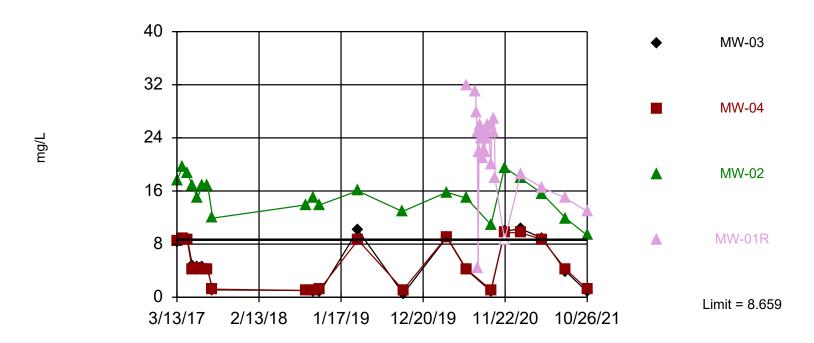

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 18 background values. Report alpha = 0.1818. Individual comparison alpha = 0.04893. Most recent point for each compliance well compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Calcium Analysis Run 1/3/2022 1:17 PM View: Appendix III

Exceeds Limit: MW-03, MW-04, MW-02, MW-01R

Prediction Limit

Interwell Non-parametric

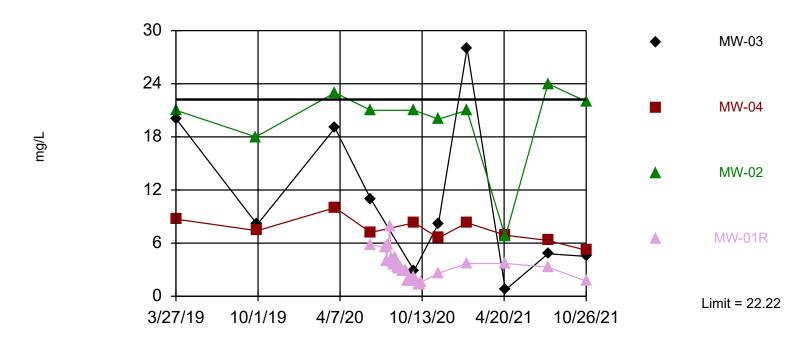

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 18 background values. Report alpha = 0.1818. Individual comparison alpha = 0.04893. Most recent point for each compliance well compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Chloride Analysis Run 1/3/2022 1:17 PM View: Appendix III
Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Exceeds Limit: MW-02, MW-01R

Prediction Limit

Interwell Non-parametric

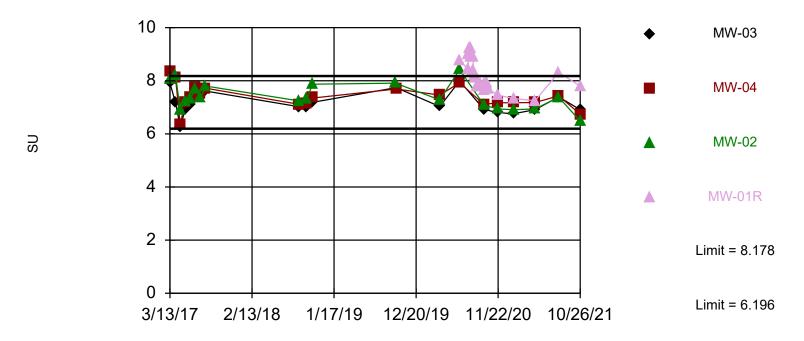

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 18 background values. 16.67% NDs. Report alpha = 0.1818. Individual comparison alpha = 0.04893. Most recent point for each compliance well compared to limit. Data were deseasonalized.

Constituent: Fluoride Analysis Run 1/3/2022 1:17 PM View: Appendix III

Within Limit

Prediction Limit

Interwell Parametric

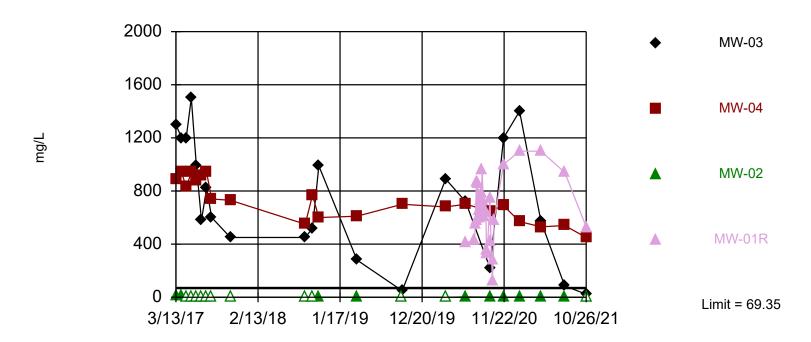

Background Data Summary: Mean=17.6, Std. Dev.=2.319, n=10. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.942, critical = 0.842. Report alpha = 0.1682. Individual comparison alpha = 0.045. Most recent point for each compliance well compared to limit.

Constituent: Iron Analysis Run 1/3/2022 1:17 PM View: Appendix III

Within Limits

Prediction Limit

Interwell Parametric

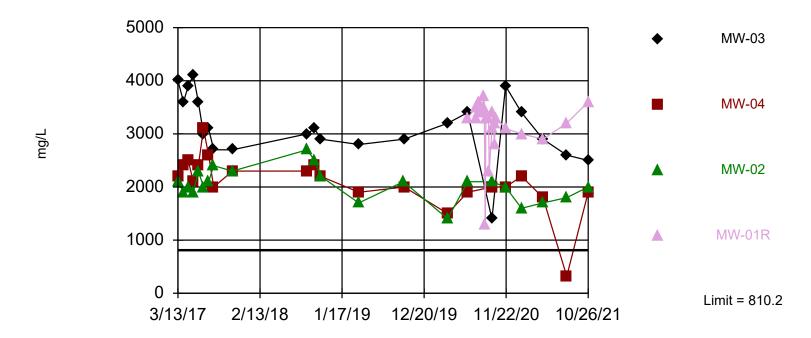

Background Data Summary: Mean=7.187, Std. Dev.=0.4429, n=17. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9662, critical = 0.892. Report alpha = 0.1682. Individual comparison alpha = 0.0225. Most recent point for each compliance well compared to limit.

Constituent: pH Analysis Run 1/3/2022 1:17 PM View: Appendix III

Exceeds Limit: MW-04, MW-01R

Prediction Limit

Interwell Parametric

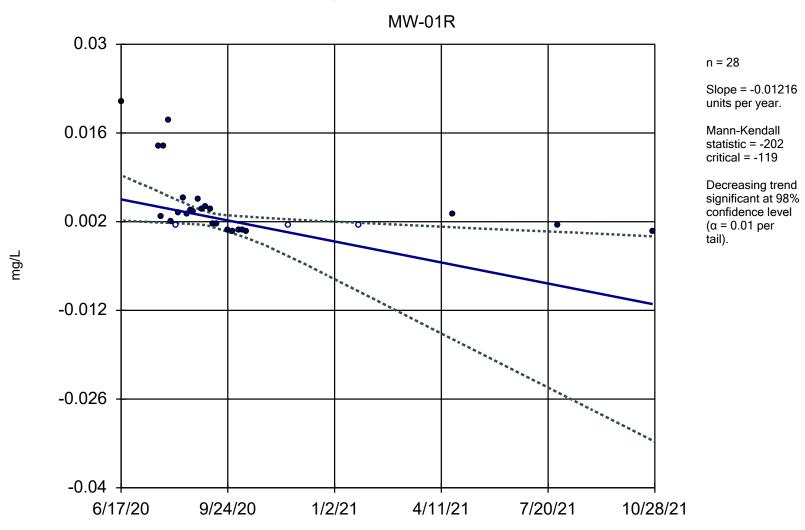

Background Data Summary: Mean=36.17, Std. Dev.=17.96, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9066, critical = 0.897. Report alpha = 0.1682. Individual comparison alpha = 0.045. Most recent point for each compliance well compared to limit.

Constituent: Sulfate Analysis Run 1/3/2022 1:17 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

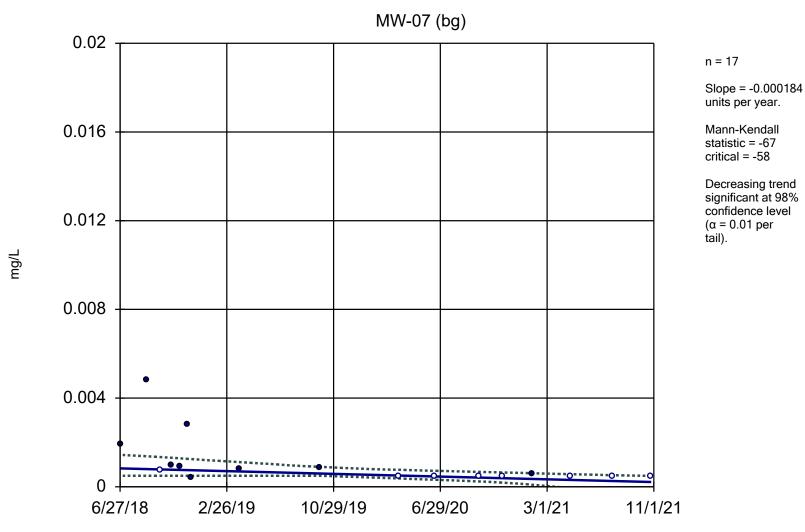
Exceeds Limit: MW-03, MW-04, MW-02, MW-01R

Prediction Limit

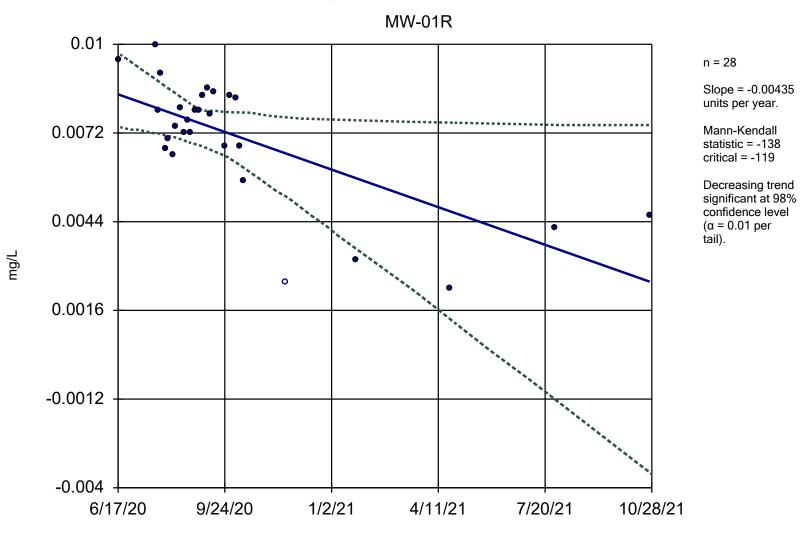
Interwell Parametric

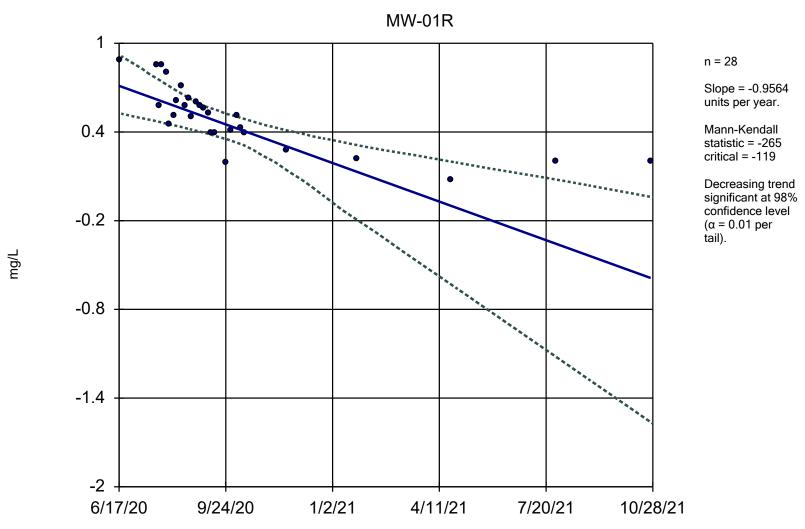

Background Data Summary: Mean=666.1, Std. Dev.=78, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9596, critical = 0.897. Report alpha = 0.1682. Individual comparison alpha = 0.045. Most recent point for each compliance well compared to limit.

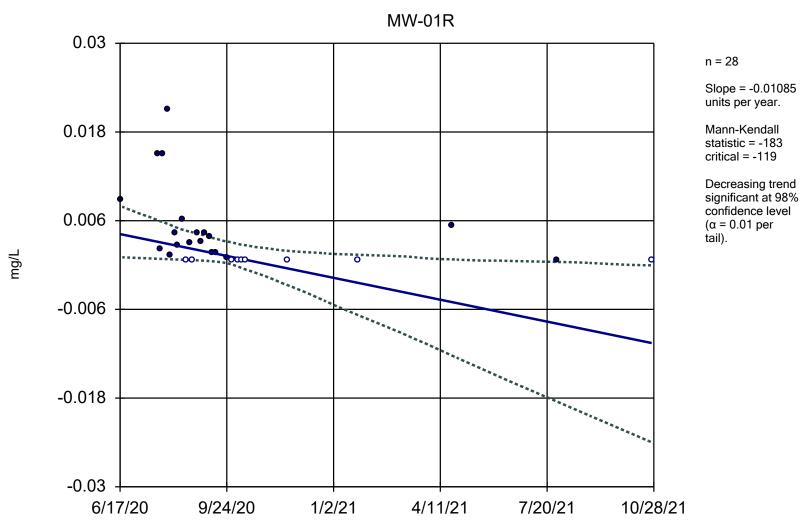
Constituent: Total Dissolved Solids Analysis Run 1/3/2022 1:17 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

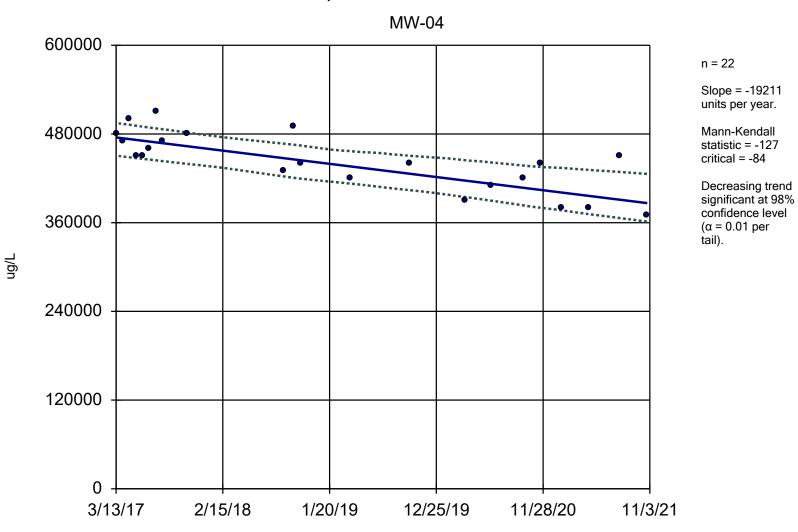

Interwell Prediction Limit

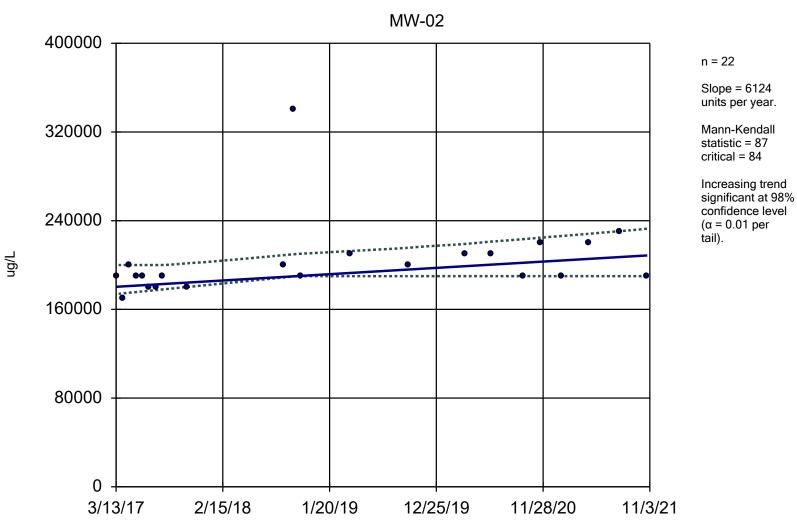
Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP Printed 1/3/2022, 1:18 PM

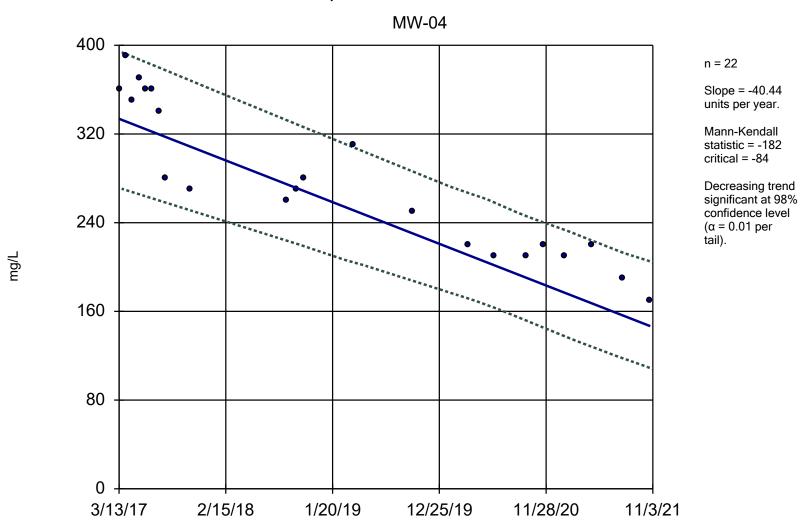

0 111 1	14/ 11			Б.	O	 D 14/ II	D 14	011.0	0/ NID	ND A II	- (A. (1)
Constituent	<u>Well</u>		n. <u>Lower Lim</u>		Observ.Bg	Bg Wells	Bg Mean	Std. Dev.		ND Adj.			<u>Method</u>
Boron (ug/L)	MW-03	16000	n/a		14400 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Boron (ug/L)	MW-04	16000	n/a		13700 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Boron (ug/L)	MW-02	16000	n/a	10/26/202	110000018	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Boron (ug/L)	MW-01R	16000	n/a	10/26/202	114000018	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Calcium (ug/L)	MW-03	200000	n/a	10/26/202	149000018	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Calcium (ug/L)	MW-04	200000	n/a	10/26/202	137000018	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Calcium (ug/L)	MW-02	200000	n/a	10/26/202	1 190000 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Calcium (ug/L)	MW-01R	200000	n/a	10/26/202	122000018	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Chloride (mg/L)	MW-03	15	n/a	10/26/202	1330 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Chloride (mg/L)	MW-04	15	n/a	10/26/202	1170 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Chloride (mg/L)	MW-02	15	n/a	10/26/202	1140 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Chloride (mg/L)	MW-01R	15	n/a	10/26/202	1230 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Fluoride (mg/L)	MW-03	8.659	n/a	10/26/202	10.806 18	MW-07	n/a	n/a	16.67	n/a	n/a	0.04893	NP (normality) Deseas
Fluoride (mg/L)	MW-04	8.659	n/a	10/26/202	11.216 18	MW-07	n/a	n/a	16.67	n/a	n/a	0.04893	NP (normality) Deseas
Fluoride (mg/L)	MW-02	8.659	n/a	10/26/202	19.316 18	MW-07	n/a	n/a	16.67	n/a	n/a	0.04893	NP (normality) Deseas
Fluoride (mg/L)	MW-01R	8.659	n/a	10/26/202	112.92 18	MW-07	n/a	n/a	16.67	n/a	n/a	0.04893	NP (normality) Deseas
Iron (mg/L)	MW-03	22.22	n/a	10/26/202	14.5 10	MW-07	17.6	2.319	0	None	No	0.045	Param
Iron (mg/L)	MW-04	22.22	n/a	10/26/202	15.2 10	MW-07	17.6	2.319	0	None	No	0.045	Param
Iron (mg/L)	MW-02	22.22	n/a	10/26/202	122 10	MW-07	17.6	2.319	0	None	No	0.045	Param
Iron (mg/L)	MW-01R	22.22	n/a	10/26/202	11.7 10	MW-07	17.6	2.319	0	None	No	0.045	Param
pH (SU)	MW-03	8.178	6.196	10/26/202	16.91 17	MW-07	7.187	0.4429	0	None	No	0.0225	Param
pH (SU)	MW-04	8.178	6.196	10/26/202	16.74 17	MW-07	7.187	0.4429	0	None	No	0.0225	Param
pH (SU)	MW-02	8.178	6.196	10/26/202	16.48 17	MW-07	7.187	0.4429	0	None	No	0.0225	Param
pH (SU)	MW-01R	8.178	6.196	10/26/202	17.8 17	MW-07	7.187	0.4429	0	None	No	0.0225	Param
Sulfate (mg/L)	MW-03	69.35	n/a	10/26/202	123 18	MW-07	36.17	17.96	0	None	No	0.045	Param
Sulfate (mg/L)	MW-04	69.35	n/a	10/26/202	1450 18	MW-07	36.17	17.96	0	None	No	0.045	Param
Sulfate (mg/L)	MW-02	69.35	n/a	10/26/202	10.41ND18	MW-07	36.17	17.96	0	None	No	0.045	Param
Sulfate (mg/L)	MW-01R	69.35	n/a	10/26/202	1530 18	MW-07	36.17	17.96	0	None	No	0.045	Param
Total Dissolved Solids (mg/L)	MW-03	810.2	n/a	10/26/202	12500 18	MW-07	666.1	78	0	None	No	0.045	Param
Total Dissolved Solids (mg/L)	MW-04	810.2	n/a	10/26/202	11900 18	MW-07	666.1	78	0	None	No	0.045	Param
Total Dissolved Solids (mg/L)	MW-02	810.2	n/a	10/26/202	12000 18	MW-07	666.1	78	0	None	No	0.045	Param
Total Dissolved Solids (mg/L)	MW-01R	810.2	n/a	10/26/202	13600 18	MW-07	666.1	78	0	None	No	0.045	Param

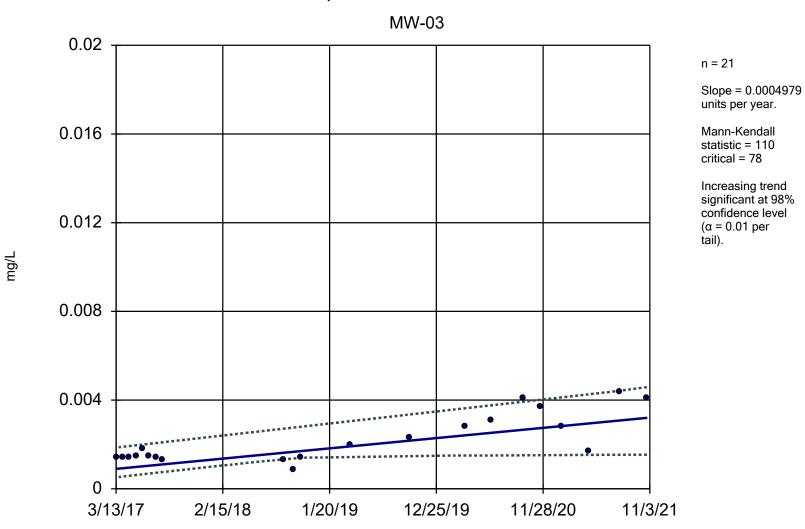

Constituent: Antimony Analysis Run 1/3/2022 1:06 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

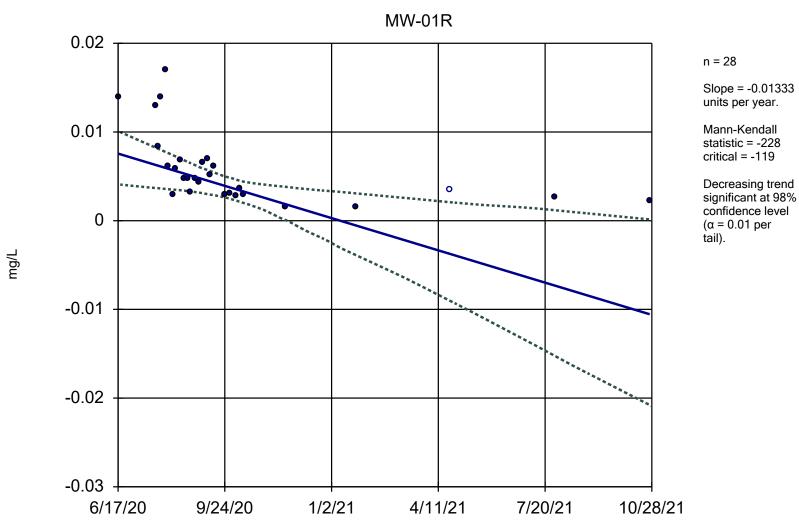

Constituent: Arsenic Analysis Run 1/3/2022 1:06 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

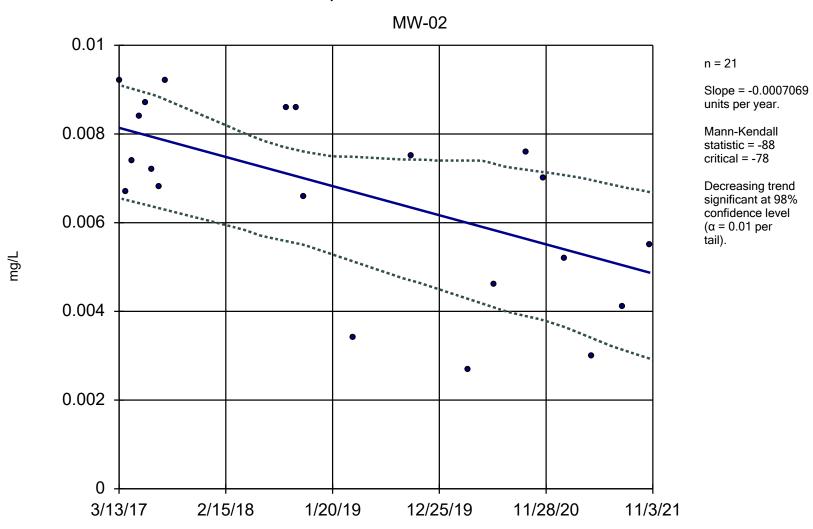

Constituent: Arsenic Analysis Run 1/3/2022 1:06 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

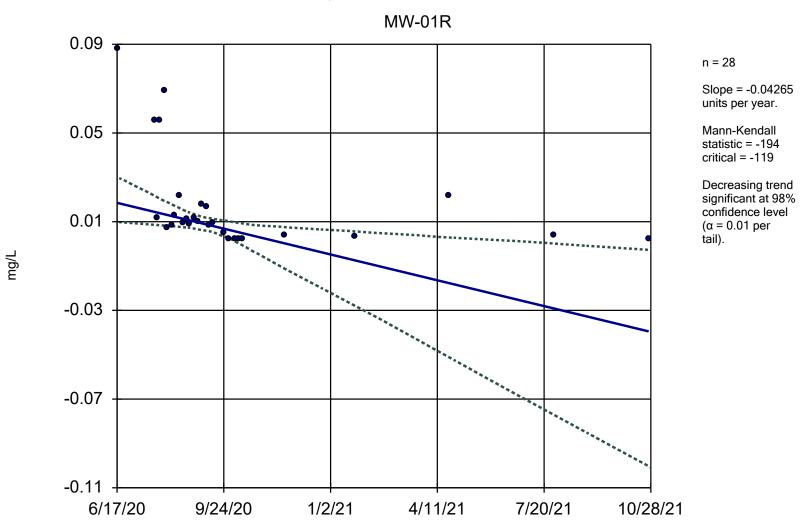

Constituent: Barium Analysis Run 1/3/2022 1:06 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

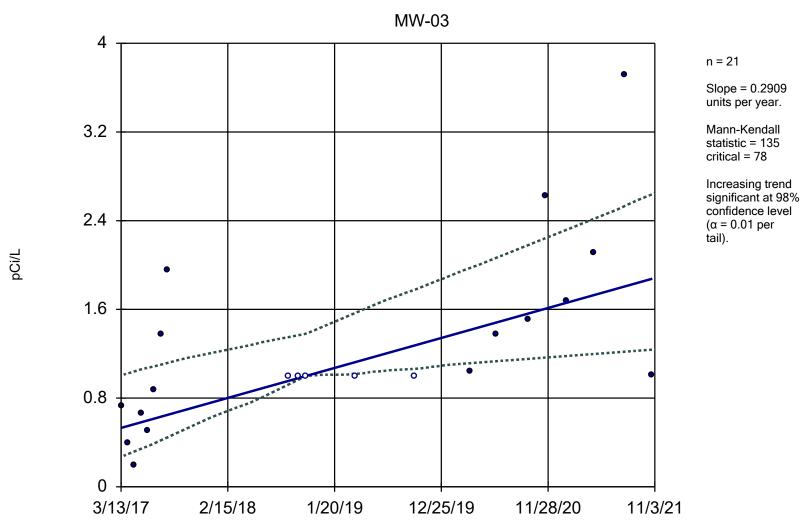

Constituent: Cadmium Analysis Run 1/3/2022 1:07 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

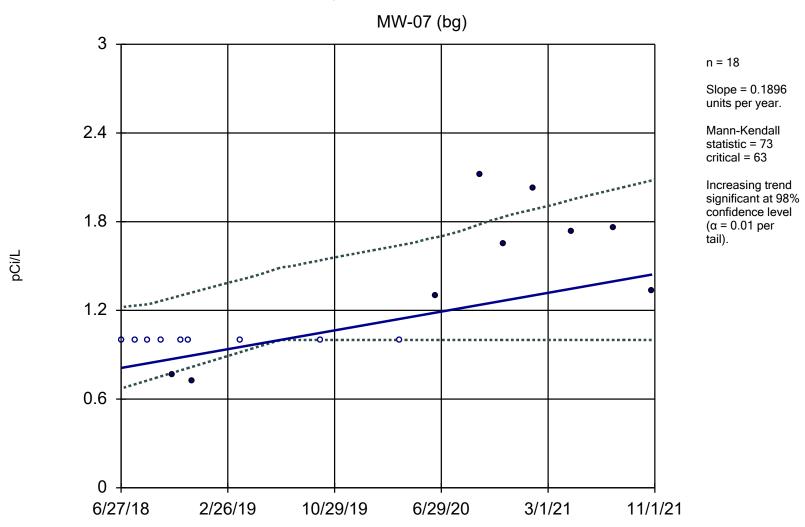

Constituent: Calcium Analysis Run 1/3/2022 1:07 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

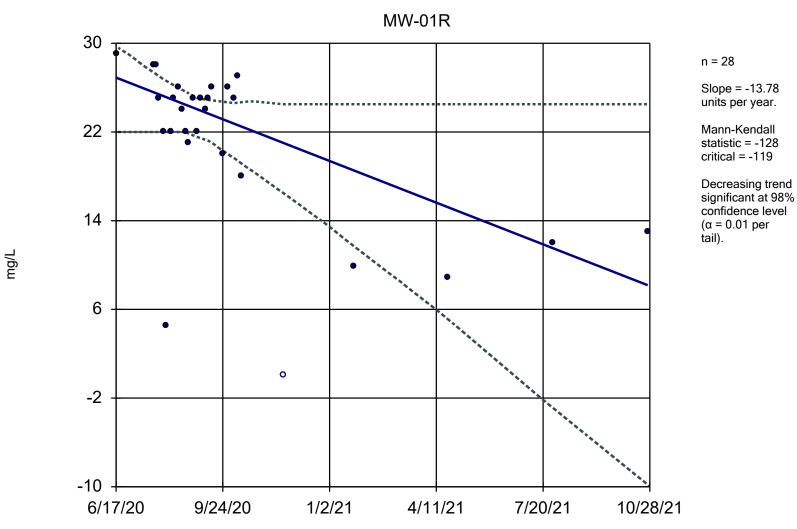

Constituent: Calcium Analysis Run 1/3/2022 1:07 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

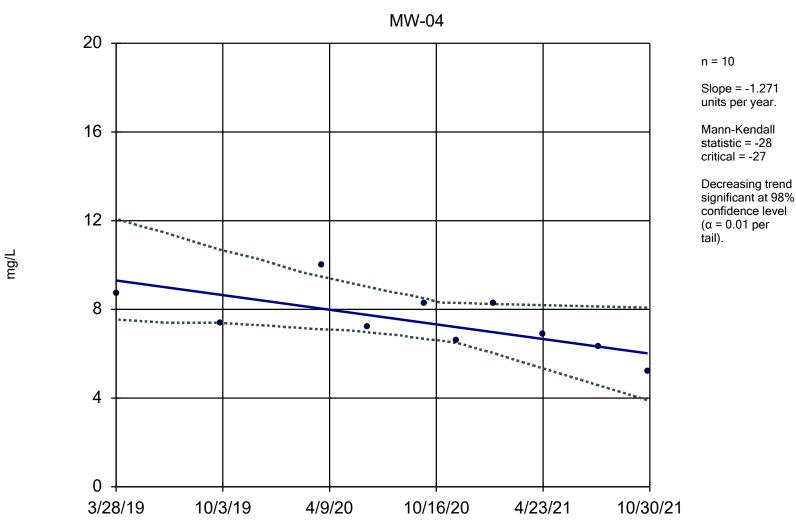

Constituent: Chloride Analysis Run 1/3/2022 1:07 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Constituent: Chromium Analysis Run 1/3/2022 1:07 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

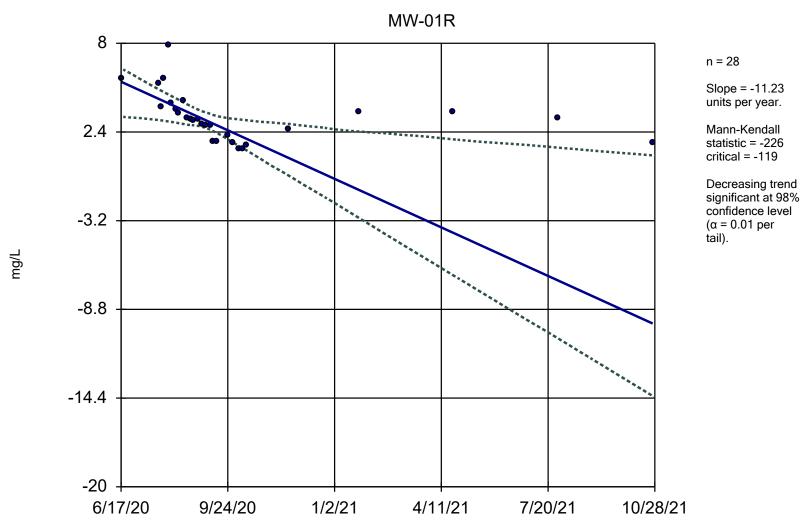

Constituent: Chromium Analysis Run 1/3/2022 1:07 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Constituent: Cobalt Analysis Run 1/3/2022 1:07 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

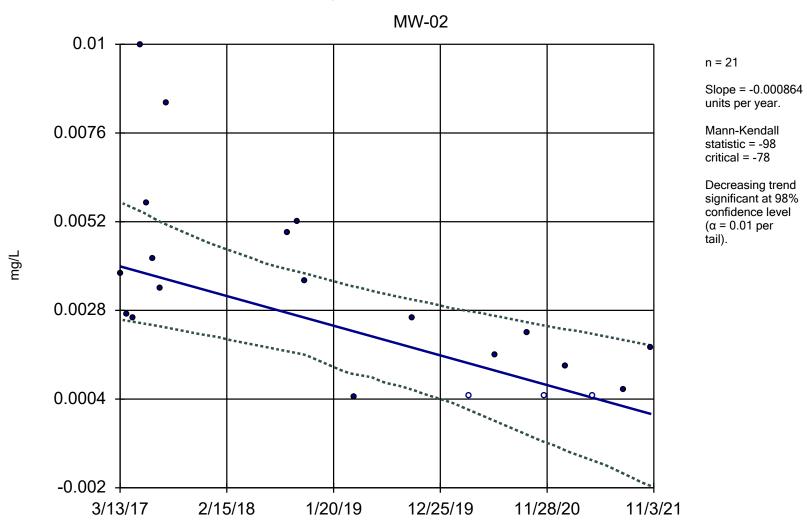

Constituent: Cobalt Analysis Run 1/3/2022 1:07 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Constituent: Combined Radium 226 + 228 Analysis Run 1/3/2022 1:07 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

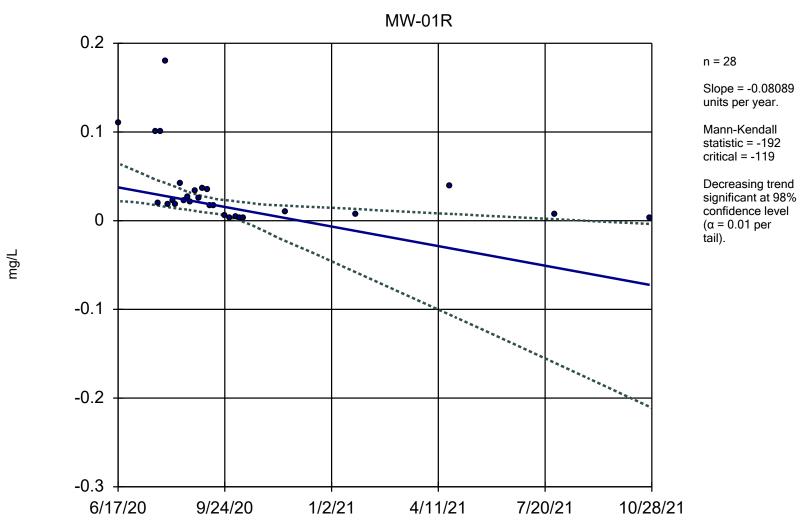
Constituent: Combined Radium 226 + 228 Analysis Run 1/3/2022 1:07 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP



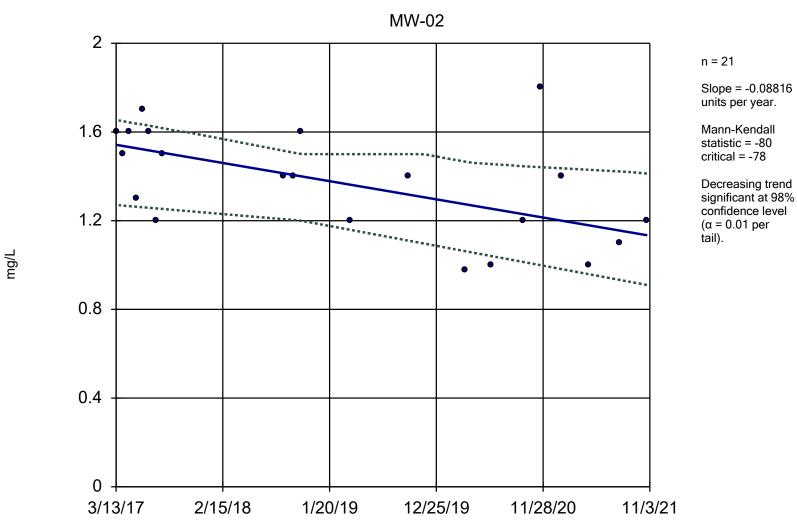
Constituent: Fluoride Analysis Run 1/3/2022 1:07 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Constituent: Iron Analysis Run 1/3/2022 1:07 PM View: Appendix III

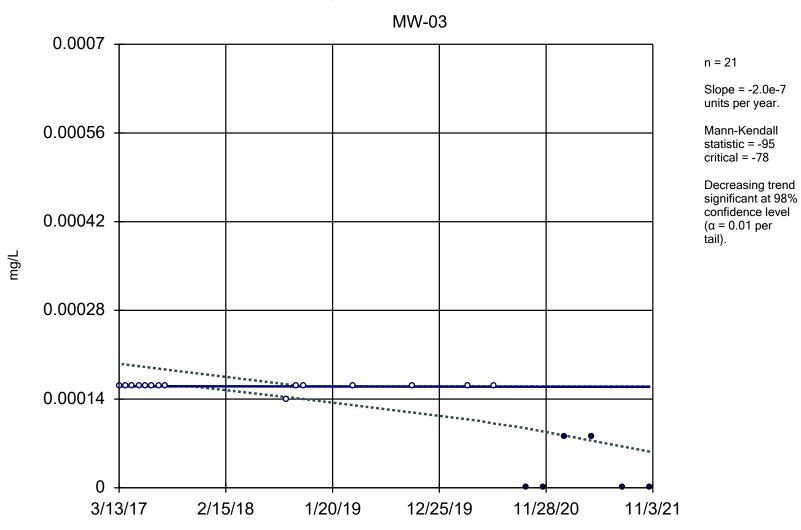
Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Constituent: Iron Analysis Run 1/3/2022 1:07 PM View: Appendix III

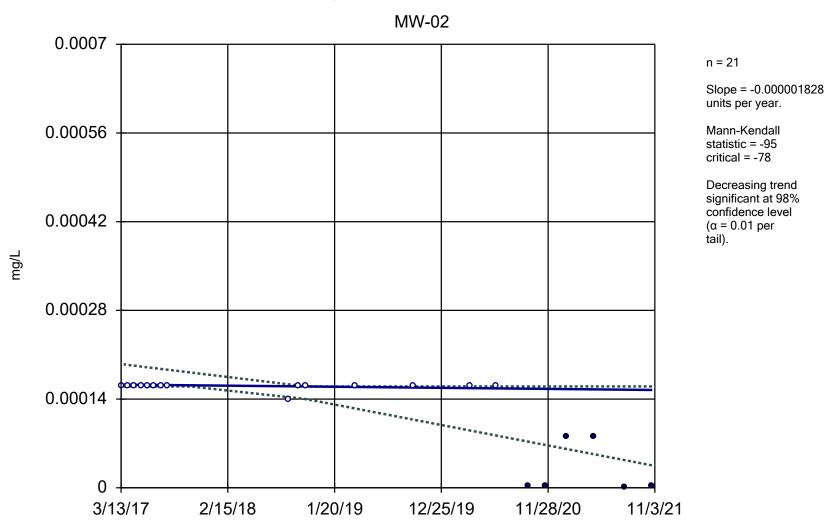
Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

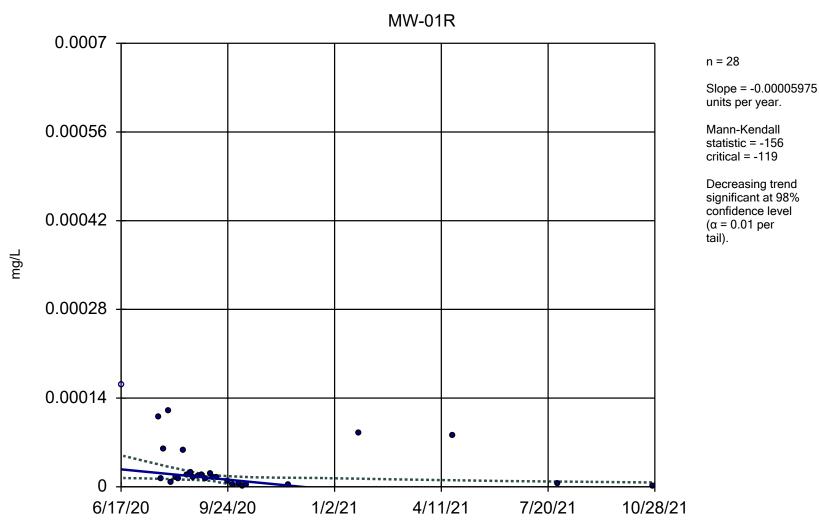

Constituent: Lead Analysis Run 1/3/2022 1:07 PM View: Appendix III

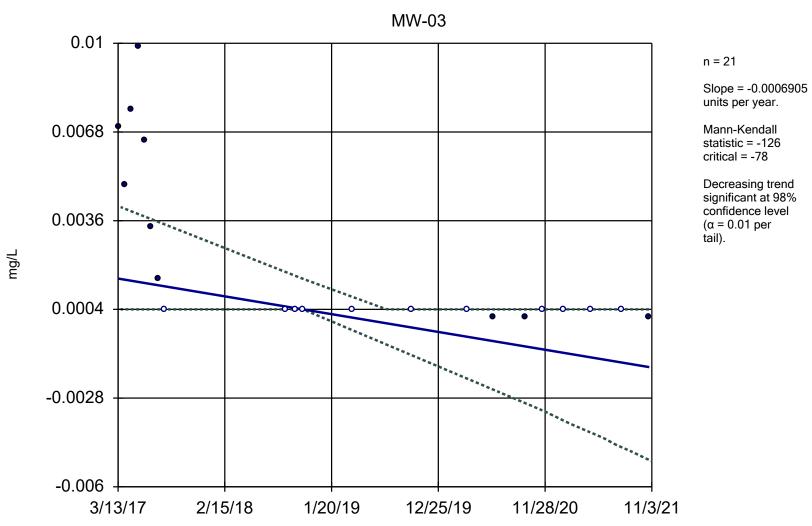
Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

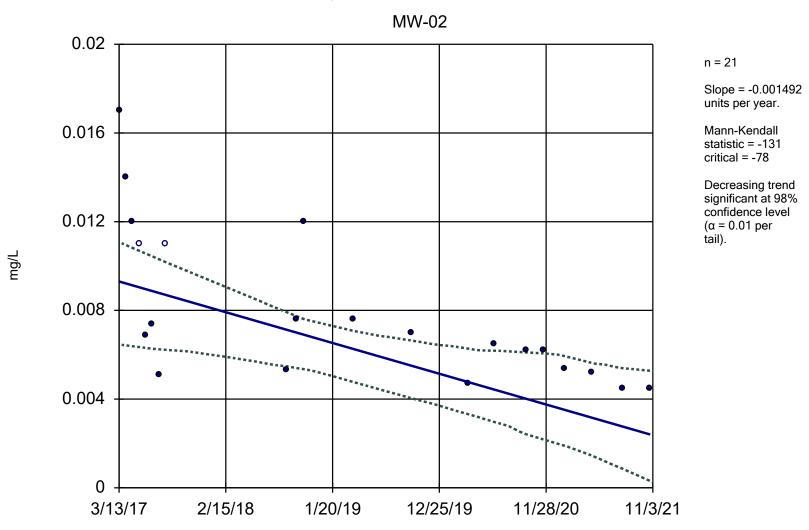


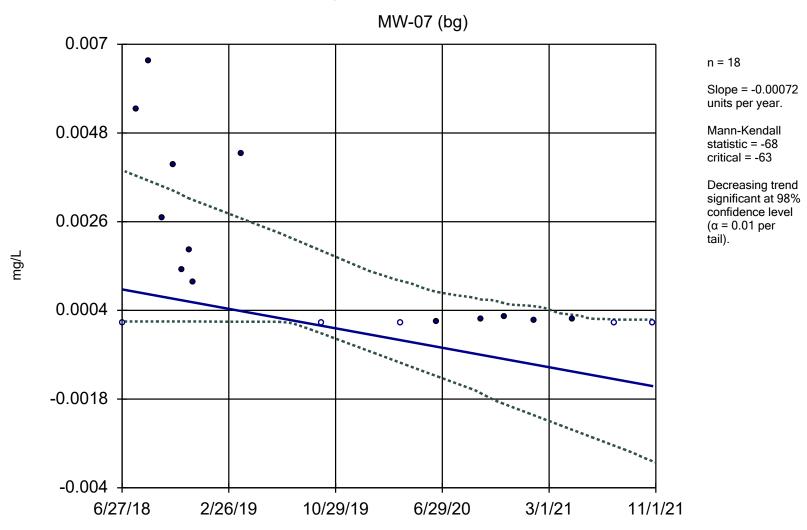
Constituent: Lead Analysis Run 1/3/2022 1:07 PM View: Appendix III

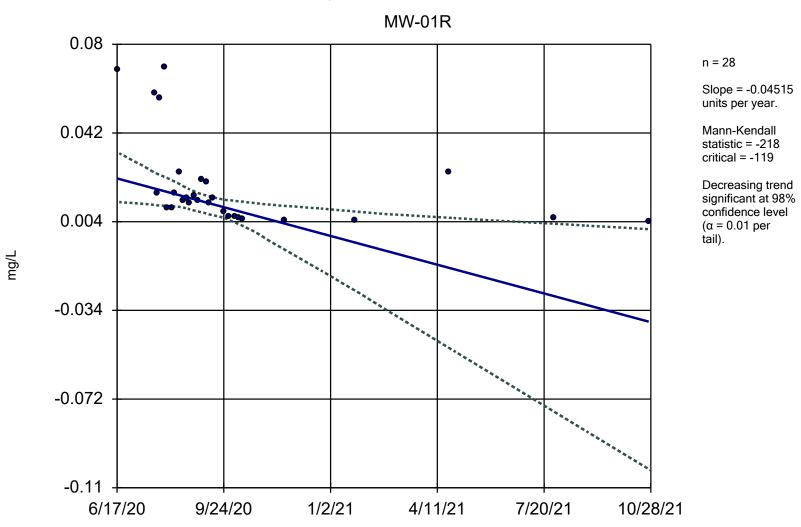

Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Constituent: Lithium Analysis Run 1/3/2022 1:07 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

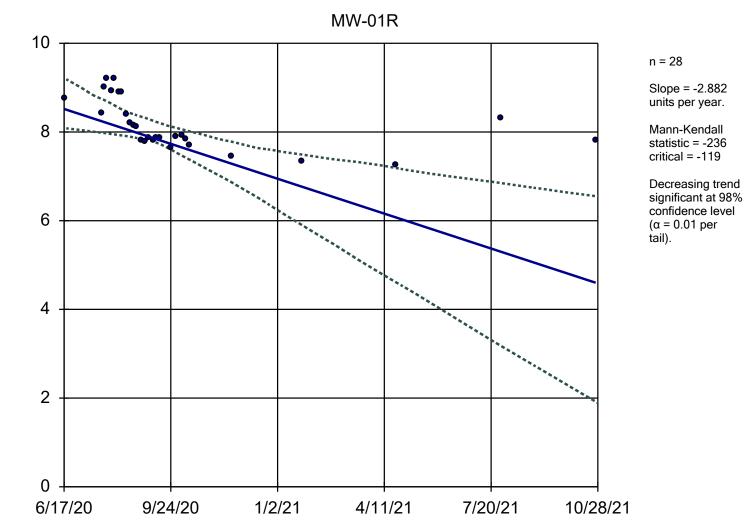

Constituent: Mercury Analysis Run 1/3/2022 1:07 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Constituent: Mercury Analysis Run 1/3/2022 1:07 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

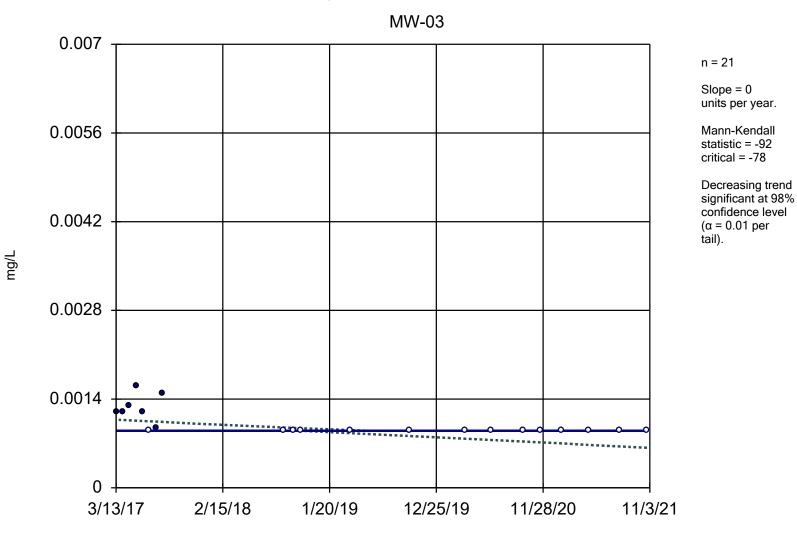

Constituent: Mercury Analysis Run 1/3/2022 1:07 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Constituent: Molybdenum Analysis Run 1/3/2022 1:07 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

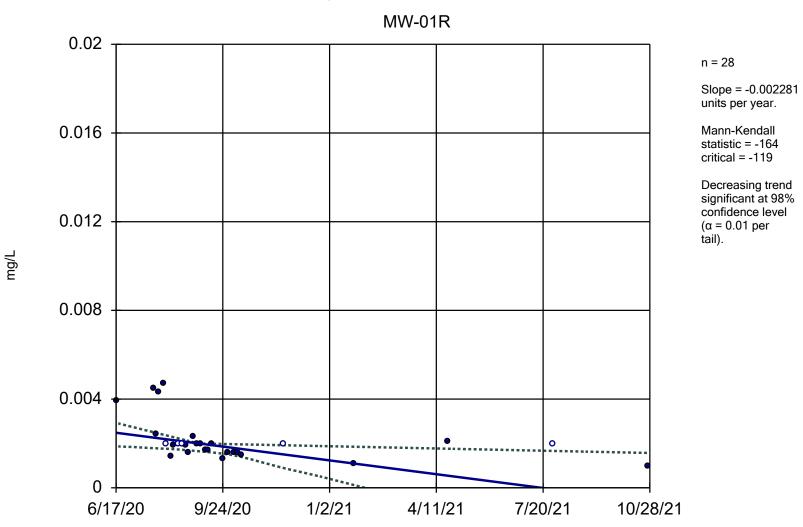
Constituent: Molybdenum Analysis Run 1/3/2022 1:07 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Constituent: Molybdenum Analysis Run 1/3/2022 1:07 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

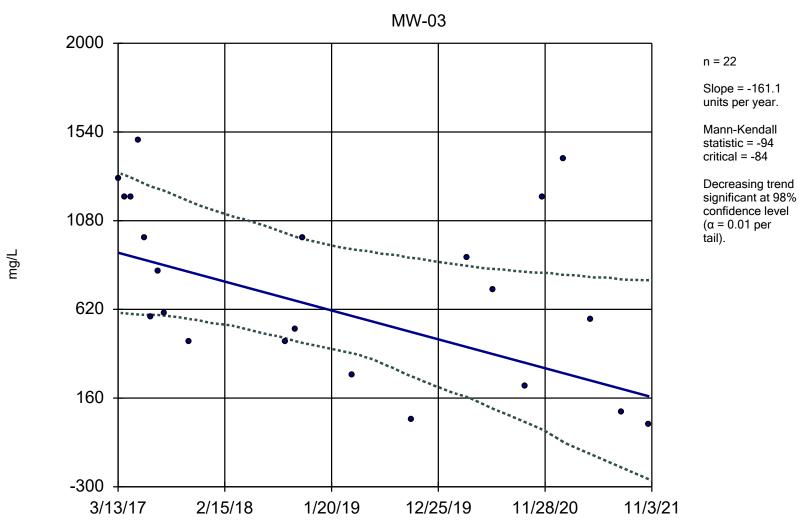
Constituent: Nickel Analysis Run 1/3/2022 1:08 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

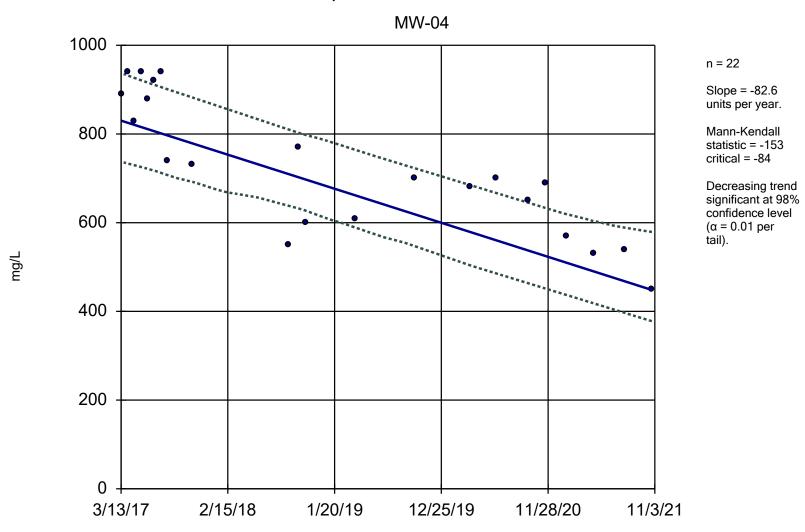

SU

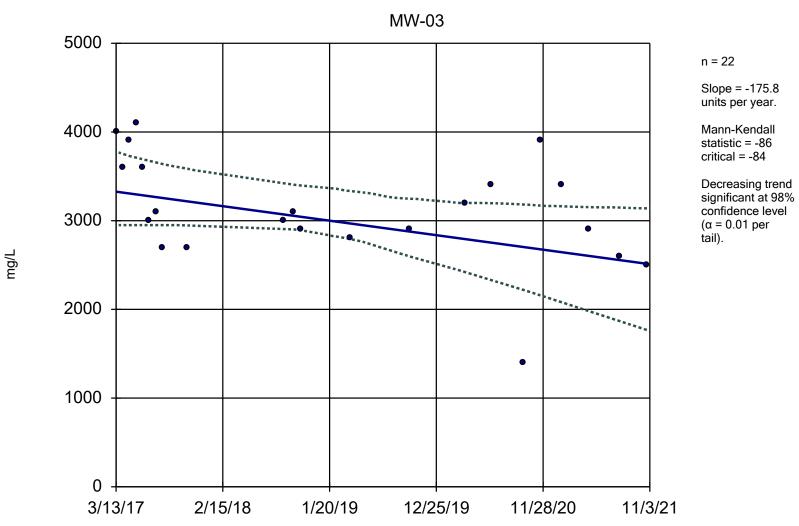
Sen's Slope and 95% Confidence Band

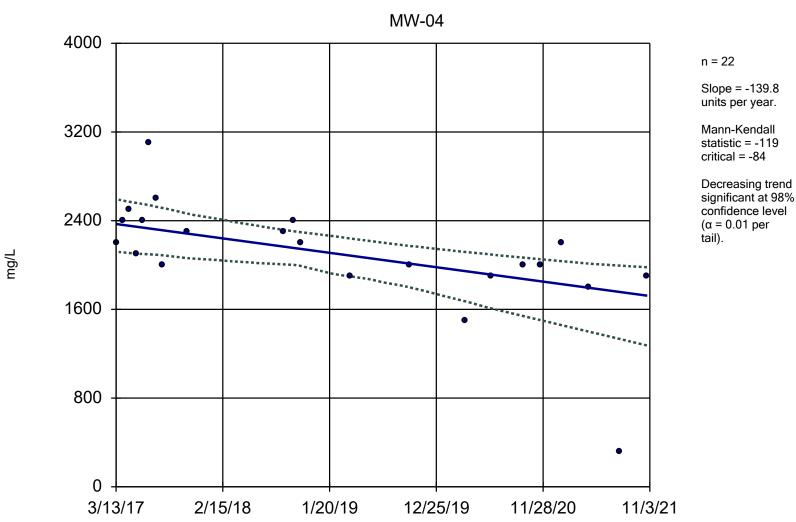


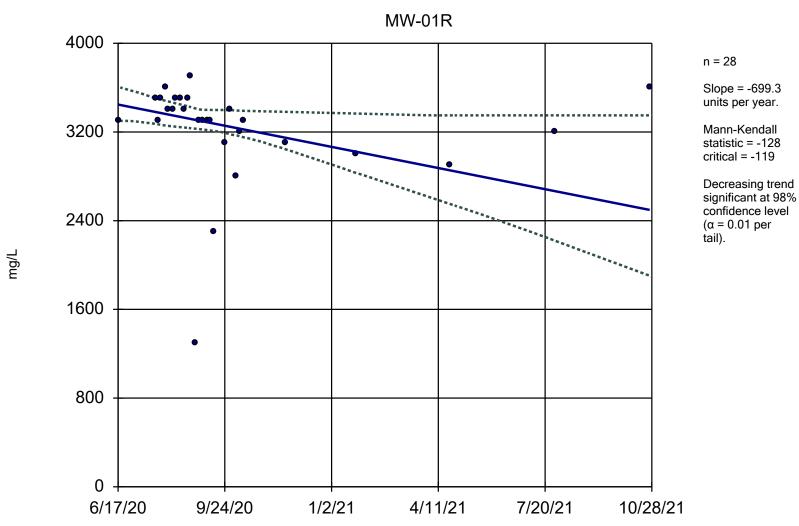
Constituent: pH Analysis Run 1/3/2022 1:08 PM View: Appendix III

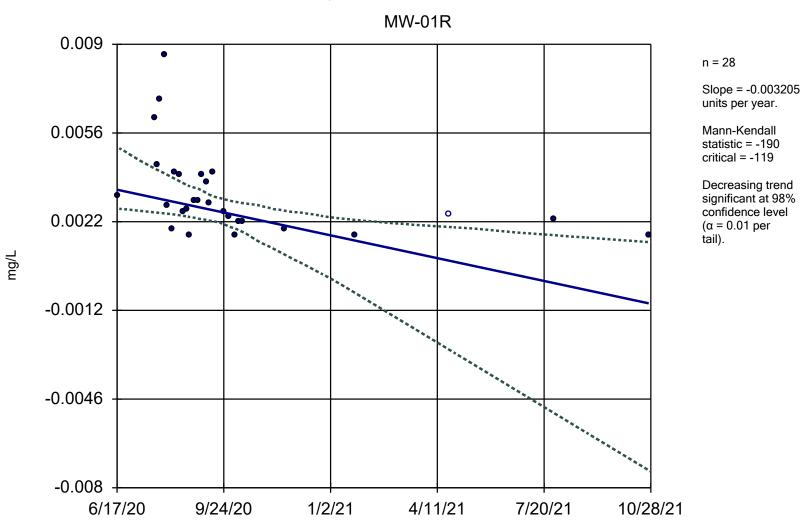

Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

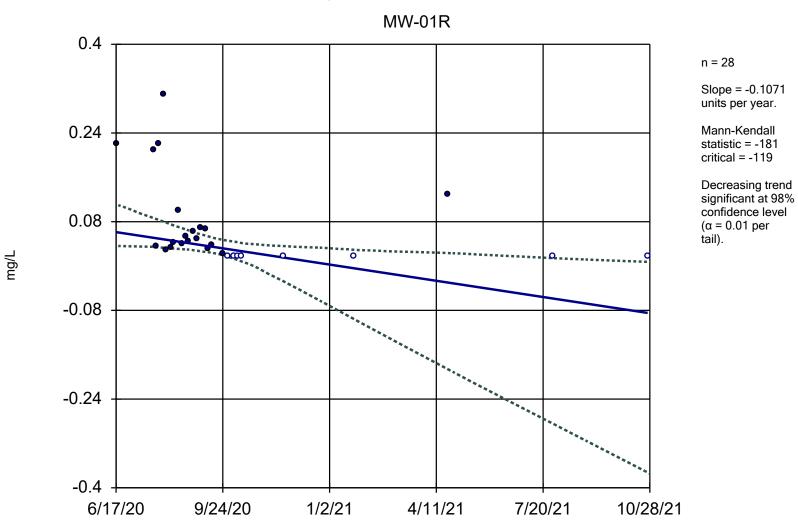

Constituent: Selenium Analysis Run 1/3/2022 1:08 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Constituent: Selenium Analysis Run 1/3/2022 1:08 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Constituent: Sulfate Analysis Run 1/3/2022 1:08 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Constituent: Sulfate Analysis Run 1/3/2022 1:08 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Constituent: Total Dissolved Solids Analysis Run 1/3/2022 1:08 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Constituent: Total Dissolved Solids Analysis Run 1/3/2022 1:08 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Constituent: Total Dissolved Solids Analysis Run 1/3/2022 1:08 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Constituent: Vanadium Analysis Run 1/3/2022 1:08 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Constituent: Zinc Analysis Run 1/3/2022 1:08 PM View: Appendix III

Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Trend Test

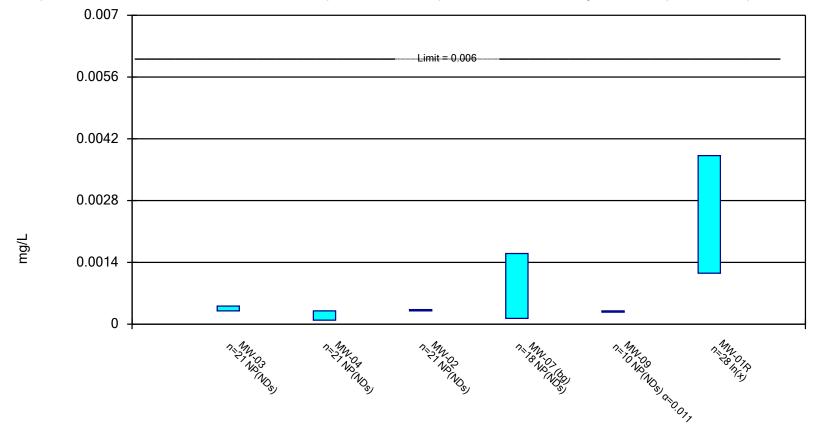
	Grand Haven BLP	Client: Golder A	ssociates	Data: DT-Grand	LP Pri	nted 1/3/202	2, 1:09 PM				
Constituent	<u>Well</u>	Slope	Calc.	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	MW-03	0	-16	-78	No	21	95.24	n/a	n/a	0.02	NP
Antimony (mg/L)	MW-04	0	0	78	No	21	95.24	n/a	n/a	0.02	NP
Antimony (mg/L)	MW-02	0	-50	-78	No	21	66.67	n/a	n/a	0.02	NP
Antimony (mg/L)	MW-07 (bg)	0	-9	-63	No	18	88.89	n/a	n/a	0.02	NP
Antimony (mg/L)	MW-01R	-0.01216	-202	-119	Yes	28	10.71	n/a	n/a	0.02	NP
Arsenic (mg/L)	MW-03	-0.00	-62	-78	No	21	9.524	n/a	n/a	0.02	NP
Arsenic (mg/L)	MW-04	0	-4	-78	No	21	4.762	n/a	n/a	0.02	NP
Arsenic (mg/L)	MW-02	0.000	66	78	No	21	4.762	n/a	n/a	0.02	NP
Arsenic (mg/L)	MW-07 (bg)	-0.00	-67	-58	Yes	17	47.06	n/a	n/a	0.02	NP
Arsenic (mg/L)	MW-01R	-0.00435	-138	-119	Yes	28	3.571	n/a	n/a	0.02	NP
Barium (mg/L)	MW-03	0.02875	71	78	No	21	0	n/a	n/a	0.02	NP
Barium (mg/L)	MW-04	-0.00	-74	-78	No	21	0	n/a	n/a	0.02	NP
Barium (mg/L)	MW-02	0.004597	34	78	No	21	0	n/a	n/a	0.02	NP
Barium (mg/L)	MW-07 (bg)	-0.03042	-43	-63	No	18	0	n/a	n/a	0.02	NP
Barium (mg/L)	MW-01R	-0.9564	-265	-119	Yes	28	0	n/a	n/a	0.02	NP
Beryllium (mg/L)	MW-03	0	0	78	No	21	100	n/a	n/a	0.02	NP
Beryllium (mg/L)	MW-04	0	0	78	No	21	100	n/a	n/a	0.02	NP
Beryllium (mg/L)	MW-02	0	5	78	No	21	85.71	n/a	n/a	0.02	NP
Beryllium (mg/L)	MW-07 (bg)	0	0	63	No	18	100	n/a	n/a	0.02	NP
Beryllium (mg/L)	MW-01R	0	0	119	No	28	100	n/a	n/a	0.02	NP
Boron (ug/L)	MW-03	-130.2	-74	-78	No	21	0	n/a	n/a	0.02	NP
Boron (ug/L)	MW-04	0	-3	-78	No	21	0	n/a	n/a	0.02	NP
Boron (ug/L)	MW-02	-2177	-29	-78	No	21	0	n/a	n/a	0.02	NP
Boron (ug/L)	MW-07 (bg)	534.4	43	63	No	18	0	n/a	n/a	0.02	NP
Boron (ug/L)	MW-01R	-70940	-113	-119	No	28	0	n/a	n/a	0.02	NP
Cadmium (mg/L)	MW-03	0	17	78	No	21	95.24	n/a	n/a	0.02	NP
Cadmium (mg/L)	MW-04	0	-3	-78	No	21	90.48	n/a	n/a	0.02	NP
Cadmium (mg/L)	MW-02	0	11	78	No	21	66.67	n/a	n/a	0.02	NP
Cadmium (mg/L)	MW-07 (bg)	0	31	63	No	18	94.44	n/a	n/a	0.02	NP
Cadmium (mg/L)	MW-01R	-0.01085	-183	-119	Yes	28	32.14	n/a	n/a	0.02	NP
Calcium (ug/L)	MW-03	-5163	-26	-84	No	22	0	n/a	n/a	0.02	NP
Calcium (ug/L)	MW-04	-19211	-127	-84	Yes	22	0	n/a	n/a	0.02	NP
Calcium (ug/L)	MW-02	6124	87	84	Yes	22	0	n/a	n/a	0.02	NP
Calcium (ug/L)	MW-07 (bg)	0	-45	-63	No	18	0	n/a	n/a	0.02	NP
Calcium (ug/L)	MW-01R	68915	44	119	No	28	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-03	-23.75	-79	-84	No	22	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-04	-40.44	-182	-84	Yes	22	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-02	0	-45	-84	No	22	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-07 (bg)	-0.3434	-55	-63	No	18	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-01R	-16.35	-92	-119	No	28	0	n/a	n/a	0.02	NP
Chromium (mg/L)	MW-03	0.000	110	78	Yes	21	0	n/a	n/a	0.02	NP
Chromium (mg/L)	MW-04	0.000	57	78	No	21	4.762	n/a	n/a	0.02	NP
Chromium (mg/L)	MW-02	-0.00	-56	-78	No	21	0	n/a	n/a	0.02	NP
Chromium (mg/L)	MW-07 (bg)	0	27	63	No	18	66.67	n/a	n/a	0.02	NP
Chromium (mg/L)	MW-01R	-0.01333	-228	-119	Yes	28	3.571	n/a	n/a	0.02	NP
Cobalt (mg/L)	MW-03	-0.00	-67	-78 -70	No	21	23.81	n/a	n/a	0.02	NP
Cobalt (mg/L)	MW-04	0.000	78	78	No	21	38.1	n/a	n/a	0.02	NP
Cobalt (mg/L)	MW-02	-0.00	-88	-78	Yes	21	0	n/a	n/a	0.02	NP
Cobalt (mg/L)	MW-07 (bg)	-0.00	-7	-63	No	18	16.67	n/a	n/a	0.02	NP
Cobalt (mg/L)	MW-01R	-0.04265	-194	-119	Yes	28	0	n/a	n/a	0.02	NP

Trend Test Page 2

	Grand Haven BLP	Client: Golder A	ssociates	Data: DT-Gran	Data: DT-Grand Haven BLP Printed 1/3/2022, 1:09 PM						
Constituent	<u>Well</u>	Slope	Calc.	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	Xform	<u>Alpha</u>	Method
Combined Radium 226 + 228 (pCi/L)	MW-03	0.2909	135	78	Yes	_ 21	23.81	n/a	n/a	0.02	NP
Combined Radium 226 + 228 (pCi/L)	MW-04	0.07155	48	78	No	21	38.1	n/a	n/a	0.02	NP
Combined Radium 226 + 228 (pCi/L)	MW-02	0.1297	44	78	No	21	28.57	n/a	n/a	0.02	NP
Combined Radium 226 + 228 (pCi/L)	MW-07 (bg)	0.1896	73	63	Yes	18	50	n/a	n/a	0.02	NP
Combined Radium 226 + 228 (pCi/L)	MW-01R	-0.5062	-10	-17	No	7	42.86	n/a	n/a	0.02	NP
Copper (mg/L)	MW-03	0	17	27	No	10	80	n/a	n/a	0.02	NP
Copper (mg/L)	MW-04	0	18	27	No	10	70	n/a	n/a	0.02	NP
Copper (mg/L)	MW-02	0	8	27	No	10	70	n/a	n/a	0.02	NP
Copper (mg/L)	MW-07 (bg)	0	15	27	No	10	80	n/a	n/a	0.02	NP
Copper (mg/L)	MW-01R	0	-97	-119	No	28	64.29	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-03	-0.03296	-12	-78	No	21	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-04	0	22	78	No	21	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-02	-0.6591	-68	-78	No	21	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-07 (bg)	-0.0018	-17	-63	No	18	16.67	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-01R	-13.78	-128	-119	Yes	28	3.571	n/a	n/a	0.02	NP
Iron (mg/L)	MW-03	-4.925	-17	-27	No	10	0	n/a	n/a	0.02	NP
Iron (mg/L)	MW-04	-1.271	-28	-27	Yes	10	0	n/a	n/a	0.02	NP
Iron (mg/L)	MW-02	0	5	27	No	10	0	n/a	n/a	0.02	NP
Iron (mg/L)	MW-07 (bg)	-2.235	-25	-27	No	10	0	n/a	n/a	0.02	NP
Iron (mg/L)	MW-01R	-11.23	-226	-119	Yes	28	0	n/a	n/a	0.02	NP
Lead (mg/L)	MW-03	0	25	78	No	21	66.67	n/a	n/a	0.02	NP
Lead (mg/L)	MW-04	0	45	78	No	21	66.67	n/a	n/a	0.02	NP
Lead (mg/L)	MW-02	-0.00	-98	-78	Yes	21	14.29	n/a	n/a	0.02	NP
Lead (mg/L)	MW-07 (bg)	0	-7	-63	No	18	72.22	n/a	n/a	0.02	NP
Lead (mg/L)	MW-01R	-0.08089	-192	-119	Yes	28	0	n/a	n/a	0.02	NP
Lithium (mg/L)	MW-03	-0.00	-61	-78	No	21	4.762	n/a	n/a	0.02	NP
Lithium (mg/L)	MW-04	0.00157	33	78	No	21	4.762	n/a	n/a	0.02	NP
Lithium (mg/L)	MW-02	-0.08816	-80	-78	Yes	21	0	n/a	n/a	0.02	NP
Lithium (mg/L)	MW-07 (bg)	-0.00	-17	-63	No	18	44.44	n/a	n/a	0.02	NP
Lithium (mg/L)	MW-01R	0	7	119	No	28	0	n/a	n/a	0.02	NP
Mercury (mg/L)	MW-03	-2.0e-7	-95	-78	Yes	21	71.43	n/a	n/a	0.02	NP
Mercury (mg/L)	MW-04	0	11	78	No	21	95.24	n/a	n/a	0.02	NP
Mercury (mg/L)	MW-02	-0.00	-95	-78	Yes	21	71.43	n/a	n/a	0.02	NP
Mercury (mg/L)	MW-07 (bg)	0	-30	-63	No	18	77.78	n/a	n/a	0.02	NP
Mercury (mg/L)	MW-01R	-0.00	-156	-119	Yes	28	3.571	n/a	n/a	0.02	NP
Molybdenum (mg/L)	MW-03	-0.00	-126	-78	Yes	21	52.38	n/a	n/a	0.02	NP
Molybdenum (mg/L)	MW-04	-0.00	-41	-78	No	21	19.05	n/a	n/a	0.02	NP
Molybdenum (mg/L)	MW-02	-0.00	-131	-78	Yes	21	9.524	n/a	n/a	0.02	NP
Molybdenum (mg/L)	MW-07 (bg)	-0.00072	-68	-63	Yes	18	27.78	n/a	n/a	0.02	NP
Molybdenum (mg/L)	MW-01R	-0.00	-22	-119	No	28	0	n/a	n/a	0.02	NP
Nickel (mg/L)	MW-03	-0.00	-9	-27	No	10	20	n/a	n/a	0.02	NP
Nickel (mg/L)	MW-04	-0.00	-21	-27	No	10	0	n/a	n/a	0.02	NP
Nickel (mg/L)	MW-02	-0.00	-10	-27	No	10	0	n/a	n/a	0.02	NP
Nickel (mg/L)	MW-07 (bg)	0	17	27	No	10	80	n/a	n/a	0.02	NP
Nickel (mg/L)	MW-01R	-0.04515	-218	-119	Yes	28	0	n/a	n/a	0.02	NP
pH (SU)	MW-03	-0.04752	-40	-73	No	20	0	n/a	n/a	0.02	NP
pH (SU)	MW-04	-0.08699	-48	-73	No	20	0	n/a	n/a	0.02	NP
pH (SU)	MW-02	-0.1217	-49	-73	No	20	0	n/a	n/a	0.02	NP
pH (SU)	MW-07 (bg)	-0.1825	-41	-58	No	17	0	n/a	n/a	0.02	NP
pH (SU)	MW-01R	-2.882	-236	-119	Yes	28	0	n/a	n/a	0.02	NP

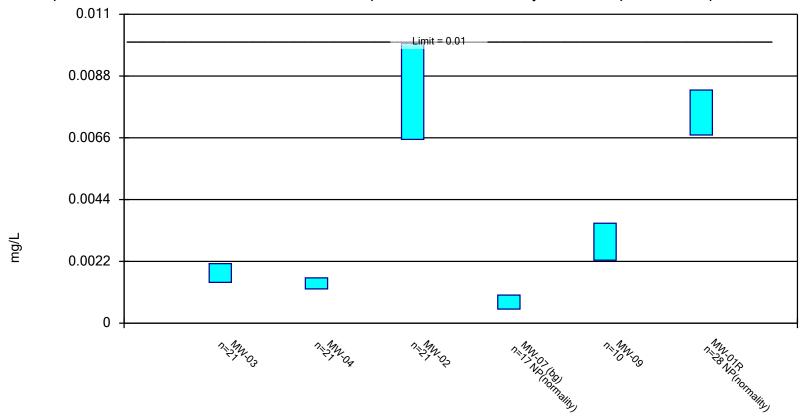
Trend Test Page 3

Grand Haven BLP	Client: Golder	Associates	Data: DT-Gran	d Haven B	LP Pri	nted 1/3/202	2, 1:09 PM			
<u>Well</u>	Slope	Calc.	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
MW-03	0	-92	-78	Yes	21	66.67	n/a	n/a	0.02	NP
MW-04	0	29	78	No	21	85.71	n/a	n/a	0.02	NP
MW-02	-0.00	-54	-78	No	21	19.05	n/a	n/a	0.02	NP
MW-07 (bg)	0	0	63	No	18	100	n/a	n/a	0.02	NP
MW-01R	-0.00	-164	-119	Yes	28	17.86	n/a	n/a	0.02	NP
MW-03	0	7	27	No	10	90	n/a	n/a	0.02	NP
MW-04	0	15	27	No	10	80	n/a	n/a	0.02	NP
MW-02	0	7	27	No	10	90	n/a	n/a	0.02	NP
MW-07 (bg)	0	15	27	No	10	80	n/a	n/a	0.02	NP
MW-01R	0	0	119	No	28	100	n/a	n/a	0.02	NP
MW-03	-161.1	-94	-84	Yes	22	0	n/a	n/a	0.02	NP
MW-04	-82.6	-153	-84	Yes	22	0	n/a	n/a	0.02	NP
MW-02	0	33	84	No	22	54.55	n/a	n/a	0.02	NP
MW-07 (bg)	-10.9	-59	-63	No	18	0	n/a	n/a	0.02	NP
MW-01R	226.6	44	119	No	28	0	n/a	n/a	0.02	NP
MW-03	0	0	78	No	21	100	n/a	n/a	0.02	NP
MW-04	0	0	78	No	21	100	n/a	n/a	0.02	NP
MW-02	0	0	78	No	21	100	n/a	n/a	0.02	NP
MW-07 (bg)	0	0	63	No	18	100	n/a	n/a	0.02	NP
MW-01R	0	-15	-119	No	28	96.43	n/a	n/a	0.02	NP
MW-03	-175.8	-86	-84	Yes	22	0	n/a	n/a	0.02	NP
MW-04	-139.8	-119	-84	Yes	22	0	n/a	n/a	0.02	NP
MW-02	-60.43	-46	-84	No	22	0	n/a	n/a	0.02	NP
MW-07 (bg)	-36.5	-60	-63	No	18	0	n/a	n/a	0.02	NP
MW-01R	-699.3	-128	-119	Yes	28	0	n/a	n/a	0.02	NP
MW-03	-0.00	-1	-27	No	10	10	n/a	n/a	0.02	NP
MW-04	0.000	9	27	No	10	10	n/a	n/a	0.02	NP
MW-02	-0.00	-3	-27	No	10	10	n/a	n/a	0.02	NP
MW-07 (bg)	0.000	11	27	No	10	0	n/a	n/a	0.02	NP
MW-01R	-0.00	-190	-119	Yes	28	3.571	n/a	n/a	0.02	NP
MW-03	0	7	27	No	10	90	n/a	n/a	0.02	NP
MW-04	0	7	27	No	10	90	n/a	n/a	0.02	NP
MW-02	0	7	27	No	10	90	n/a	n/a	0.02	NP
MW-07 (bg)	0	7	27	No	10	80	n/a	n/a	0.02	NP
MW-01R	-0.1071	-181	-119	Yes	28	28.57	n/a	n/a	0.02	NP


Constituent

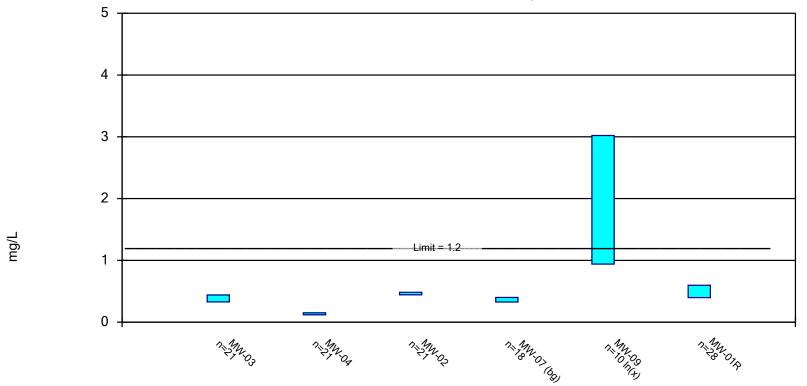
Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Silver (mg/L) Silver (mg/L) Silver (mg/L) Silver (mg/L) Silver (mg/L) Sulfate (mg/L) Sulfate (mg/L) Sulfate (mg/L) Sulfate (mg/L) Sulfate (mg/L) Thallium (mg/L) Thallium (mg/L) Thallium (mg/L) Thallium (mg/L) Thallium (mg/L)

Total Dissolved Solids (mg/L)
Total Dissolved Solids (mg/L)
Total Dissolved Solids (mg/L)
Total Dissolved Solids (mg/L)
Total Dissolved Solids (mg/L)


Vanadium (mg/L)
Vanadium (mg/L)
Vanadium (mg/L)
Vanadium (mg/L)
Vanadium (mg/L)
Zinc (mg/L)
Zinc (mg/L)
Zinc (mg/L)
Zinc (mg/L)
Zinc (mg/L)

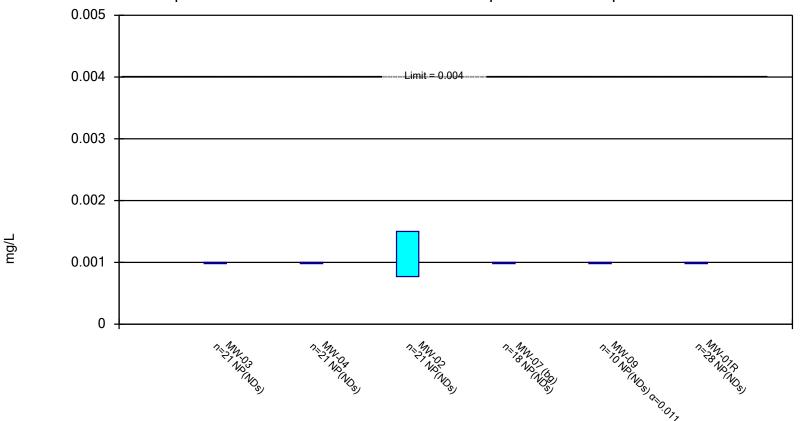
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Antimony Analysis Run 1/3/2022 1:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

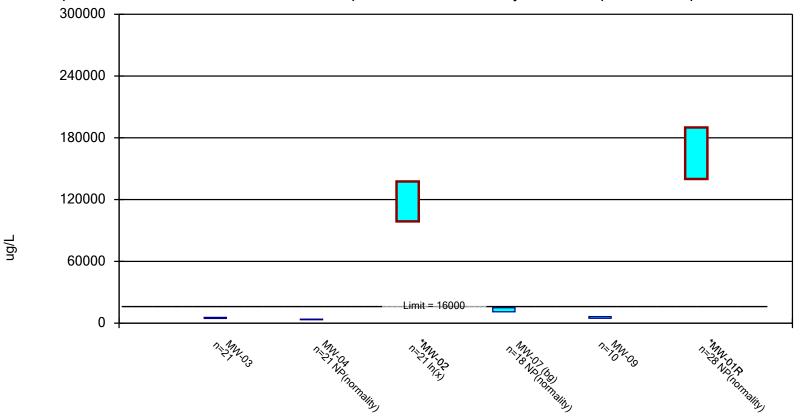

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Arsenic Analysis Run 1/3/2022 1:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Parametric Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

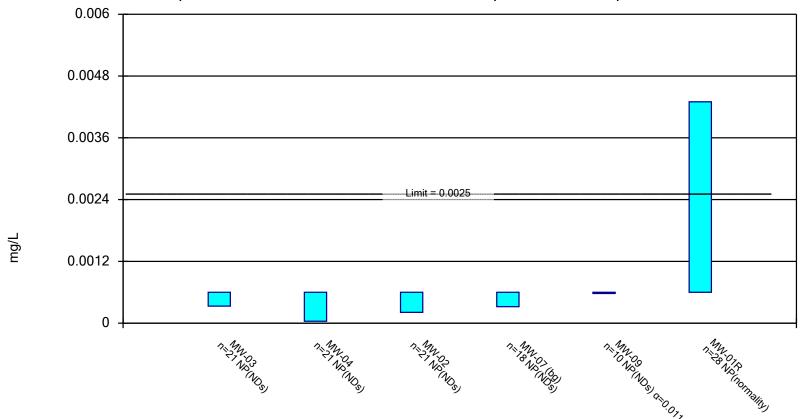
Constituent: Barium Analysis Run 1/3/2022 1:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

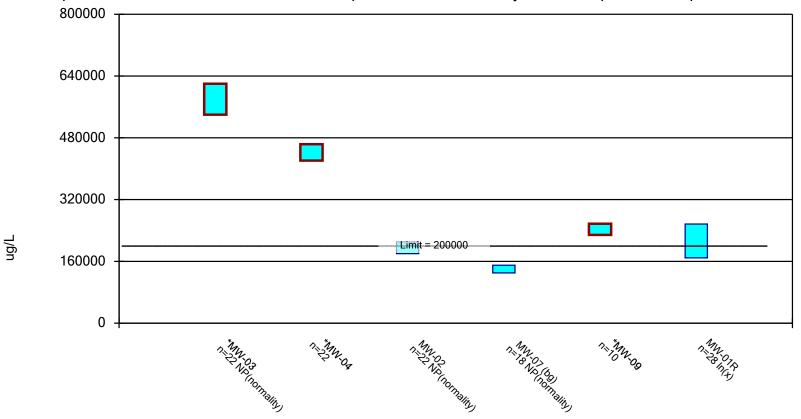
Constituent: Beryllium Analysis Run 1/3/2022 1:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

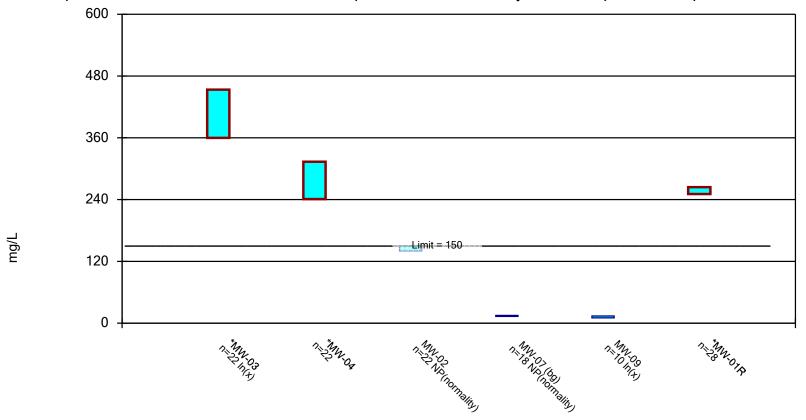


Constituent: Boron Analysis Run 1/3/2022 1:32 PM View: MI GWPS

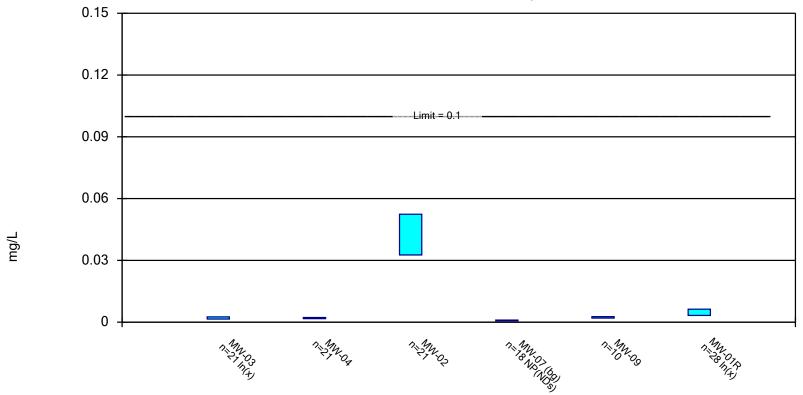
Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Non-Parametric Confidence Interval

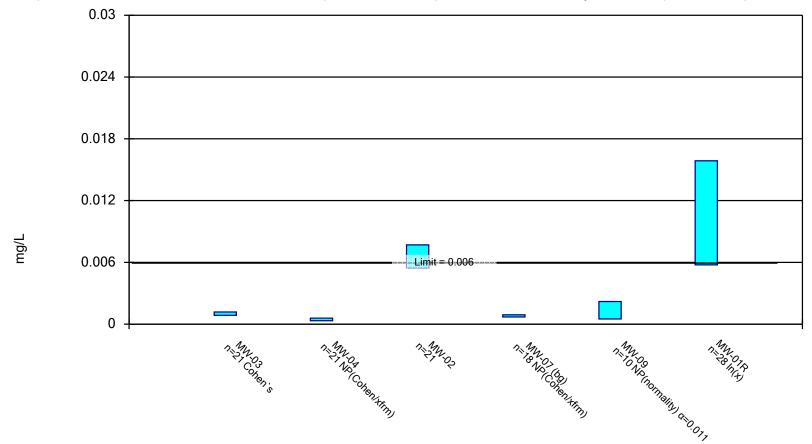
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.


Constituent: Cadmium Analysis Run 1/3/2022 1:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

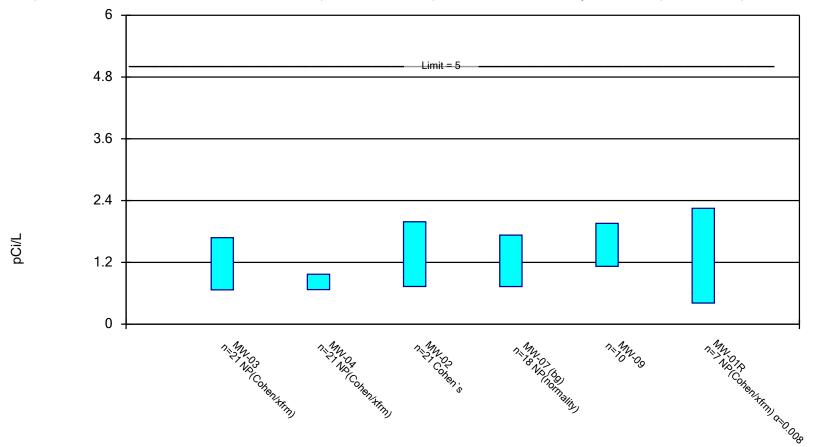

Constituent: Calcium Analysis Run 1/3/2022 1:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Chloride Analysis Run 1/3/2022 1:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

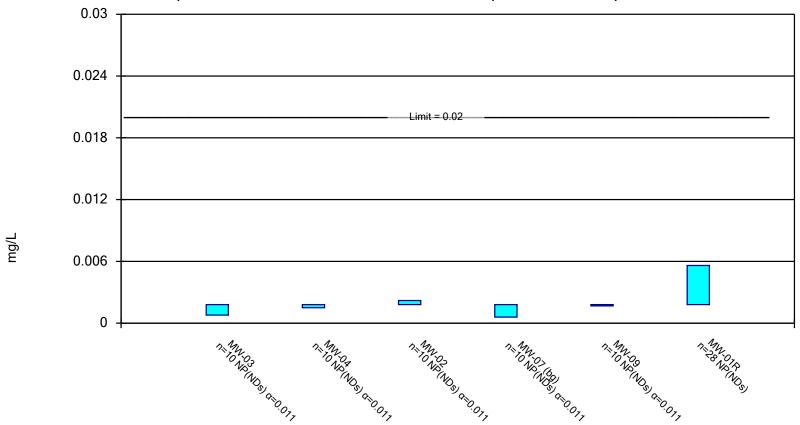
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Chromium Analysis Run 1/3/2022 1:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

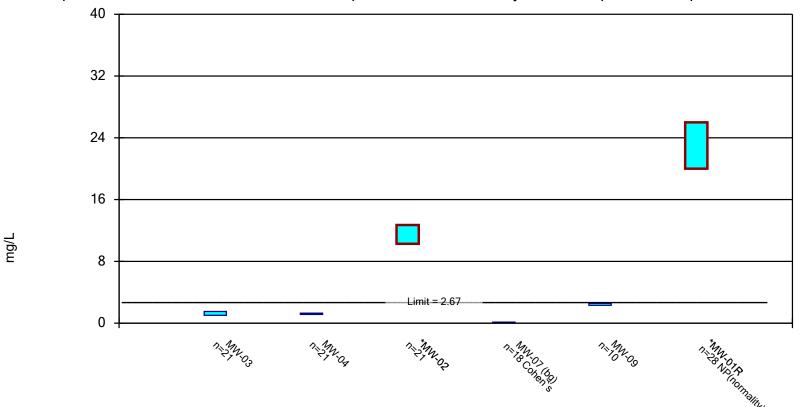

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Cobalt Analysis Run 1/3/2022 1:32 PM View: MI GWPS

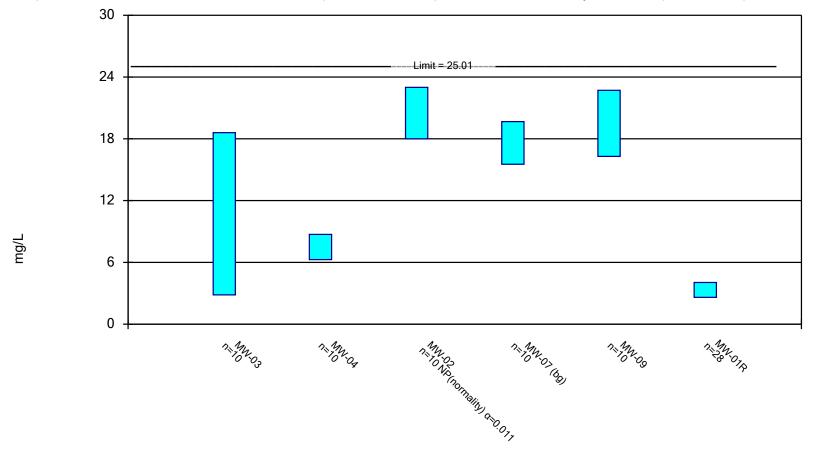
Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Combined Radium 226 + 228 Analysis Run 1/3/2022 1:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

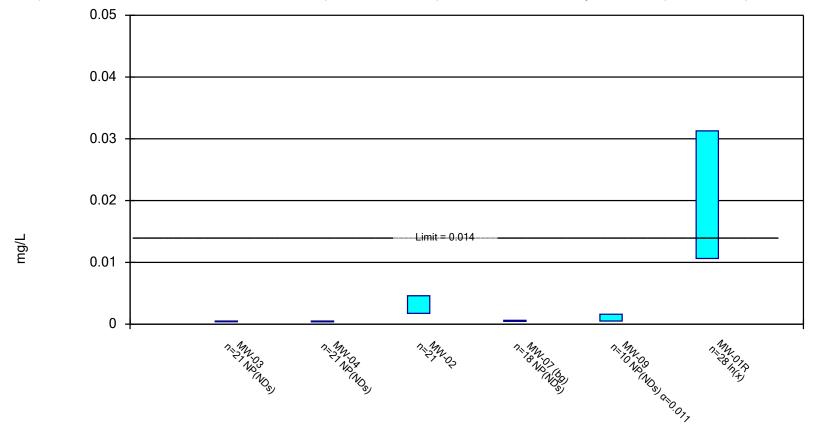

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

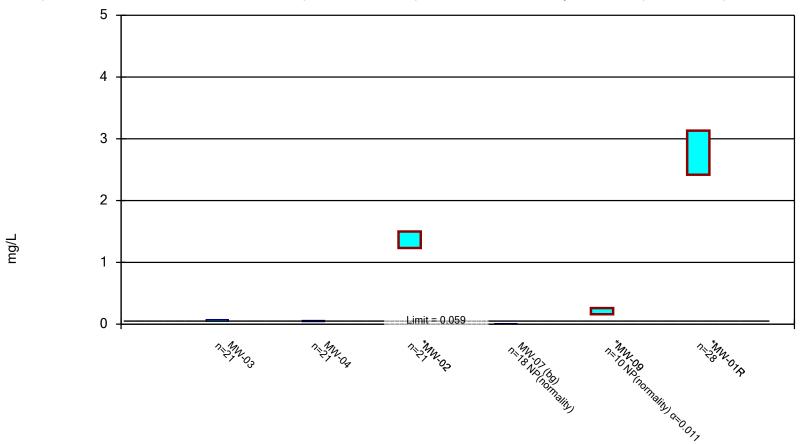

Constituent: Copper Analysis Run 1/3/2022 1:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

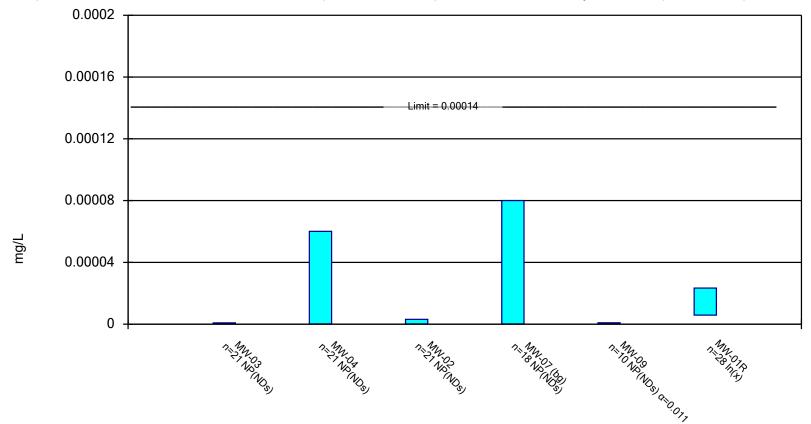
Constituent: Fluoride Analysis Run 1/3/2022 1:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

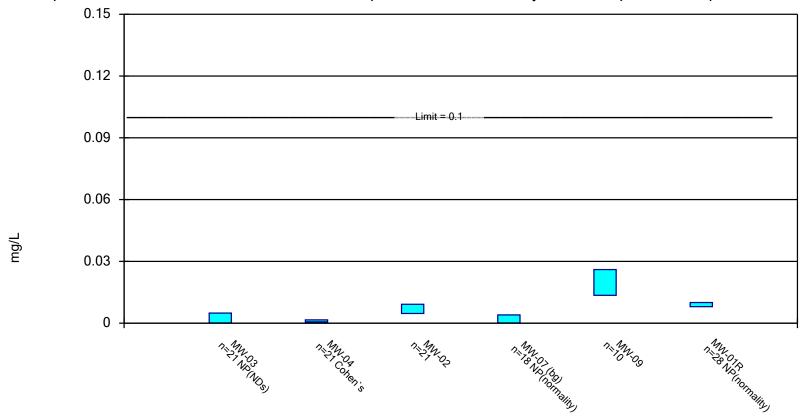
Constituent: Iron Analysis Run 1/3/2022 1:32 PM View: MI GWPS


Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

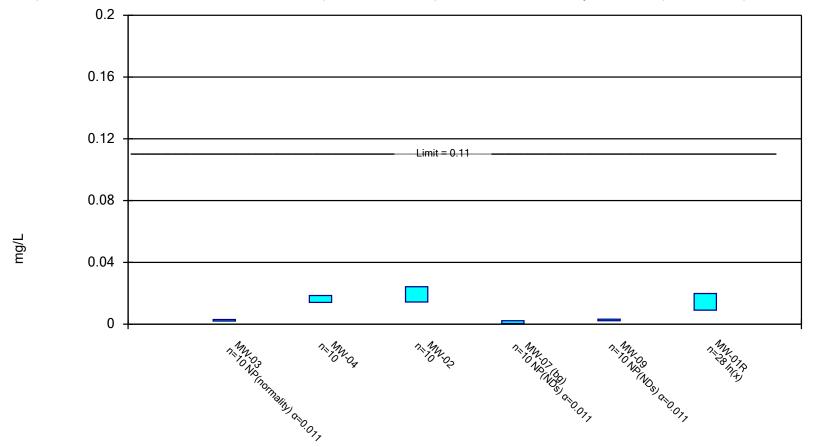
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Lead Analysis Run 1/3/2022 1:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Lithium Analysis Run 1/3/2022 1:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

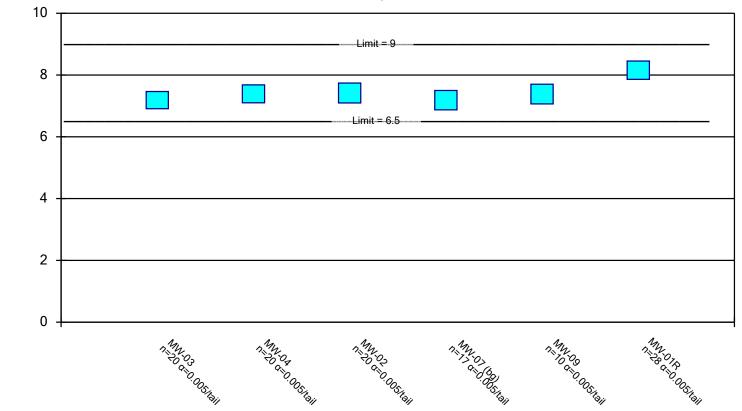
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Mercury Analysis Run 1/3/2022 1:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Molybdenum Analysis Run 1/3/2022 1:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

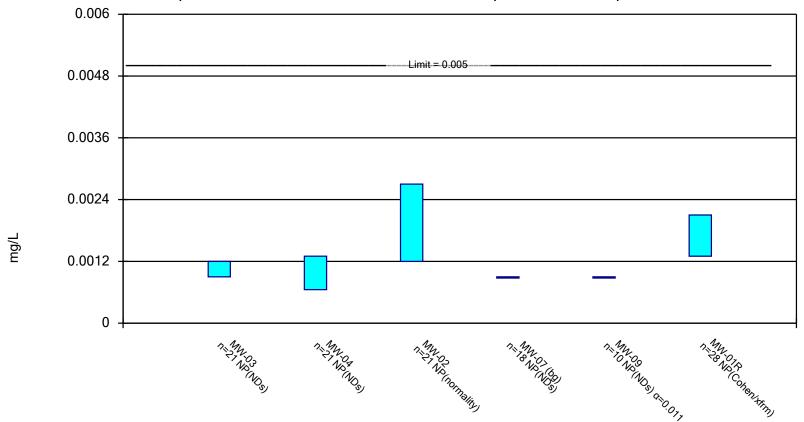

Constituent: Nickel Analysis Run 1/3/2022 1:32 PM View: MI GWPS

Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

SU

Parametric Confidence Interval

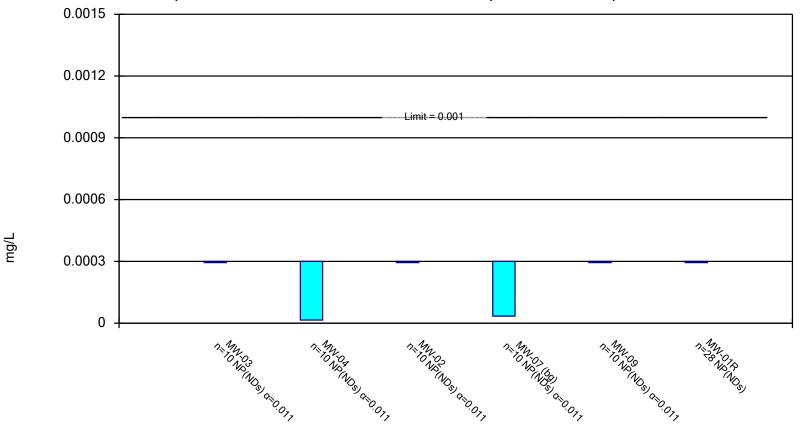
Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: pH Analysis Run 1/3/2022 1:32 PM View: MI GWPS

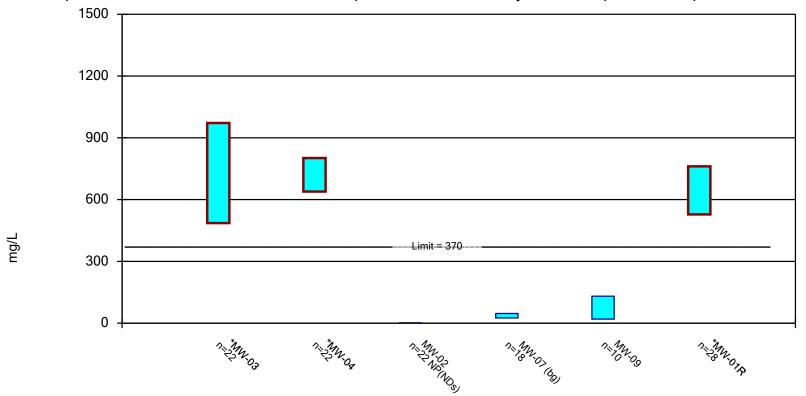
Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Non-Parametric Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

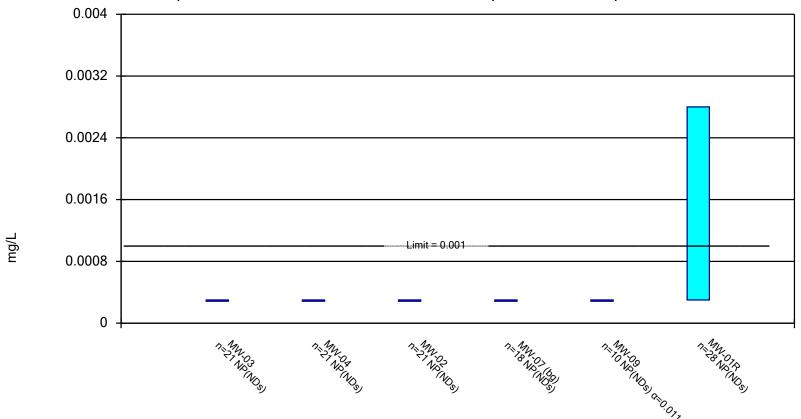
Constituent: Selenium Analysis Run 1/3/2022 1:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Non-Parametric Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

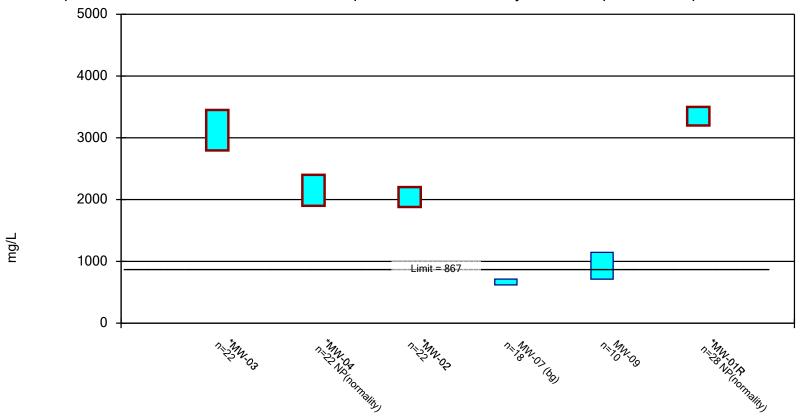
Constituent: Silver Analysis Run 1/3/2022 1:32 PM View: MI GWPS

Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

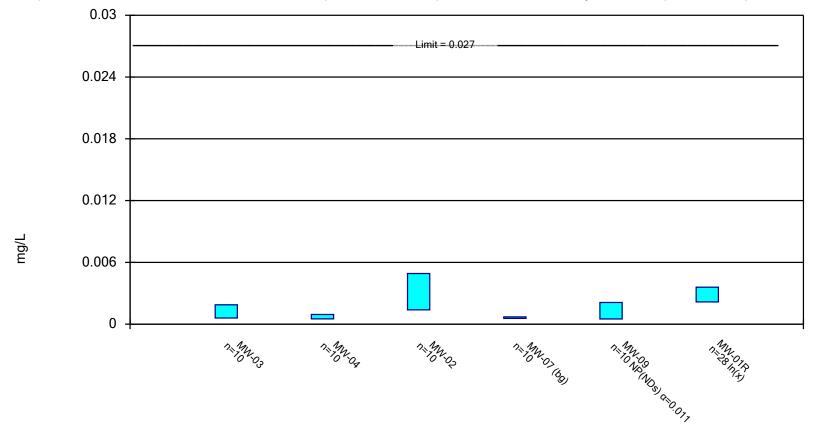
Constituent: Sulfate Analysis Run 1/3/2022 1:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Non-Parametric Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

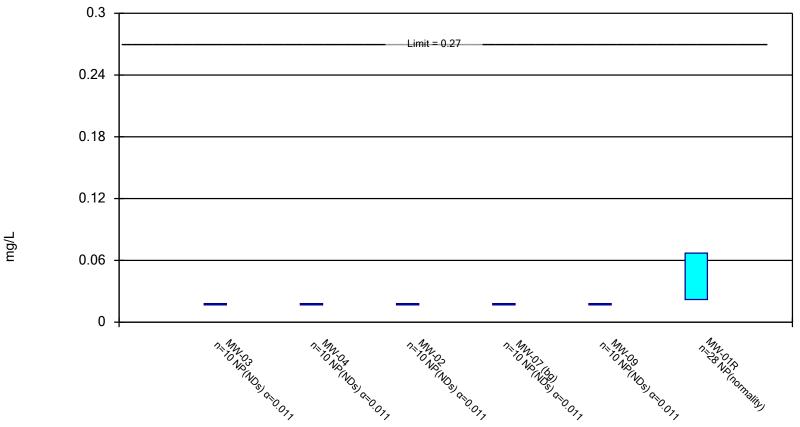
Constituent: Thallium Analysis Run 1/3/2022 1:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Parametric and Non-Parametric (NP) Confidence Interval


Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Total Dissolved Solids Analysis Run 1/3/2022 1:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Vanadium Analysis Run 1/3/2022 1:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

Constituent: Zinc Analysis Run 1/3/2022 1:32 PM View: MI GWPS

Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

	Grand Hav	en BLP Clie	ent: Golder As	sociates	Data:	DT-Gr	and Haven BL	.P Printed 1	/3/2022,	2:00 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliano	eSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	MW-03	0.00041	0.0003	0.006	No	21	0.0003052	0.000024	95.24	No	0.01	NP (NDs)
Antimony (mg/L)	MW-04	0.0003	0.000091	0.006	No	21	0.00029	0.00004561	95.24	No	0.01	NP (NDs)
Antimony (mg/L)	MW-02	0.00033	0.0003	0.006	No	21	0.0003414	0.0001206	66.67	No	0.01	NP (NDs)
Antimony (mg/L)	MW-07 (bg)	0.0016	0.00013	0.006	No	18	0.0003628	0.0003114	88.89	No	0.01	NP (NDs)
Antimony (mg/L)	MW-09	0.0003	0.0003	0.006	No	10	0.0003	0	100	No	0.011	NP (NDs)
Antimony (mg/L)	MW-01R	0.003819	0.001155	0.006	No	28	0.004324	0.00553	10.71	ln(x)	0.01	Param.
Arsenic (mg/L)	MW-03	0.002118	0.001453	0.01	No	21	0.001786	0.0006027	9.524	No	0.01	Param.
Arsenic (mg/L)	MW-04	0.001611	0.001217	0.01	No	21	0.001414	0.0003568	4.762	No	0.01	Param.
Arsenic (mg/L)	MW-02	0.009952	0.006543	0.01	No	21	0.008248	0.00309	4.762	No	0.01	Param.
Arsenic (mg/L)	MW-07 (bg)	0.001	0.0005	0.01	No	17	0.001078	0.00114	47.06	No	0.01	NP (normality)
Arsenic (mg/L)	MW-09	0.003558	0.002242	0.01	No	10	0.0029	0.0007379	0	No	0.01	Param.
Arsenic (mg/L)	MW-01R	0.0083	0.0067	0.01	No	28	0.006929	0.002187	3.571	No	0.01	NP (normality)
Barium (mg/L)	MW-03	0.4399	0.3268	1.2	No	21	0.3833	0.1025	0	No	0.01	Param.
Barium (mg/L)	MW-04	0.1514	0.1188	1.2	No	21	0.1351	0.02947	0	No	0.01	Param.
Barium (mg/L)	MW-02	0.4828	0.4429	1.2	No	21	0.4629	0.03621	0	No	0.01	Param.
Barium (mg/L)	MW-07 (bg)	0.4002	0.3264	1.2	No	18	0.3633	0.06097	0	No	0.01	Param.
Barium (mg/L)	MW-09	3.021	0.9393	1.2	No	10	2.082	1.567	0	ln(x)	0.01	Param.
Barium (mg/L)	MW-01R	0.5967	0.3973	1.2	No	28	0.497	0.2134	0	No	0.01	Param.
Beryllium (mg/L)	MW-03	0.001	0.001	0.004	No	21	0.001	0	100	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-04	0.001	0.001	0.004	No	21	0.001	0	100	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-02	0.0015	0.00077	0.004	No	21	0.0009681	0.0002412	85.71	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-07 (bg)	0.001	0.001	0.004	No	18	0.001	0	100	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-09	0.001	0.001	0.004	No	10	0.001	0	100	No	0.011	NP (NDs)
Beryllium (mg/L)	MW-01R	0.001	0.001	0.004	No	28	0.001	0	100	No	0.01	NP (NDs)
Boron (ug/L)	MW-03	5563	4580	16000	No	21	5071	890.6	0	No	0.01	Param.
Boron (ug/L)	MW-04	3900	3300	16000	No	21	3724	574.4	0	No	0.01	NP (normality)
Boron (ug/L)	MW-02	137592	98805	16000	Yes	21	122000	41539	0	In(x)	0.01	Param.
Boron (ug/L)	MW-07 (bg)	15000	11000	16000	No	18	12978	3368	0	No	0.01	NP (normality)
Boron (ug/L)	MW-09	6385	4695	16000	No	10	5540	946.6	0	No	0.01	Param.
Boron (ug/L)	MW-01R	190000	140000	16000	Yes	28	165000	38442	0	No	0.01	NP (normality)
Cadmium (mg/L)	MW-03	0.0006	0.00033	0.0025	No	21	0.0005738	0.00008273	95.24	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-04	0.0006	0.000037	0.0025	No	21	0.0005463	0.0001696	90.48	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-02	0.0006	0.00021	0.0025	No	21	0.0004928	0.0002549	66.67	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-07 (bg)	0.0006	0.00032	0.0025	No	18	0.0005537	0.0001426	94.44	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-09	0.0006	0.0006	0.0025	No	10	0.0006	0	100	No	0.011	NP (NDs)
Cadmium (mg/L)	MW-01R	0.0043	0.0006	0.0025	No	28	0.003946	0.005132	32.14	No	0.01	NP (normality)

	Grand Hav	ven BLP Cli	ent: Golder A	ssociates	Data	: DT-G	rand Haven B	LP Printed	1/3/2022,	2:00 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Complian	ceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
Calcium (ug/L)	MW-03	620000	540000	200000	Yes	22	589545	86050	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-04	463546	420999	200000	Yes	22	442273	39633	0	No	0.01	Param.
Calcium (ug/L)	MW-02	210000	180000	200000	No	22	203182	34001	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-07 (bg)	150000	130000	200000	No	18	145000	15435	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-09	257600	228400	200000	Yes	10	243000	16364	0	No	0.01	Param.
Calcium (ug/L)	MW-01R	256657	169040	200000	No	28	230393	114277	0	ln(x)	0.01	Param.
Chloride (mg/L)	MW-03	453.6	359.9	150	Yes	22	413.6	97.57	0	ln(x)	0.01	Param.
Chloride (mg/L)	MW-04	313.5	241	150	Yes	22	277.3	67.55	0	No	0.01	Param.
Chloride (mg/L)	MW-02	150	140	150	No	22	145	8.018	0	No	0.01	NP (normality)
Chloride (mg/L)	MW-07 (bg)	15	13	150	No	18	14.11	0.8324	0	No	0.01	NP (normality)
Chloride (mg/L)	MW-09	13.95	10.29	150	No	10	12.15	2.31	0	ln(x)	0.01	Param.
Chloride (mg/L)	MW-01R	264.2	250.8	150	Yes	28	257.5	14.3	0	No	0.01	Param.
Chromium (mg/L)	MW-03	0.00256	0.001525	0.1	No	21	0.002202	0.001094	0	ln(x)	0.01	Param.
Chromium (mg/L)	MW-04	0.002257	0.001705	0.1	No	21	0.001981	0.0004996	4.762	No	0.01	Param.
Chromium (mg/L)	MW-02	0.05239	0.03262	0.1	No	21	0.0425	0.01791	0	No	0.01	Param.
Chromium (mg/L)	MW-07 (bg)	0.001	0.00068	0.1	No	18	0.000925	0.0005008	66.67	No	0.01	NP (NDs)
Chromium (mg/L)	MW-09	0.002689	0.001971	0.1	No	10	0.00233	0.0004029	0	No	0.01	Param.
Chromium (mg/L)	MW-01R	0.006266	0.003249	0.1	No	28	0.005689	0.004133	3.571	ln(x)	0.01	Param.
Cobalt (mg/L)	MW-03	0.001178	0.0008524	0.006	No	21	0.0008833	0.0002917	23.81	No	0.01	Param.
Cobalt (mg/L)	MW-04	0.00058	0.00033	0.006	No	21	0.00051	0.0002227	38.1	No	0.01	NP (Cohens/xfrm)
Cobalt (mg/L)	MW-02	0.007702	0.005441	0.006	No	21	0.006571	0.002049	0	No	0.01	Param.
Cobalt (mg/L)	MW-07 (bg)	0.00091	0.0007	0.006	No	18	0.0008239	0.0001295	16.67	No	0.01	NP (Cohens/xfrm)
Cobalt (mg/L)	MW-09	0.0022	0.0005	0.006	No	10	0.000981	0.0007477	30	No	0.011	NP (normality)
Cobalt (mg/L)	MW-01R	0.01587	0.005758	0.006	No	28	0.01732	0.0221	0	ln(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-03	1.68	0.666	5	No	21	1.21	0.8396	23.81	No	0.01	NP (Cohens/xfrm)
Combined Radium 226 + 228 (pCi/L)	MW-04	0.97	0.671	5	No	21	0.8382	0.4338	38.1	No	0.01	NP (Cohens/xfrm)
Combined Radium 226 + 228 (pCi/L)	MW-02	1.988	0.7317	5	No	21	1.565	0.8717	28.57	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-07 (bg)	1.73	0.73	5	No	18	1.11	0.5214	50	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-09	1.957	1.123	5	No	10	1.54	0.4674	10	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-01R	2.25	0.41	5	No	7	0.9557	0.5965	42.86	No	0.008	NP (Cohens/xfrm)
Copper (mg/L)	MW-03	0.0018	0.00078	0.02	No	10	0.001563	0.0005057	80	No	0.011	NP (NDs)
Copper (mg/L)	MW-04	0.0018	0.0015	0.02	No	10	0.001695	0.0003201	70	No	0.011	NP (NDs)
Copper (mg/L)	MW-02	0.0022	0.0018	0.02	No	10	0.00193	0.0005376	70	No	0.011	NP (NDs)
Copper (mg/L)	MW-07 (bg)	0.0018	0.00059	0.02	No	10	0.001545	0.0005385	80	No	0.011	NP (NDs)
Copper (mg/L)	MW-09	0.0018	0.0018	0.02	No	10	0.00175	0.0001581	90	No	0.011	NP (NDs)
Copper (mg/L)	MW-01R	0.0056	0.0018	0.02	No	28	0.006071	0.008081	64.29	No	0.01	NP (NDs)

	Grand Hav	en BLP Clie	ent: Golder As	sociates	Data:	DT-Gra	and Haven BL	P Printed 1	/3/2022,	2:00 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliano	eSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Fluoride (mg/L)	MW-03	1.51	1.017	2.67	No	21	1.263	0.447	0	No	0.01	Param.
Fluoride (mg/L)	MW-04	1.292	1.131	2.67	No	21	1.211	0.1461	0	No	0.01	Param.
Fluoride (mg/L)	MW-02	12.71	10.28	2.67	Yes	21	11.5	2.209	0	No	0.01	Param.
Fluoride (mg/L)	MW-07 (bg)	0.1335	0.07364	2.67	No	18	0.1079	0.04269	16.67	No	0.01	Param.
Fluoride (mg/L)	MW-09	2.568	2.312	2.67	No	10	2.44	0.143	0	No	0.01	Param.
Fluoride (mg/L)	MW-01R	26	20	2.67	Yes	28	20.83	7.517	3.571	No	0.01	NP (normality)
Iron (mg/L)	MW-03	18.6	2.843	25.01	No	10	10.72	8.83	0	No	0.01	Param.
Iron (mg/L)	MW-04	8.715	6.265	25.01	No	10	7.49	1.373	0	No	0.01	Param.
Iron (mg/L)	MW-02	23	18	25.01	No	10	19.77	4.869	0	No	0.011	NP (normality)
Iron (mg/L)	MW-07 (bg)	19.67	15.53	25.01	No	10	17.6	2.319	0	No	0.01	Param.
Iron (mg/L)	MW-09	22.71	16.29	25.01	No	10	19.5	3.598	0	No	0.01	Param.
Iron (mg/L)	MW-01R	4.044	2.599	25.01	No	28	3.321	1.547	0	No	0.01	Param.
Lead (mg/L)	MW-03	0.0005	0.00038	0.014	No	21	0.0004395	0.0001571	66.67	No	0.01	NP (NDs)
Lead (mg/L)	MW-04	0.0005	0.00037	0.014	No	21	0.0004414	0.00009404	66.67	No	0.01	NP (NDs)
Lead (mg/L)	MW-02	0.0046	0.001745	0.014	No	21	0.003172	0.002587	14.29	No	0.01	Param.
Lead (mg/L)	MW-07 (bg)	0.00062	0.00045	0.014	No	18	0.0005756	0.0005995	72.22	No	0.01	NP (NDs)
Lead (mg/L)	MW-09	0.0016	0.0005	0.014	No	10	0.000793	0.0005488	70	No	0.011	NP (NDs)
Lead (mg/L)	MW-01R	0.03128	0.01062	0.014	No	28	0.03329	0.04093	0	ln(x)	0.01	Param.
Lithium (mg/L)	MW-03	0.07409	0.04808	0.059	No	21	0.06108	0.02358	4.762	No	0.01	Param.
Lithium (mg/L)	MW-04	0.05878	0.04167	0.059	No	21	0.05022	0.0155	4.762	No	0.01	Param.
Lithium (mg/L)	MW-02	1.499	1.233	0.059	Yes	21	1.366	0.241	0	No	0.01	Param.
Lithium (mg/L)	MW-07 (bg)	0.00835	0.0039	0.059	No	18	0.008872	0.01265	44.44	No	0.01	NP (normality)
Lithium (mg/L)	MW-09	0.26	0.16	0.059	Yes	10	0.235	0.04249	0	No	0.011	NP (normality)
Lithium (mg/L)	MW-01R	3.133	2.418	0.059	Yes	28	2.775	0.7644	0	No	0.01	Param.
Mercury (mg/L)	MW-03	8.0e-7	1.6e-7	0.00014	No	21	0.00001079	0.00002658	71.43	No	0.01	NP (NDs)
Mercury (mg/L)	MW-04	0.00006008	1.6e-7	0.00014	No	21	0.00000683	0.00002131	95.24	No	0.01	NP (NDs)
Mercury (mg/L)	MW-02	0.0000031	1.6e-7	0.00014	No	21	0.00001119	0.00002659	71.43	No	0.01	NP (NDs)
Mercury (mg/L)	MW-07 (bg)	0.00008	1.6e-7	0.00014	No	18	0.00002347	0.00004661	77.78	No	0.01	NP (NDs)
Mercury (mg/L)	MW-09	8.8e-7	1.6e-7	0.00014	No	10	0.000008344	0.0000253	60	No	0.011	NP (NDs)
Mercury (mg/L)	MW-01R	0.00002335	0.000005832	0.00014	No	28	0.00002651	0.00003384	3.571	ln(x)	0.01	Param.
Molybdenum (mg/L)	MW-03	0.0049	0.000093	0.1	No	21	0.002009	0.003164	52.38	No	0.01	NP (NDs)
Molybdenum (mg/L)	MW-04	0.00158	0.000607	0.1	No	21	0.001178	0.0007406	19.05	No	0.01	Param.
Molybdenum (mg/L)	MW-02	0.009148	0.004689	0.1	No	21	0.006918	0.004042	9.524	No	0.01	Param.
Molybdenum (mg/L)	MW-07 (bg)	0.004	0.000093	0.1	No	18	0.001595	0.00211	27.78	No	0.01	NP (normality)
Molybdenum (mg/L)	MW-09	0.02601	0.01353	0.1	No	10	0.01977	0.006998	0	No	0.01	Param.
Molybdenum (mg/L)	MW-01R	0.01	0.008	0.1	No	28	0.008514	0.003256	0	No	0.01	NP (normality)

	Grand Hav	en BLP Clie	ent: Golder As	sociates	Data:	DT-Gr	and Haven BL	.P Printed 1	/3/2022,	2:00 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliand	eSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Nickel (mg/L)	MW-03	0.003	0.002	0.11	No	10	0.00282	0.001522	20	No	0.011	NP (normality)
Nickel (mg/L)	MW-04	0.01853	0.01407	0.11	No	10	0.0163	0.002497	0	No	0.01	Param.
Nickel (mg/L)	MW-02	0.02424	0.01436	0.11	No	10	0.0193	0.005539	0	No	0.01	Param.
Nickel (mg/L)	MW-07 (bg)	0.0022	0.00042	0.11	No	10	0.001842	0.0007547	80	No	0.011	NP (NDs)
Nickel (mg/L)	MW-09	0.0032	0.0022	0.11	No	10	0.00246	0.000631	60	No	0.011	NP (NDs)
Nickel (mg/L)	MW-01R	0.01981	0.009064	0.11	No	28	0.0194	0.01951	0	In(x)	0.01	Param.
pH (SU)	MW-03	7.466	6.91	9	No	20	7.188	0.4345	0	No	0.005	Param.
pH (SU)	MW-04	7.681	7.101	9	No	20	7.391	0.4537	0	No	0.005	Param.
pH (SU)	MW-02	7.742	7.095	9	No	20	7.419	0.5058	0	No	0.005	Param.
pH (SU)	MW-07 (bg)	7.501	6.873	9	No	17	7.187	0.4429	0	No	0.005	Param.
pH (SU)	MW-09	7.701	7.065	9	No	10	7.383	0.3094	0	No	0.005	Param.
pH (SU)	MW-01R	8.454	7.861	9	No	28	8.158	0.566	0	No	0.005	Param.
Selenium (mg/L)	MW-03	0.0012	0.0009	0.005	No	21	0.001026	0.0002179	66.67	No	0.01	NP (NDs)
Selenium (mg/L)	MW-04	0.0013	0.00065	0.005	No	21	0.0008943	0.0001214	85.71	No	0.01	NP (NDs)
Selenium (mg/L)	MW-02	0.0027	0.0012	0.005	No	21	0.002543	0.002738	19.05	No	0.01	NP (normality)
Selenium (mg/L)	MW-07 (bg)	0.0009	0.0009	0.005	No	18	0.0009	0	100	No	0.01	NP (NDs)
Selenium (mg/L)	MW-09	0.0009	0.0009	0.005	No	10	0.0009	0	100	No	0.011	NP (NDs)
Selenium (mg/L)	MW-01R	0.0021	0.0013	0.005	No	28	0.001949	0.001097	17.86	No	0.01	NP (Cohens/xfrm)
Silver (mg/L)	MW-03	0.0003	0.0003	0.001	No	10	0.0002726	0.00008665	90	No	0.011	NP (NDs)
Silver (mg/L)	MW-04	0.0003	0.000015	0.001	No	10	0.0002429	0.0001204	80	No	0.011	NP (NDs)
Silver (mg/L)	MW-02	0.0003	0.0003	0.001	No	10	0.0002736	0.00008348	90	No	0.011	NP (NDs)
Silver (mg/L)	MW-07 (bg)	0.0003	0.000034	0.001	No	10	0.0002456	0.0001147	80	No	0.011	NP (NDs)
Silver (mg/L)	MW-09	0.0003	0.0003	0.001	No	10	0.0003	0	100	No	0.011	NP (NDs)
Silver (mg/L)	MW-01R	0.0003	0.0003	0.001	No	28	0.0003	0	100	No	0.01	NP (NDs)
Sulfate (mg/L)	MW-03	972	485.9	370	Yes	22	729	452.8	0	No	0.01	Param.
Sulfate (mg/L)	MW-04	801.8	639.1	370	Yes	22	720.5	151.5	0	No	0.01	Param.
Sulfate (mg/L)	MW-02	1.5	0.41	370	No	22	1.98	3.488	54.55	No	0.01	NP (NDs)
Sulfate (mg/L)	MW-07 (bg)	47.04	25.3	370	No	18	36.17	17.96	0	No	0.01	Param.
Sulfate (mg/L)	MW-09	131	19.54	370	No	10	75.26	62.45	0	No	0.01	Param.
Sulfate (mg/L)	MW-01R	761.3	528	370	Yes	28	644.6	249.6	0	No	0.01	Param.
Thallium (mg/L)	MW-03	0.0003	0.0003	0.001	No	21	0.0003	0	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-04	0.0003	0.0003	0.001	No	21	0.0003	0	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-02	0.0003	0.0003	0.001	No	21	0.0003	0	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-07 (bg)	0.0003	0.0003	0.001	No	18	0.0003	0	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-09	0.0003	0.0003	0.001	No	10	0.000355	0.0001739	90	No	0.011	NP (NDs)
Thallium (mg/L)	MW-01R	0.0028	0.0003	0.001	No	28	0.0003893	0.0004725	96.43	No	0.01	NP (NDs)

	Grand Hav	en BLP Clie	ent: Golder As	sociates	Data:	DT-Gr	and Haven BL	.P Printed 1	/3/2022,	2:00 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliano	eSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Total Dissolved Solids (mg/L)	MW-03	3450	2795	867	Yes	22	3123	610.2	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-04	2400	1900	867	Yes	22	2092	514.9	0	No	0.01	NP (normality)
Total Dissolved Solids (mg/L)	MW-02	2202	1880	867	Yes	22	2041	300.3	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-07 (bg)	713.3	618.9	867	No	18	666.1	78	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-09	1146	712.3	867	No	10	929	242.9	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-01R	3500	3200	867	Yes	28	3214	470.4	0	No	0.01	NP (normality)
Vanadium (mg/L)	MW-03	0.00188	0.0005939	0.027	No	10	0.001237	0.0007208	10	No	0.01	Param.
Vanadium (mg/L)	MW-04	0.0009392	0.0005128	0.027	No	10	0.000726	0.000239	10	No	0.01	Param.
Vanadium (mg/L)	MW-02	0.004916	0.00139	0.027	No	10	0.003153	0.001976	10	No	0.01	Param.
Vanadium (mg/L)	MW-07 (bg)	0.0007082	0.0005598	0.027	No	10	0.000634	0.00008316	0	No	0.01	Param.
Vanadium (mg/L)	MW-09	0.0021	0.0005	0.027	No	10	0.00087	0.0007889	80	No	0.011	NP (NDs)
Vanadium (mg/L)	MW-01R	0.003589	0.002157	0.027	No	28	0.003179	0.00173	3.571	In(x)	0.01	Param.
Zinc (mg/L)	MW-03	0.018	0.018	0.27	No	10	0.01628	0.005436	90	No	0.011	NP (NDs)
Zinc (mg/L)	MW-04	0.018	0.018	0.27	No	10	0.0165	0.004743	90	No	0.011	NP (NDs)
Zinc (mg/L)	MW-02	0.018	0.018	0.27	No	10	0.01719	0.002561	90	No	0.011	NP (NDs)
Zinc (mg/L)	MW-07 (bg)	0.018	0.018	0.27	No	10	0.01673	0.005157	80	No	0.011	NP (NDs)
Zinc (mg/L)	MW-09	0.018	0.018	0.27	No	10	0.01684	0.003668	90	No	0.011	NP (NDs)
Zinc (mg/L)	MW-01R	0.067	0.022	0.27	No	28	0.06954	0.07713	28.57	No	0.01	NP (normality)

APPENDIX B

Laboratory Reports and Field Forms

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

November 09, 2021

Mr. Paul Cederquist Grand Haven Board of Light and Power-Monthly MWs 1700 Eaton Drive Grand Haven, MI 49417

RE: Trace Project

21J1032

Client Project

Impoundment Sampling

Dear Mr. Cederquist:

Enclosed are your analytical results. The results of this report relate only to the samples listed in the body of this report.

All reports were examined through Trace's validation process to ensure that requirements for quality and completeness were satisfied. All reported analytical results were obtained in accordance with the methods referenced on the reports. Every practical effort was made to meet the reporting limit specifications for this work, however, some results may have raised reporting limits to correct for percent solids.

For clients that require NELAP Accreditation, Trace certifies that these test results meet all requirements of the NELAP Standard, except for those analytes with a "N" notation. These analytes have not been evaluated by NELAP at Trace's discretion and will not be reported unless requested by client.

If you have questions concerning this report, please contact me at 231.773.5998 or by email at jmink@trace-labs.com.

Sincerely,

Jon Mink Senior Project Manager Enclosures

NJDEP Accreditation No. MI008

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

SAMPLE SUMMARY

Trace Project ID:

21J1032

Client Project ID:

Impoundment Sampling

Trace ID	Sample ID	Matrix	Collected By	Date Collected	Date Received
21J1032-01	Unit 1/2 Near MW-5	Ground Water	TRACE-EB/TB	10/26/21 11:25	10/27/21 08:52
21J1032-02	Unit 1/2 Near SG-2	Ground Water	TRACE-EB/TB	10/26/21 15:25	10/27/21 08:52

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Page 3 of 23

AN EXPLANATION OF TERMS AND SYMBOLS WHICH MAY OCCUR IN THIS REPORT

DEFINITIONS

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

MS Matrix Spike

MSD Matrix Spike Duplicate
RPD Relative Percent Difference

DUP Matrix Duplicate

RDL Reporting Detection Limit
MCL Maximum Contamination Limit
TIC Tentatively Identified Compound

<, ND or U Indicates the compound was analyzed for but not detected

Indicates a result that exceeds its associated MCL or Surrogate control limits
 Indicates that the laboratory is not accredited by NELAP for this compound

NA Indicates that the compound is not available.

NOTE: Samples for volatiles that have been extracted with a water miscible solvent were corrected for the

total volume of the solvent/water mixture.

Solid matrices Method Blanks are at 100% solids as such results are the same wet or dry.

DATA QUALIFIERS

Trace ID: 21J1032-01 <i>Analysis: EPA 6020B</i>	
Antimony	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Chromium	Note 206: The MS and MSD recoveries were out of control high. The result for this analyte, in the non-spiked version of the sample, must be considered estimated.
Lead	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Manganese	Note 206: The MS and MSD recoveries were out of control high. The result for this analyte, in the non-spiked version of the sample, must be considered estimated.
Thallium	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Vanadium	Note 206: The MS and MSD recoveries were out of control high. The result for this analyte, in the non-spiked version of the sample, must be considered estimated.
Trace ID: 21J1032-02 <i>Analysis: EPA</i> 6020B	
Lead	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Thallium	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.

Trace ID: T116174-MSD1

Analysis: EPA 6010D

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Calcium	Note 226: The MS recovery was out of control, resulting in an out of control RPD between the MS and MSD. Because the background concentration of this analyte is greater than four times the spike amount, no data require qualification.
Analysis: EPA 6020B	
Chromium	Note 206: The MS and MSD recoveries were out of control high. The result for this analyte, in the non-spiked version of the sample, must be considered estimated.
Manganese	Note 206: The MS and MSD recoveries were out of control high. The result for this analyte, in the non-spiked version of the sample, must be considered estimated.
Vanadium	Note 206: The MS and MSD recoveries were out of control high. The result for this analyte, in the non-spiked version of the sample, must be considered estimated.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

Trace ID: 21J1032-01 Matrix: Ground Water Date Collected: 10/26/21 11:25

Sample ID: Unit 1/2 Near MW-5		Date	Received: 10/27	/21 08:52	Fie	ld pH: 7.11			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: EPA 1631E Batch: T116281									
Mercury	1.5 ng/L	0.50	1	11/01/21	ckd	11/02/21	ckd	N	
Analysis Method: EPA 6010D Batch: T116174									
Beryllium	<0.0020 mg/L	0.0020	1	10/28/21	mrh	11/02/21	ckd		
Boron	1.8 mg/L	0.050	1	10/28/21	mrh	11/02/21	ckd		
Calcium	470 mg/L	5.0	10	10/28/21	mrh	11/02/21	ckd		
Iron	0.28 mg/L	0.20	1	10/28/21	mrh	11/02/21	ckd		
Lithium	0.039 mg/L	0.010	1	10/28/21	mrh	11/02/21	ckd	N	
Magnesium	34 mg/L	0.20	1	10/28/21	mrh	11/02/21	ckd		
Potassium	12 mg/L	1.0	1	10/28/21	mrh	11/02/21	ckd		
Sodium	20 mg/L	0.50	1	10/28/21	mrh	11/02/21	ckd	N	
Zinc	<0.020 mg/L	0.020	1	10/28/21	mrh	11/02/21	ckd		
Analysis Method: EPA 6020B Batch: T116174									
Antimony	0.00047 mg/L	0.00030	1	10/28/21	mrh	11/04/21	acs		
Arsenic	0.0021 mg/L	0.0010	1	10/28/21	mrh	11/04/21	acs		
Barium	0.035 mg/L	0.010	1	10/28/21	mrh	11/04/21	acs		
Cadmium	<0.0010 mg/L	0.0010	1	10/28/21	mrh	11/04/21	acs		
Chromium	0.0017 mg/L	0.00090	1	10/28/21	mrh	11/04/21	acs	206	
Cobalt	0.00086 mg/L	0.0016	1	10/28/21	mrh	11/04/21	acs	J	
Copper	<0.0040 mg/L	0.0040	1	10/28/21	mrh	11/04/21	acs		
Lead	<0.0020 mg/L	0.0020	1	10/28/21	mrh	11/04/21	acs		
Manganese	0.072 mg/L	0.025	1	10/28/21	mrh	11/04/21	acs	206	
Molybdenum	0.0064 mg/L	0.00040	1	10/28/21	mrh	11/04/21	acs	N	
Nickel	0.0032 mg/L	0.0050	1	10/28/21	mrh	11/04/21	acs	J	
Selenium	0.0011 mg/L	0.0020	1	10/28/21	mrh	11/04/21	acs	J	
Silver	<0.0010 mg/L	0.0010	1	10/28/21	mrh	11/04/21	acs		
Thallium	<0.0010 mg/L	0.0010	1	10/28/21	mrh	11/04/21	acs		
Vanadium	0.00094 mg/L	0.00080	1	10/28/21	mrh	11/04/21	acs	206	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1032

Vanadium

Client Project ID: Impoundment Sampling

Trace ID: 21J1032-01 Matrix: Ground Water Date Collected: 10/26/21 11:25 Sample ID: Unit 1/2 Near MW-5 Date Received: 10/27/21 08:52 Field pH: 7.11 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 1300 mg/L 0.82 10 10/28/21 11/02/21 Ν ckd METALS, DISSOLVED Analysis Method: EPA 6010D Batch: T116098 Beryllium <0.0010 mg/L 0.0010 10/27/21 ckd 10/29/21 ckd 10/29/21 Boron 0.050 1 10/27/21 ckd 1.8 mg/L ckd Calcium 480 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd Iron 0.098 mg/L 0.10 1 10/27/21 ckd 10/29/21 ckd J Lithium 0.037 mg/L 0.010 10/27/21 10/29/21 1 ckd ckd N 10/29/21 Magnesium 33 mg/L 0.20 1 10/27/21 ckd ckd Potassium 12 mg/L 1.0 1 10/27/21 ckd 10/29/21 ckd Sodium 20 mg/L 0.50 1 10/27/21 ckd 10/29/21 ckd N Zinc 0.0030 mg/L 0.020 1 10/27/21 10/29/21 J ckd ckd Analysis Method: EPA 6020B Batch: T116167 11/08/21 402.5, J **Antimony** 0.00088 mg/L 0.0010 5 11/08/21 ckd ckd 1 Arsenic 0.0016 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd **Barium** 0.040 mg/L 0.0030 5 11/08/21 ckd 11/08/21 ckd Cadmium <0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd <0.00080 mg/L 0.00080 11/08/21 11/08/21 Chromium 1 ckd ckd Cobalt 0.00058 mg/L 0.0016 1 11/08/21 ckd 11/08/21 ckd J 0.00035 mg/L 0.00080 11/08/21 ckd 11/08/21 J Copper ckd <0.0020 mg/L 0.0020 5 11/08/21 ckd 11/08/21 402.5 Lead ckd 0.066 mg/L 0.00040 11/08/21 11/08/21 Manganese 1 ckd ckd Molybdenum 0.0048 mg/L 0.00040 11/08/21 11/08/21 1 ckd ckd Ν 0.0022 mg/L 0.00040 1 11/08/21 11/08/21 Nickel ckd ckd Selenium 0.00086 mg/L 0.00087 1 11/08/21 ckd 11/08/21 ckd J Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00087 mg/L Thallium 0.00087 5 11/08/21 ckd 11/08/21 ckd 402.5

CERTIFICATE OF ANALYSIS

0.00080

0.00035 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

J.

ckd

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID:

21J1032

Client Project ID:

Impoundment Sampling

Trace ID: 21J1032-01

Matrix: Ground Water

Date Collected: 10/26/21 11:25

Sample ID: Unit 1/2 Near MW-5

Date Received: 10/27/21 08:52

Field pH: 7.11

PARAMETERS

RESULTS UNITS

RDL

DILUTION

PREPARED

BY ANALYZED

ΒY NOTES

MCL

METALS, DISSOLVED

WET CHEMISTRY

Fluoride

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116092

Chloride Sulfate as SO4

3.1 mg/L 0.10 28 mg/L 0.75 1300 mg/L

5 5 100

10/27/21 10/29/21

10/29/21

10/29/21

10/27/21

ans ans ans

mr

mr

10/28/21 10/28/21 10/29/21

ans

ans

10/29/21 Ν 10/29/21 Ν mr

Analysis Method: SM 2540 C-11

Analysis Method: SM 2320 B-11 Batch: T116236

Bicarbonate Alkalinity as CaCO3 at pH 4.5

Carbonate Alkalinity as CaCO3 at pH 8.2

Batch: T116175

Total Dissolved Solids Total Dissolved Solids 1200 mg/L 1800 mg/L

93 mg/L

<10 mg/L

20 20

60

10

10

2 2

1

10/28/21 11/01/21 gmr mr

10/28/21 11/02/21

gmr mr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

Trace ID: 21J1032-02 Matrix: Ground Water Date Collected: 10/26/21 15:25

Sample ID: Unit 1/2 Near SG-2		Date Received: 10/27/21 08:52 Field pH: 8.39										
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL			
METALS, TOTAL												
Analysis Method: EPA 1631E Batch: T116281												
Mercury	3.3 ng/L	0.50	1	11/01/21	ckd	11/02/21	ckd	N				
Analysis Method: EPA 6010D Batch: T116174												
Beryllium	<0.0020 mg/L	0.0020	1	10/28/21	mrh	11/02/21	ckd					
Boron	4.6 mg/L	0.050	1	10/28/21	mrh	11/02/21	ckd					
Calcium	280 mg/L	5.0	10	10/28/21	mrh	11/02/21	ckd					
Iron	0.25 mg/L	0.20	1	10/28/21	mrh	11/02/21	ckd					
Lithium	0.061 mg/L	0.010	1	10/28/21	mrh	11/02/21	ckd	N				
Magnesium	56 mg/L	0.20	1	10/28/21	mrh	11/02/21	ckd					
Potassium	15 mg/L	1.0	1	10/28/21	mrh	11/02/21	ckd					
Sodium	48 mg/L	0.50	1	10/28/21	mrh	11/02/21	ckd	N				
Zinc	<0.020 mg/L	0.020	1	10/28/21	mrh	11/02/21	ckd					
Analysis Method: EPA 6020B Batch: T116174												
Antimony	0.00045 mg/L	0.00030	1	10/28/21	mrh	11/04/21	acs					
Arsenic	0.0024 mg/L	0.0010	1	10/28/21	mrh	11/04/21	acs					
Barium	0.044 mg/L	0.010	1	10/28/21	mrh	11/04/21	acs					
Cadmium	<0.0010 mg/L	0.0010	1	10/28/21	mrh	11/04/21	acs					
Chromium	0.0013 mg/L	0.00090	1	10/28/21	mrh	11/04/21	acs					
Cobalt	<0.0016 mg/L	0.0016	1	10/28/21	mrh	11/04/21	acs					
Copper	0.0021 mg/L	0.0040	1	10/28/21	mrh	11/04/21	acs	J				
Lead	0.00083 mg/L	0.0020	1	10/28/21	mrh	11/04/21	acs	J				
Manganese	0.082 mg/L	0.025	1	10/28/21	mrh	11/04/21	acs					
Molybdenum	0.0048 mg/L	0.00040	1	10/28/21	mrh	11/04/21	acs	N				
Nickel	0.0037 mg/L	0.0050	1	10/28/21	mrh	11/04/21	acs	J				
Selenium	0.00093 mg/L	0.0020	1	10/28/21	mrh	11/04/21	acs	J				
Silver	<0.0010 mg/L	0.0010	1	10/28/21	mrh	11/04/21	acs					
Thallium	<0.0010 mg/L	0.0010	1	10/28/21	mrh	11/04/21	acs					
Vanadium	0.0014 mg/L	0.00080	1	10/28/21	mrh	11/04/21	acs					

Date Collected: 10/26/21 15:25

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Matrix: Ground Water

Trace Project ID: 21J1032

Trace ID: 21J1032-02

Cobalt

Copper

Manganese

Molybdenum

Lead

Nickel

Silver

Selenium

Thallium

Vanadium

Client Project ID: Impoundment Sampling

Sample ID: Unit 1/2 Near SG-2 Date Received: 10/27/21 08:52 Field pH: 8.39 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL **RDL METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 940 mg/L 0.82 10 10/28/21 11/02/21 Ν ckd METALS, DISSOLVED Analysis Method: EPA 6010D Batch: T116098 Beryllium <0.0010 mg/L 0.0010 10/27/21 ckd 10/29/21 ckd 4.7 mg/L 10/29/21 Boron 0.050 1 10/27/21 ckd ckd Calcium 280 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd Iron 0.056 mg/L 0.10 1 10/27/21 ckd 10/29/21 ckd J Lithium 0.057 mg/L 0.010 10/27/21 10/29/21 1 ckd ckd N 10/29/21 Magnesium 54 mg/L 0.20 1 10/27/21 ckd ckd Potassium 15 mg/L 1.0 1 10/27/21 ckd 10/29/21 ckd Sodium 49 mg/L 0.50 1 10/27/21 ckd 10/29/21 ckd N Zinc 0.0013 mg/L 0.020 1 10/27/21 10/29/21 J ckd ckd Analysis Method: EPA 6020B Batch: T116167 11/08/21 **Antimony** 0.0012 mg/L 0.0010 5 11/08/21 ckd ckd Arsenic 0.0018 mg/L 0.0010 1 11/08/21 ckd 11/08/21 ckd **Barium** 0.061 mg/L 0.0030 5 11/08/21 ckd 11/08/21 ckd Cadmium 0.000045 mg/L 0.0010 1 11/08/21 ckd 11/08/21 ckd J <0.00080 mg/L 0.00080 11/08/21 11/08/21 Chromium 1 ckd ckd

CERTIFICATE OF ANALYSIS

0.0016

0.00080

0.0020

0.00040

0.00040

0.00040

0.00087

0.000040

0.00087

0.00080

1

5

1

1

1

5

1

11/08/21

11/08/21

11/08/21

11/08/21

11/08/21

11/08/21

11/08/21

11/08/21

11/08/21

11/08/21

ckd

11/08/21

11/08/21

11/08/21

11/08/21

11/08/21

11/08/21

11/08/21

11/08/21

11/08/21

11/08/21

ckd

J

J

402.5, J

Ν

J

402.5

J.

0.00023 mg/L

0.00062 mg/L

0.00028 mg/L

0.054 mg/L

0.0042 mg/L

0.0017 mg/L

0.00075 mg/L

<0.000040 mg/L

<0.00087 mg/L

0.00038 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

Date Collected: 10/26/21 15:25

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

Trace ID: 21J1032-02 Matrix: Ground Water

Sample ID: Unit 1/2 Near SG-2 Date Received: 10/27/21 08:52 Field pH: 8.39

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116092

Fluoride 3.1 mg/L 10/27/21 10/28/21 0.10 5 ans ans Chloride 81 mg/L 15 100 10/28/21 10/28/21 ans Sulfate as SO4 770 mg/L 60 100 10/28/21 10/28/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116236

Bicarbonate Alkalinity as CaCO3 at pH 4.5 91 mg/L 10 1 10/29/21 mr 10/29/21 Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <10 mg/L 10 10/29/21 10/29/21 Ν mr mr

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 1500 mg/L 20 2 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

QUALITY CONTROL RESULTS

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116281 Analysis Description: Mercury, Total, Low Level

QC Batch Method: EPA 1631E Analysis Method: EPA 1631E Analysis Method: EPA 1631E

METHOD BLANK: T116281-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/L	<0.20	0.20	

METHOD BLANK: T116281-BLK2

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/L	<0.20	0.20	

METHOD BLANK: T116281-BLK3

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/L	<0.20	0.20	

LABORATORY CONTROL SAMPLE: T116281-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Mercury	ng/L	25.0	23.4	94	77-123	

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116098 Analysis Description: Zinc, Dissolved
QC Batch Method: Analysis Method: EPA 6010D

METHOD BLANK: T116098-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Boron	mg/L	0.0023	0.050	J
Beryllium	mg/L	0.000061	0.0010	J
Calcium	mg/L	<0.50	0.50	
Iron	mg/L	<0.10	0.10	
Potassium	mg/L	0.015	1.0	J
Lithium	mg/L	<0.010	0.010	
Magnesium	mg/L	<0.20	0.20	
Sodium	mg/L	<0.50	0.50	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T116098-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Zinc	mg/L	<0.020	0.020	

LABORATORY CONTROL SAMPLE: T116098-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	1.00	0.966	97	80-120	
Beryllium	mg/L	0.0500	0.0510	102	80-120	
Calcium	mg/L	10.0	10.3	103	80-120	
Iron	mg/L	10.0	10.4	104	80-120	
Potassium	mg/L	10.0	10.4	104	80-120	
Lithium	mg/L	0.500	0.522	104	80-120	
Magnesium	mg/L	10.0	10.5	105	80-120	
Sodium	mg/L	10.0	10.6	106	80-120	
Zinc	mg/L	1.00	1.04	104	80-120	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116098-MSD1	Original: 21J1032-01
WAIRIA SPIRE / WAIRIA SPIRE DUPLICATE: 1110090-WSD1	Original. Z 10 1002-01

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Boron	mg/L	1.83	1.00	2.78	2.79	95	96	75-125	0.8	20	
Beryllium	mg/L	0	0.0500	0.0476	0.0479	95	96	75-125	0.6	20	
Iron	mg/L	0.0978	10.0	9.84	10.0	97	99	75-125	2	20	
Potassium	mg/L	11.6	10.0	21.8	21.9	102	104	75-125	2	20	
Lithium	mg/L	0.0370	0.500	0.568	0.573	106	107	75-125	0.9	20	
Magnesium	mg/L	33.4	10.0	42.3	42.3	90	90	75-125	0.2	20	
Sodium	mg/L	20.3	10.0	30.8	31.0	105	107	75-125	2	20	
Zinc	mg/L	0.00301	1.00	0.991	1.02	99	102	75-125	3	20	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116098-MSD2 Original: 21J1032-01

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Calcium	ma/L	478	100	576	562	98	84	75-125	16	20	

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116174

Analysis Description: Potassium, Total

QC Batch Method: EPA 3015 Microwave Assisted Digestions

Analysis Method: EPA 6010D

for Liquids

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T116174-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Boron	mg/L	<0.050	0.050	
Beryllium	mg/L	<0.0020	0.0020	
Calcium	mg/L	<0.50	0.50	
Iron	mg/L	<0.20	0.20	
Potassium	mg/L	0.060	1.0	J
Lithium	mg/L	<0.010	0.010	
Magnesium	mg/L	<0.20	0.20	
Sodium	mg/L	<0.50	0.50	
Zinc	mg/L	<0.020	0.020	

LABORATORY CONTROL SAMPLE: T116174-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	0.889	0.830	93	80-120	
Beryllium	mg/L	0.111	0.109	98	80-120	
Calcium	mg/L	8.89	8.74	98	80-120	
Iron	mg/L	8.89	9.02	101	80-120	
Potassium	mg/L	8.89	9.03	102	80-120	
Lithium	mg/L	0.889	0.880	99	80-120	
Magnesium	mg/L	8.89	9.09	102	80-120	
Sodium	mg/L	8.89	9.07	102	80-120	
Zinc	mg/L	0.889	0.894	101	80-120	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116174-MSD1 Original: 21J1032-01

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Boron	mg/L	1.81	0.889	2.72	2.61	102	90	75-125	13	20	
Beryllium	mg/L	0	0.111	0.113	0.110	101	99	75-125	2	20	
Calcium	mg/L	468	8.89	498	475	342	80	75-125	124	20	226
Iron	mg/L	0.275	8.89	9.42	9.20	103	100	75-125	2	20	
Potassium	mg/L	11.6	8.89	21.7	21.1	113	107	75-125	6	20	
Lithium	mg/L	0.0394	0.889	0.997	0.969	108	105	75-125	3	20	
Magnesium	mg/L	33.6	8.89	42.5	41.6	99	89	75-125	11	20	
Sodium	mg/L	20.0	8.89	30.3	29.6	116	108	75-125	8	20	
Zinc	mg/L	0	0.889	0.909	0.876	102	99	75-125	4	20	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Page 14 of 23

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116167 Analysis Description: Vanadium, Dissolved

QC Batch Method: Analysis Method: EPA 6020B

METHOD BLANK: T116167-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Silver	mg/L	0.000026	0.000040	J
Arsenic	mg/L	<0.0010	0.0010	
Barium	mg/L	<0.00060	0.00060	
Cadmium	mg/L	<0.00020	0.00020	
Cobalt	mg/L	<0.0016	0.0016	
Chromium	mg/L	<0.00080	0.00080	
Copper	mg/L	<0.00080	0.00080	
Manganese	mg/L	<0.00040	0.00040	
Molybdenum	mg/L	<0.00040	0.00040	
Nickel	mg/L	<0.00040	0.00040	
Lead	mg/L	<0.00040	0.00040	
Antimony	mg/L	0.00017	0.00020	J
Selenium	mg/L	<0.00087	0.00087	
Thallium	mg/L	<0.00017	0.00017	
Vanadium	mg/L	<0.00080	0.00080	

LABORATORY CONTROL SAMPLE: T116167-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Silver	mg/L	0.0600	0.0612	102	80-120	
Arsenic	mg/L	0.0600	0.0630	105	80-120	
Barium	mg/L	0.0600	0.0588	98	80-120	
Cadmium	mg/L	0.0600	0.0613	102	80-120	
Cobalt	mg/L	0.0600	0.0604	101	80-120	
Chromium	mg/L	0.0600	0.0629	105	80-120	
Copper	mg/L	0.0600	0.0610	102	80-120	
Manganese	mg/L	0.0600	0.0615	102	80-120	
Molybdenum	mg/L	0.0600	0.0588	98	80-120	
Nickel	mg/L	0.0600	0.0602	100	80-120	
Lead	mg/L	0.0600	0.0616	103	80-120	
Antimony	mg/L	0.0600	0.0577	96	80-120	
Selenium	mg/L	0.0600	0.0630	105	80-120	
Thallium	mg/L	0.0600	0.0617	103	80-120	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T116167-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Vanadium	mg/L	0.0600	0.0581	97	80-120	_

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116167-MSD1

Origina	ŀ	21.	.11	0.32	-02

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Silver	mg/L	0	0.0500	0.0435	0.0420	87	84	75-125	4	20	
Arsenic	mg/L	0.00177	0.0500	0.0600	0.0573	116	111	75-125	5	20	
Cadmium	mg/L	0.0000452	0.0500	0.0492	0.0482	98	96	75-125	2	20	
Cobalt	mg/L	0.000233	0.0500	0.0459	0.0450	91	89	75-125	2	20	
Chromium	mg/L	0	0.0500	0.0493	0.0481	99	96	75-125	3	20	
Copper	mg/L	0.000624	0.0500	0.0419	0.0408	83	80	75-125	3	20	
Manganese	mg/L	0.0537	0.0500	0.105	0.102	102	97	75-125	5	20	
Molybdenum	mg/L	0.00421	0.0500	0.0585	0.0556	109	103	75-125	6	20	
Nickel	mg/L	0.00170	0.0500	0.0455	0.0445	88	86	75-125	2	20	
Selenium	mg/L	0.000753	0.0500	0.0555	0.0537	109	106	75-125	3	20	
Vanadium	mg/L	0.000380	0.0500	0.0516	0.0499	103	99	75-125	4	20	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116167-MSD2

Original:	21J1	032-02
-----------	------	--------

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Barium	mg/L	0.0610	0.250	0.308	0.306	99	98	75-125	1	20	
Lead	mg/L	0.000275	0.250	0.258	0.257	103	103	75-125	0.3	20	
Antimony	mg/L	0.00115	0.250	0.260	0.259	104	103	75-125	0.7	20	
Thallium	mg/L	0	0.250	0.265	0.262	106	105	75-125	1	20	

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116174

Analysis Description: Selenium, Total

QC Batch Method: EPA 3015 Microwave Assisted Digestions

Analysis Method: EPA 6020B

for Liquids

METHOD BLANK: T116174-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Silver	mg/L	<0.0010	0.0010	
Arsenic	mg/L	<0.0010	0.0010	
Barium	mg/L	<0.010	0.010	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T116174-BLK1

Parameter	Units	Blank Result	Reporting Limit	N
Cadmium	mg/L	<0.0010	0.0010	
Cobalt	mg/L	<0.0016	0.0016	
Chromium	mg/L	<0.00090	0.00090	
Copper	mg/L	<0.0040	0.0040	
Manganese	mg/L	<0.025	0.025	
Molybdenum	mg/L	0.00027	0.00040	
Nickel	mg/L	<0.0050	0.0050	
Lead	mg/L	<0.0020	0.0020	
Antimony	mg/L	<0.00030	0.00030	
Selenium	mg/L	<0.0020	0.0020	
Thallium	mg/L	<0.0010	0.0010	
Vanadium	mg/L	<0.00080	0.00080	

LABORATORY CONTROL SAMPLE: T116174-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Silver	mg/L	0.0278	0.0333	120	80-120	
Arsenic	mg/L	0.0556	0.0599	108	80-120	
Barium	mg/L	0.889	0.950	107	80-120	
Cadmium	mg/L	0.0278	0.0297	107	80-120	
Cobalt	mg/L	0.889	0.892	100	80-120	
Chromium	mg/L	0.0278	0.0288	104	80-120	
Copper	mg/L	0.890	0.863	97	80-120	
Manganese	mg/L	0.887	0.878	99	80-120	
Molybdenum	mg/L	0.889	0.942	106	80-120	
Nickel	mg/L	0.889	0.840	95	80-120	
Lead	mg/L	0.0556	0.0533	96	80-120	
Antimony	mg/L	0.0556	0.0608	109	80-120	
Selenium	mg/L	0.0556	0.0560	101	80-120	
Thallium	mg/L	0.0556	0.0542	98	80-120	
Vanadium	mg/L	0.889	0.915	103	80-120	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116174-MSD1 Original: 21J1032-01

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Silver	mg/L	0	0.0278	0.0308	0.0292	111	105	75-125	5	20	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116174-MSD1

Origina	l:	21、	J1	032	-01
---------	----	-----	----	-----	-----

_		Original	Spike	MS	MSD	MS	MSD	% Rec	RPD	Max	Notes
Parameter	Units	Result	Conc.	Result	Result	% Rec	% Rec	Limit	RPD	RPD	notes
Arsenic	mg/L	0.00212	0.0556	0.0711	0.0670	124	117	75-125	6	20	
Barium	mg/L	0.0351	0.889	1.06	0.994	115	108	75-125	7	20	
Cadmium	mg/L	0	0.0278	0.0298	0.0280	107	101	75-125	6	20	
Cobalt	mg/L	0.000863	0.889	1.05	0.997	118	112	75-125	5	20	
Chromium	mg/L	0.00175	0.0278	0.0404	0.0382	139	131	75-125	6	20	206
Copper	mg/L	0	0.890	0.944	0.887	106	100	75-125	6	20	
Manganese	mg/L	0.0718	0.887	1.30	1.22	139	130	75-125	7	20	206
Molybdenum	mg/L	0.00638	0.889	1.03	0.980	115	110	75-125	5	20	
Nickel	mg/L	0.00323	0.889	0.959	0.909	108	102	75-125	5	20	
Lead	mg/L	0	0.0556	0.0499	0.0476	90	86	75-125	5	20	
Antimony	mg/L	0.000470	0.0556	0.0643	0.0600	115	107	75-125	7	20	
Selenium	mg/L	0.00107	0.0556	0.0649	0.0605	115	107	75-125	7	20	
Thallium	mg/L	0	0.0556	0.0519	0.0491	93	88	75-125	6	20	
Vanadium	mg/L	0.000945	0.889	1.35	1.28	152	144	75-125	6	20	206

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: [CALC]
QC Batch Method:

Analysis Description: Hardness (Metals) Analysis Method: SM 2340 B-11

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116092 QC Batch Method: IC Prep W Analysis Description: Fluoride
Analysis Method: EPA 300.0 Rev. 2.1

METHOD BLANK: T116092-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Chloride	mg/L	<0.15	0.15	
Fluoride	ma/L	<0.020	0.020	

LABORATORY CONTROL SAMPLE: T116092-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Chloride	mg/L	5.00	5.00	100	90-110	
Fluoride	mg/L	1.00	0.992	99	90-110	

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

QC Batch: T116163

QC Batch Method: IC Prep W

Analysis Description: Sulfate

Analysis Method: EPA 300.0 Rev. 2.1

METHOD BLANK: T116163-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Chloride	mg/L	<0.15	0.15	
Sulfate as SO4	mg/L	<0.60	0.60	

LABORATORY CONTROL SAMPLE: T116163-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Chloride	mg/L	5.00	5.11	102	90-110	
Sulfate as SO4	mg/L	5.00	4.88	98	90-110	

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116228 Analysis Description: Sulfate

QC Batch Method: IC Prep W Analysis Method: EPA 300.0 Rev. 2.1

METHOD BLANK: T116228-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Sulfate as SO4	mg/L	<0.60	0.60	

LABORATORY CONTROL SAMPLE: T116228-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Sulfate as SO4	mg/L	5.00	4.89	98	90-110	

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116236 Analysis Description: Alkalinity, Bicarbonate

QC Batch Method: SM 2320 B-11 Analysis Method: SM 2320 B-11

LABORATORY CONTROL SAMPLE: T116236-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Bicarbonate Alkalinity as CaCO3 at pH 4.5	mg/L	100	100	100	88-112	
Carbonate Alkalinity as CaCO3 at pH 8.2	mg/L	100	100	100	88-112	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

SAMPLE DUPLICATE: T116236-DUP1	Original: 2
--------------------------------	-------------

Original:	21J1	1032-01
-----------	------	---------

Parameter	Units	Original Result	DUP Result	Max RPD _{RPD} Notes
Bicarbonate Alkalinity as CaCO3	mg/L	93.1	91.8	1 200

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116175

QC Batch Method: SM 2540 C-11

Analysis Description: Total Dissolved Solids Analysis Method: SM 2540 C-11

METHOD BLANK: T116175-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Total Dissolved Solids	ma/l	1.0	10	J

LABORATORY CONTROL SAMPLE: T116175-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Total Dissolved Solids	mg/L	500	543	109	80-120	

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch Method: SM 2540 C-11

QC Batch: T116265

Analysis Description: Total Dissolved Solids

Analysis Method: SM 2540 C-11

METHOD BLANK: T116265-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Total Dissolved Solids	mg/L	9.0	10	J

LABORATORY CONTROL SAMPLE: T116265-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Total Dissolved Solids	mg/L	500	527	105	80-120	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Plea 3)	ise Si	n Released By								13.00		7.36.31 11.36	Trace Date Time No. Collected Collected	Project Name: Impound		*Results provided end of busing	□ 3 Day*	X Standard, 5-10 Days	Tillall Addless.	Empil Address	Office Phone:	City, State, Zip Code:	Mailing Address:	Report To: Paul Cederquist	Company Name: Grand Hav	Report Results To:	A LA		
In executing this	1 Bala	By / Repeived By								Official Near SG-Z		Unit 1/2 Near MW-5	Client Sample ID	Impoundment Sampling	and any, reduces but approved.	*Results provided end of business day requires prior approval		nts:		Cell Filolie.	Coll Bhoso.			șt .	Company Name: Grand Haven Board of Light & Power		ABORATORIES, IXC.		1 1
Chain of Custody, the client	dedoi	By Date								100-2		- MW-5	e ID	Sampled By:		SL = Sludge A = Air		Matrix Key: S = Soil / Solid WI = V	Billing Email Address:	Phone Number.		City, State, Zip Code	Billing Add	Contact Name:	PO#	Bill To:	ZZ41 Black Muskegon,	Trace Ana	우
acknowledges the terms as se	1 8:262	Time									5	л <	Metals Field Filtered (Y / N) Matrix Number of Containers Cool HCI HNO ₃ H ₂ SO ₄ NaOH	By: FB	Cillian S Marci	ir rinking Water	LW = Liquid Waste	WI = Wipes	ail Address:	nber:		Zip Code:	Billing Address (if different):	ame:			2241 Black Creek Road Muskegon, MI 49444-2673	Trace Analytical Laboratories, Inc.	CHAIN-OF-CUSTODY RECORD
in executing this Chain of Custody, the client acknowledges the terms as set forth at www.trace-labs.com/terms-of-accement		Released By									> > >	< < <	NaOH Signature of	b, Li,N Mn,Mg	10,Ni	i Se, la	Ag									9	Fax 888.979.4469 www.trace-labs.com	Phone 231.773.5998	RECORD
terms-of-personnent		Received By									> > > >	< < <	Fluoride,Sul pH LLHg Radiums 22 Bicarb-Alk, (6/228			rides	Analysis Requested		Sampling Time:		MeOH	Soil Volatile	Checked Bv:	Logged By:	Trace Use:	1469 / vs.com	3.5998	
		Data								\$.39	pH= 1.11	1	Remarks					ested		Time:		Low Level	as Preserved (circle if applicable	7 7 1	5	se:	21,11032	Trace ID No.	Page 1 of
		; -	+	+	+	+	+	+	+	+	=	-	ossible Healti	n Haza	rds?			$\ \ $		*	2	- DE	٠						

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

21J10	32
Grand Haven	Board of Light
Project Manager:	

Sample Log In Checklist

Date: 10-27-2	Ę	ature			4°C)		
Time: 9: 20	Observation	Temperat	ပ္	1°C)	:-0.4		
Logged by: DH	Obse	od Ter	+0.1°C)	CF: 50	743 (CI	Blank	Sample
Package Description:	la la	T T	Ę.	9	2	p Bl	t S
Cooler	Original	Corrected	IR-9	IR-10	20B1	Temp	Client
Package Temp °C	-1.7	-1.6		/			
Representative Sample Temp °C	1.8	1.9		1			1

Sample Receipt		·
Yes No Received on ice or other coolant	No Custody seals intact (if applicable)	Other
Sample Condition		
Yes No N/A. All sample containers arrived unbroken a Sufficient sample to run requested analy Correct chemical preservative added to Samples preserved at Trace	/ses	
Chemical preservation verified, check EN	MD pH test strip used (if applicable) pH 11.0-13.0 (Lot: HC022540)	Other
Chain of Custody (COC)		
Yes No All bottle labels agree with COC COC filled out properly COC signed by client	1	
Notes:		
		*
		W 2
Form 70-A.40 Effective 10/2/21	t in	TRACE Analytical Laboratories, In

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

Stabilization Criteria:
Temperature: 3%
Spec. Conductivity: 3%
Dissolved Oxygen: 10%
ORP: +/- 10 mV
Turbidity: 10% or <1
pH: +/- 0.1

Pump Used: Peristaltic

오

ニゲ

Notes:

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ORP (mV) Oxygen Depth to Specific Water Turbidity(NTU) Conductivity (Celsius) Reading Time Client: GHBLP Dissolved Temperature Impoundment ID: Unit by MWS Depth to Point Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form Purge Start Time: 16:55 (= 11.00 0 0 1.00 0 ſ 0 Date: 10-26-21 00 1 Purge Rate: Bowl Sample Tubing Depth: 2017 Field Personnel:

Spec. Conductivity: 3%
Dissolved Oxygen: 10%
ORP: +/- 10 mV
Turbidity: 10% or <1
pH: +/- 0.1

Pump Used: Peristaltic

모

200

8.39

8.39

Stabilization Criteria:

Notes:

Temperature: 3%

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Water Oxygen Specific Turbidity(NTU) ORP (mV) (Celsius) Depth to Dissolved Conductivity Reading Time Client: GHBLP Temperature Impoundment ID: Wir 1/2 by SG2 Purge Start Time: 14:55 Ś 8 63 . | | | 1 . W 2 160 163 W Ń 1 120 00 D 9.87 S į Depth to Point: 8 Date: 10-26-21 5 '.' G Purge Rate: 300ml/min Sample Tubing Depth: 20 台ナ Field Personnel:

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

November 09, 2021

Mr. Paul Cederquist Grand Haven Board of Light and Power-Monthly MWs 1700 Eaton Drive Grand Haven, MI 49417

RE: Trace Project

21J1034

Client Project

MW Sampling

Dear Mr. Cederquist:

Enclosed are your analytical results. The results of this report relate only to the samples listed in the body of this report.

All reports were examined through Trace's validation process to ensure that requirements for quality and completeness were satisfied. All reported analytical results were obtained in accordance with the methods referenced on the reports. Every practical effort was made to meet the reporting limit specifications for this work, however, some results may have raised reporting limits to correct for percent solids.

For clients that require NELAP Accreditation, Trace certifies that these test results meet all requirements of the NELAP Standard, except for those analytes with a "N" notation. These analytes have not been evaluated by NELAP at Trace's discretion and will not be reported unless requested by client.

If you have questions concerning this report, please contact me at 231.773.5998 or by email at jmink@trace-labs.com.

Sincerely,

Jon Mink Senior Project Manager Enclosures

NJDEP Accreditation No. MI008

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

SAMPLE SUMMARY

Trace Project ID: 21J1034 Client Project ID: MW Sampling

Trace ID	Sample ID	Matrix	Collected By	Date Collected	Date Received
21J1034-01	MW-1R	Ground Water	TRACE-EB/TB	10/26/21 11:45	10/27/21 09:16
21J1034-02	MW-2	Ground Water	TRACE-EB/TB	10/26/21 13:55	10/27/21 09:16
21J1034-03	MW-3	Ground Water	TRACE-EB/TB	10/26/21 12:35	10/27/21 09:16
21J1034-04	MW-4	Ground Water	TRACE-EB/TB	10/26/21 12:00	10/27/21 09:16
21J1034-05	MW-5	Ground Water	TRACE-EB/TB	10/26/21 10:35	10/27/21 09:16
21J1034-06	MW-6	Ground Water	TRACE-EB/TB	10/26/21 11:00	10/27/21 09:16
21J1034-07	MW-7	Ground Water	TRACE-EB/TB	10/26/21 10:20	10/27/21 09:16
21J1034-08	MW-8	Ground Water	TRACE-EB/TB	10/26/21 15:35	10/27/21 09:16
21J1034-09	MW-9	Ground Water	TRACE-EB/TB	10/26/21 14:30	10/27/21 09:16
21J1034-10	MW-10	Ground Water	TRACE-EB/TB	10/26/21 15:05	10/27/21 09:16

AN EXPLANATION OF TERMS AND SYMBOLS WHICH MAY OCCUR IN THIS REPORT

DEFINITIONS

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

MS Matrix Spike

MSD Matrix Spike Duplicate
RPD Relative Percent Difference

DUP Matrix Duplicate

RDL Reporting Detection Limit
MCL Maximum Contamination Limit
TIC Tentatively Identified Compound

<, ND or U Indicates the compound was analyzed for but not detected

Indicates a result that exceeds its associated MCL or Surrogate control limits
 Indicates that the laboratory is not accredited by NELAP for this compound

NA Indicates that the compound is not available.

NOTE: Samples for volatiles that have been extracted with a water miscible solvent were corrected for the

total volume of the solvent/water mixture.

Solid matrices Method Blanks are at 100% solids as such results are the same wet or dry.

DATA QUALIFIERS

race ID: 21J1034-01 Analysis: EPA 6020B	
Antimony	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Cadmium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Lead	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Silver	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Thallium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
race ID: 21J1034-02 Analysis: EPA 6020B	
Antimony	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Lead	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Thallium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.

Trace ID: 21J1034-03 *Analysis: EPA 6020B*

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Antimony	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Lead	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Thallium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Trace ID: 21J1034-04	
Analysis: EPA 6020B	
Antimony	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Lead	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Thallium	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Trace ID: 21J1034-10	
Analysis: EPA 6020B	
Antimony	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Lead	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Thallium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Trace ID: T116175-DUP2	
Analysis: SM 2540 C-11	
Total Dissolved Solids	Note 623 : The relative percent difference between the sample and sample duplicate is out of control. The sample result should be considered estimated.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-01 Matrix: Ground Water Date Collected: 10/26/21 11:45 Sample ID: MW-1R Date Received: 10/27/21 09:16 Field pH: 7.80 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury 1.9 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116174 0.0020 Beryllium <0.0020 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 140 mg/L 0.50 10 10/28/21 mrh 11/02/21 ckd Calcium 220 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd 0.20 10/28/21 mrh 11/02/21 Iron 1.7 mg/L 1 ckd 11/02/21 Lithium 2.8 mg/L 0.010 1 10/28/21 mrh ckd Ν Magnesium 120 mg/L 2.0 10 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 92 mg/L 1 1.0 mrh ckd Sodium 480 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 0.00044 mg/L 0.00030 1 10/28/21 11/04/21 Antimony mrh acs Arsenic 0.0046 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs 0.20 mg/L 0.010 10/28/21 11/04/21 Barium 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Chromium 0.0022 mg/L 0.00090 1 10/28/21 mrh 11/04/21 acs Cobalt 0.0022 mg/L 0.0016 1 10/28/21 mrh 11/04/21 acs <0.0040 mg/L 0.0040 1 10/28/21 11/04/21 Copper mrh acs Lead 0.0024 mg/L 0.0020 1 10/28/21 mrh 11/04/21 acs 10/28/21 11/04/21 0.40 mg/L 0.025 1 mrh Manganese acs Molybdenum 0.0016 mg/L 0.00040 1 10/28/21 11/04/21 N mrh acs 11/04/21 Nickel 0.0039 mg/L 0.0050 1 10/28/21 mrh acs J 0.00097 mg/L 10/28/21 11/04/21 Selenium 0.0020 mrh 1 acs <0.0010 mg/L 0.0010 11/04/21 Silver 1 10/28/21 mrh acs Thallium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

10/28/21

11/04/21

acs

0.0017 mg/L

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID:	21J1034
Client Project ID:	MW Sampling

Trace ID: 21J1034-01	Matrix: Ground Water	Date	Collected: 10/26/	/21 11:45					
Sample ID: MW-1R		Date	Received: 10/27/	/21 09:16	Fie	ld pH: 7.80			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: SM 2340 B-11									
Batch: [CALC]									
Hardness as CaCO3	1000 mg/L	8.2	10	10/28/21		11/02/21	ckd	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T116098									
Beryllium	<0.0010 mg/L	0.0010	1	10/27/21	ckd	10/29/21	ckd		
Boron	130 mg/L	2.5	50	10/27/21	ckd	10/29/21	ckd		
Calcium	250 mg/L	5.0	10	10/27/21	ckd	10/29/21	ckd		
Iron	1.5 mg/L	0.10	1	10/27/21	ckd	10/29/21	ckd		
Lithium	2.6 mg/L	0.010	1	10/27/21	ckd	10/29/21	ckd	N	
Magnesium	120 mg/L	2.0	10	10/27/21	ckd	10/29/21	ckd		
Potassium	85 mg/L	1.0	1	10/27/21	ckd	10/29/21	ckd		
Sodium	470 mg/L	5.0	10	10/27/21	ckd	10/29/21	ckd	N	
Zinc	0.0013 mg/L	0.020	1	10/27/21	ckd	10/29/21	ckd	J	
Analysis Method: EPA 6020B Batch: T116167									
Antimony	0.00050 mg/L	0.0010	5	11/08/21	ckd	11/08/21	ckd	402.5, J	
Arsenic	0.0040 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Barium	0.21 mg/L	0.0030	5	11/08/21	ckd	11/08/21	ckd		
Cadmium	<0.0010 mg/L	0.0010	5	11/08/21	ckd	11/08/21	ckd	402.5	
Chromium	0.00099 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		
Cobalt	0.00073 mg/L	0.0016	1	11/08/21	ckd	11/08/21	ckd	J	
Copper	<0.00080 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		
Lead	<0.0020 mg/L	0.0020	5	11/08/21	ckd	11/08/21	ckd	402.5	
Manganese	0.29 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Molybdenum	0.0011 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	N	
Nickel	0.0019 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Selenium	0.00066 mg/L	0.00087	1	11/08/21	ckd	11/08/21	ckd	J	
Silver	<0.00020 mg/L	0.00020	5	11/08/21	ckd	11/08/21	ckd	402.5	
Thallium	<0.00087 mg/L	0.00087	5	11/08/21	ckd	11/08/21	ckd	402.5	
Vanadium	0.00092 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Date Collected: 10/26/21 11:45

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-01 Matrix: Ground Water

Sample ID: MW-1R Date Received: 10/27/21 09:16 Field pH: 7.80

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

Fluoride 13 mg/L 100 10/27/21 10/27/21 2.0 ans ans Chloride 230 mg/L 15 100 10/27/21 10/27/21 ans Sulfate as SO4 530 mg/L 60 100 10/27/21 10/27/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116236

Bicarbonate Alkalinity as CaCO3 at pH 4.5 1200 mg/L 10 1 10/29/21 mr 10/29/21 Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <10 mg/L 10 10/29/21 10/29/21 Ν mr mr

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 3600 mg/L 20 2 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-02 Matrix: Ground Water Date Collected: 10/26/21 13:55 Sample ID: MW-2 Date Received: 10/27/21 09:16 Field pH: 6.48 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury 2.8 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116174 0.0020 Beryllium <0.0020 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 100 mg/L 0.50 10 10/28/21 mrh 11/02/21 ckd Calcium 190 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd 0.20 10/28/21 mrh 11/02/21 Iron 22 mg/L 1 ckd 11/02/21 Lithium 1.2 mg/L 0.010 1 10/28/21 mrh ckd Ν Magnesium 62 mg/L 0.20 1 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 50 mg/L 1.0 1 mrh ckd Sodium 300 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony <0.00030 mg/L 0.00030 1 10/28/21 11/04/21 mrh acs Arsenic 0.012 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs 0.50 mg/L 0.010 10/28/21 11/04/21 Barium 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Chromium 0.040 mg/L 0.00090 1 10/28/21 mrh 11/04/21 acs Cobalt 0.0055 mg/L 0.0016 1 10/28/21 mrh 11/04/21 acs 0.0022 mg/L 1 10/28/21 11/04/21 Copper 0.0040 mrh acs J Lead 0.0018 mg/L 0.0020 1 10/28/21 mrh 11/04/21 J acs 10/28/21 11/04/21 0.80 mg/L 0.025 1 mrh Manganese acs Molybdenum 0.0045 mg/L 0.00040 1 10/28/21 11/04/21 mrh acs Ν 11/04/21 Nickel 0.017 mg/L 0.0050 1 10/28/21 mrh acs 10/28/21 11/04/21 Selenium 0.0017 mg/L 0.0020 mrh 1 acs <0.0010 mg/L 11/04/21 Silver 0.0010 1 10/28/21 mrh acs Thallium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

0.0039 mg/L

10/28/21

11/04/21

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Vanadium

Trace ID: 21J1034-02 Matrix: Ground Water Date Collected: 10/26/21 13:55 Sample ID: MW-2 Date Received: 10/27/21 09:16 Field pH: 6.48 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 740 mg/L 0.82 10 10/28/21 11/02/21 Ν ckd METALS, DISSOLVED Analysis Method: EPA 6010D Batch: T116098 Beryllium <0.0010 mg/L 0.0010 10/27/21 ckd 10/29/21 ckd 98 mg/L 10 10/29/21 Boron 0.50 10/27/21 ckd ckd Calcium 200 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd Iron 22 mg/L 1.0 10 10/27/21 ckd 10/29/21 ckd Lithium 0.010 10/27/21 10/29/21 1.1 mg/L 1 ckd ckd Ν 10/29/21 Magnesium 65 mg/L 2.0 10 10/27/21 ckd ckd Potassium 48 mg/L 10 10 10/27/21 ckd 10/29/21 ckd Sodium 310 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd N Zinc 0.0030 mg/L 0.020 1 10/27/21 10/29/21 J ckd ckd Analysis Method: EPA 6020B Batch: T116167 <0.0010 mg/L 0.0010 5 11/08/21 11/08/21 402.5 Antimony ckd ckd Arsenic 0.012 mg/L 0.0010 1 11/08/21 ckd 11/08/21 ckd **Barium** 0.48 mg/L 0.0030 5 11/08/21 ckd 11/08/21 ckd Cadmium 0.000054 mg/L 0.0010 1 11/08/21 ckd 11/08/21 ckd J 0.028 mg/L 0.00080 1 11/08/21 11/08/21 Chromium ckd ckd 0.0047 mg/L Cobalt 0.0016 1 11/08/21 ckd 11/08/21 ckd 0.00072 mg/L 0.00080 11/08/21 ckd 11/08/21 J Copper ckd 0.0020 5 11/08/21 11/08/21 402.5, J Lead 0.0012 mg/L ckd ckd 0.80 mg/L 0.00040 11/08/21 11/08/21 Manganese 1 ckd ckd Molybdenum 0.0038 mg/L 0.00040 11/08/21 11/08/21 Ν ckd ckd 0.015 mg/L 0.00040 1 11/08/21 11/08/21 Nickel ckd ckd Selenium 0.0013 mg/L 0.00087 1 11/08/21 ckd 11/08/21 ckd Silver 0.000027 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd J <0.00087 mg/L 5 402.5 Thallium 0.00087 11/08/21 ckd 11/08/21 ckd

CERTIFICATE OF ANALYSIS

0.0029 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

0.00080

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034 Client Project ID: MW Sampling

Trace ID: 21J1034-02

Matrix: Ground Water

Date Collected: 10/26/21 13:55

Date Received: 10/27/21 09:16

Field pH: 6.48

PARAMETERS RESULTS UNITS DILUTION PREPARED BY ANALYZED ΒY NOTES MCL RDL

METALS, DISSOLVED

Sample ID: MW-2

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

Fluoride 9.4 mg/L 0.50 25 10/27/21 ans 10/27/21 ans Chloride 140 mg/L 3.8 25 10/27/21 10/27/21 ans Sulfate as SO4 3.0 10/27/21 10/27/21 <3.0 mg/L 5 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 2100 mg/L 50 10 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <50 mg/L 50 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 2000 mg/L 40 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-03 Matrix: Ground Water Date Collected: 10/26/21 12:35 Sample ID: MW-3 Date Received: 10/27/21 09:16 Field pH: 6.91 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury 0.79 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116174 0.0020 Beryllium <0.0020 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 4.4 mg/L 0.050 1 10/28/21 mrh 11/02/21 ckd Calcium 490 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd 0.20 10/28/21 mrh 11/02/21 Iron 4.5 mg/L 1 ckd 11/02/21 Lithium 0.053 mg/L 0.010 1 10/28/21 mrh ckd Ν Magnesium 200 mg/L 0.20 1 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 21 mg/L 1.0 1 mrh ckd Sodium 140 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony 0.00030 <0.00030 mg/L 1 10/28/21 11/04/21 mrh acs Arsenic 0.0012 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs 0.47 mg/L 0.010 10/28/21 11/04/21 Barium 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Chromium 0.0041 mg/L 0.00090 1 10/28/21 mrh 11/04/21 acs Cobalt 0.0014 mg/L 0.0016 1 10/28/21 mrh 11/04/21 acs J <0.0040 mg/L 0.0040 1 10/28/21 11/04/21 Copper mrh acs <0.0020 mg/L 11/04/21 Lead 0.0020 1 10/28/21 mrh acs 10/28/21 11/04/21 Manganese 2.1 mg/L 0.25 10 mrh acs Molybdenum 0.00012 mg/L 0.00040 1 10/28/21 11/04/21 J, N mrh acs 0.0027 mg/L Nickel 0.0050 1 10/28/21 mrh 11/04/21 acs J Selenium <0.0020 mg/L 0.0020 10/28/21 11/04/21 mrh acs <0.0010 mg/L 0.0010 11/04/21 Silver 1 10/28/21 mrh acs Thallium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

0.0014 mg/L

10/28/21

11/04/21

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Vanadium

Trace ID: 21J1034-03 Matrix: Ground Water Date Collected: 10/26/21 12:35 Sample ID: MW-3 Date Received: 10/27/21 09:16 Field pH: 6.91 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 2100 mg/L 0.82 10 10/28/21 11/02/21 Ν ckd **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T116098 Beryllium <0.0010 mg/L 0.0010 10/27/21 ckd 10/29/21 ckd 4.3 mg/L 0.050 10/29/21 Boron 1 10/27/21 ckd ckd Calcium 500 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd Iron 4.4 mg/L 0.10 1 10/27/21 ckd 10/29/21 ckd Lithium 0.053 mg/L 0.010 10/27/21 ckd 10/29/21 1 ckd Ν 220 mg/L 10/27/21 10/29/21 Magnesium 2.0 10 ckd ckd Potassium 21 mg/L 1.0 1 10/27/21 ckd 10/29/21 ckd Sodium 140 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd N Zinc 0.00074 mg/L 0.020 1 10/27/21 10/29/21 J ckd ckd Analysis Method: EPA 6020B Batch: T116167 <0.0010 mg/L 0.0010 5 11/08/21 11/08/21 402.5 Antimony ckd ckd 1 Arsenic 0.0011 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd **Barium** 0.45 mg/L 0.0030 5 11/08/21 ckd 11/08/21 ckd Cadmium <0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd 0.0018 mg/L 0.00080 1 11/08/21 Chromium 11/08/21 ckd ckd Cobalt 0.00063 mg/L 0.0016 1 11/08/21 ckd 11/08/21 ckd J 0.00046 mg/L 0.00080 11/08/21 ckd 11/08/21 J Copper ckd <0.0020 mg/L 0.0020 5 11/08/21 ckd 11/08/21 402.5 Lead ckd 0.00040 11/08/21 11/08/21 Manganese 1.6 mg/L 1 ckd ckd Molybdenum 0.00010 mg/L 0.00040 11/08/21 11/08/21 1 ckd ckd J, N 0.0013 mg/L 0.00040 1 11/08/21 ckd 11/08/21 Nickel ckd Selenium 0.00048 mg/L 0.00087 1 11/08/21 ckd 11/08/21 ckd J Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00087 mg/L 5 Thallium 0.00087 11/08/21 ckd 11/08/21 ckd 402.5

CERTIFICATE OF ANALYSIS

0.00080

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

J.

Page 12 of 54

ckd

0.00068 mg/L

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-03 Matrix: Ground Water

atrix: Ground Water Date Collected: 10/26/21 12:35

Sample ID: MW-3 Date Received: 10/27/21 09:16 Field pH: 6.91

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

Fluoride 0.89 mg/L 0.10 10/27/21 10/27/21 5 ans ans Chloride 330 mg/L 15 100 10/27/21 10/27/21 ans Sulfate as SO4 23 mg/L 3.0 5 10/27/21 10/27/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 2000 mg/L 50 10 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <50 mg/L 50 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 2500 mg/L 40 4 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-04 Matrix: Ground Water Date Collected: 10/26/21 12:00 Sample ID: MW-4 Date Received: 10/27/21 09:16 Field pH: 6.74 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury <0.50 ng/L 0.50 11/01/21 ckd 11/02/21 ckd Ν Analysis Method: EPA 6010D Batch: T116174 Beryllium <0.0020 mg/L 0.0020 1 10/28/21 mrh 11/02/21 ckd Boron 3.7 mg/L 0.050 1 10/28/21 mrh 11/02/21 ckd Calcium 370 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd 0.20 10/28/21 mrh 11/02/21 Iron 5.2 mg/L 1 ckd 11/02/21 Lithium 0.061 mg/L 0.010 1 10/28/21 mrh ckd Ν Magnesium 89 mg/L 0.20 1 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 22 mg/L 1.0 mrh ckd 1 1 Sodium 81 mg/L 0.50 10/28/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony 0.00030 <0.00030 mg/L 1 10/28/21 11/04/21 mrh acs Arsenic 0.0019 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs 0.12 mg/L 0.010 10/28/21 11/04/21 Barium 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Chromium 0.0033 mg/L 0.00090 1 10/28/21 mrh 11/04/21 acs Cobalt 0.00079 mg/L 0.0016 1 10/28/21 mrh 11/04/21 acs J <0.0040 mg/L 0.0040 1 10/28/21 11/04/21 Copper mrh acs <0.0020 mg/L 11/04/21 Lead 0.0020 1 10/28/21 mrh acs 10/28/21 11/04/21 Manganese 1.1 mg/L 0.025 1 mrh acs Molybdenum 0.0015 mg/L 0.00040 1 10/28/21 11/04/21 N mrh acs Nickel 0.011 mg/L 0.0050 1 10/28/21 mrh 11/04/21 acs Selenium <0.0020 mg/L 0.0020 10/28/21 mrh 11/04/21 acs <0.0010 mg/L 0.0010 11/04/21 Silver 1 10/28/21 mrh acs Thallium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

0.0010 mg/L

10/28/21

11/04/21

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Vanadium

Trace ID: 21J1034-04 Matrix: Ground Water Date Collected: 10/26/21 12:00 Sample ID: MW-4 Date Received: 10/27/21 09:16 Field pH: 6.74 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 1300 mg/L 0.82 10 10/28/21 11/02/21 Ν ckd **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T116098 Beryllium <0.0010 mg/L 0.0010 10/27/21 ckd 10/29/21 ckd 4.1 mg/L 0.050 10/29/21 Boron 1 10/27/21 ckd ckd Calcium 380 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd Iron 5.4 mg/L 0.10 1 10/27/21 ckd 10/29/21 ckd Lithium 0.071 mg/L 0.010 10/27/21 ckd 10/29/21 1 ckd N 90 mg/L 10/27/21 10/29/21 Magnesium 0.20 1 ckd ckd Potassium 21 mg/L 1.0 1 10/27/21 ckd 10/29/21 ckd Sodium 83 mg/L 0.50 1 10/27/21 ckd 10/29/21 ckd N 10/27/21 10/29/21 Zinc <0.020 mg/L 0.020 1 ckd ckd Analysis Method: EPA 6020B Batch: T116167 <0.0010 mg/L 0.0010 5 11/08/21 11/08/21 402.5 Antimony ckd ckd 1 Arsenic 0.0012 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd **Barium** 0.13 mg/L 0.0030 5 11/08/21 ckd 11/08/21 ckd Cadmium <0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd 0.0021 mg/L 0.00080 1 11/08/21 Chromium 11/08/21 ckd ckd 0.00048 mg/L Cobalt 0.0016 1 11/08/21 ckd 11/08/21 ckd J <0.00080 mg/L 0.00080 11/08/21 ckd 11/08/21 Copper ckd <0.0020 mg/L 0.0020 5 11/08/21 ckd 11/08/21 ckd 402.5 Lead 0.00040 11/08/21 11/08/21 Manganese 0.83 mg/L 1 ckd ckd Molybdenum 0.00089 mg/L 0.00040 11/08/21 11/08/21 1 ckd ckd Ν 0.0080 mg/L 0.00040 1 11/08/21 ckd 11/08/21 Nickel ckd <0.00087 mg/L 11/08/21 11/08/21 Selenium 0.00087 1 ckd ckd Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00087 mg/L 5 Thallium 0.00087 11/08/21 ckd 11/08/21 ckd 402.5

CERTIFICATE OF ANALYSIS

0.00080

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

J

Page 15 of 54

ckd

0.00063 mg/L

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

MCL

ANALYTICAL RESULTS

Date Collected: 10/26/21 12:00

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-04 Matrix: Ground Water

Sample ID: MW-4 Date Received: 10/27/21 09:16 Field pH: 6.74

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

Fluoride 1.3 mg/L 0.10 10/27/21 5 ans 10/27/21 ans Chloride 170 mg/L 7.5 50 10/27/21 10/27/21 ans Sulfate as SO4 450 mg/L 30 50 10/27/21 10/27/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 870 mg/L 50 10 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <50 mg/L 50 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 1900 mg/L 40 4 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-05 Matrix: Ground Water Date Collected: 10/26/21 10:35 Sample ID: MW-5 Date Received: 10/27/21 09:16 Field pH: 7.43 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury <0.50 ng/L 0.50 11/01/21 ckd 11/02/21 ckd Ν Analysis Method: EPA 6010D Batch: T116174 0.0014 Beryllium <0.0014 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 3.0 mg/L 0.035 1 10/28/21 mrh 11/02/21 ckd Calcium 340 mg/L 3.5 10 10/28/21 mrh 11/02/21 ckd 10/28/21 mrh 11/02/21 Iron 2.5 mg/L 0.14 1 ckd 11/02/21 Lithium 0.089 mg/L 0.0070 1 10/28/21 mrh ckd Ν Magnesium 37 mg/L 0.14 1 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 9.3 mg/L 0.70 mrh ckd 1 1 Sodium 29 mg/L 0.35 10/28/21 mrh 11/02/21 ckd N <0.014 mg/L 0.014 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony <0.00021 mg/L 0.00021 1 10/28/21 11/04/21 mrh acs Arsenic 0.040 mg/L 0.00070 1 10/28/21 mrh 11/04/21 acs 0.087 mg/L 0.0070 10/28/21 11/04/21 Barium 1 mrh acs <0.00070 mg/L Cadmium 0.00070 1 10/28/21 mrh 11/04/21 acs Chromium 0.0017 mg/L 0.00063 1 10/28/21 mrh 11/04/21 acs Cobalt 0.00069 mg/L 0.0011 1 10/28/21 mrh 11/04/21 acs J <0.0028 mg/L 0.0028 1 10/28/21 11/04/21 Copper mrh acs <0.0014 mg/L 11/04/21 Lead 0.0014 1 10/28/21 mrh acs 11/04/21 Manganese 0.90 mg/L 0.018 1 10/28/21 mrh acs Molybdenum 0.0023 mg/L 0.00028 1 10/28/21 11/04/21 Ν mrh acs Nickel 0.0015 mg/L 0.0035 1 10/28/21 mrh 11/04/21 acs J Selenium <0.0014 mg/L 0.0014 10/28/21 11/04/21 mrh acs <0.00070 mg/L 11/04/21 Silver 0.00070 1 10/28/21 mrh acs Thallium <0.00070 mg/L 0.00070 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00056

0.00089 mg/L

10/28/21

11/04/21

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID:	21J1034
Client Project ID:	MW Sampling

Trace ID: 21J1034-05 Sample ID: MW-5										
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL	
METALS, TOTAL										
Analysis Method: SM 2340 B-11 Batch: [CALC]										
Hardness as CaCO3	1000 mg/L	0.58	10	10/28/21		11/02/21	ckd	N		
METALS, DISSOLVED										
Analysis Method: EPA 6010D Batch: T116098										
Beryllium	<0.0010 mg/L	0.0010	1	10/27/21	ckd	10/29/21	ckd			
Boron	3.1 mg/L	0.050	1	10/27/21	ckd	10/29/21	ckd			
Calcium	360 mg/L	5.0	10	10/27/21	ckd	10/29/21	ckd			
Iron	2.0 mg/L	0.10	1	10/27/21	ckd	10/29/21	ckd			
Lithium	0.092 mg/L	0.010	1	10/27/21	ckd	10/29/21	ckd	N		
Magnesium	39 mg/L	0.20	1	10/27/21	ckd	10/29/21	ckd			
Potassium	9.4 mg/L	1.0	1	10/27/21	ckd	10/29/21	ckd			
Sodium	30 mg/L	0.50	1	10/27/21	ckd	10/29/21	ckd	N		
Zinc	<0.020 mg/L	0.020	1	10/27/21	ckd	10/29/21	ckd			
Analysis Method: EPA 6020B Batch: T116167										
Antimony	0.00010 mg/L	0.00020	1	11/08/21	ckd	11/08/21	ckd	J		
Arsenic	0.043 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd			
Barium	0.088 mg/L	0.00060	1	11/08/21	ckd	11/08/21	ckd			
Cadmium	<0.0010 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd			
Chromium	<0.00080 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd			
Cobalt	0.00021 mg/L	0.0016	1	11/08/21	ckd	11/08/21	ckd	J		
Copper	<0.00080 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd			
Lead	<0.00040 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd			
Manganese	0.69 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd			
Molybdenum	0.0016 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	N		
Nickel	0.00017 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	J		
Selenium	<0.00087 mg/L	0.00087	1	11/08/21	ckd	11/08/21	ckd			
Silver	<0.000040 mg/L	0.000040	1	11/08/21	ckd	11/08/21	ckd			
Thallium	<0.00017 mg/L	0.00017	1	11/08/21	ckd	11/08/21	ckd			
Vanadium	0.00066 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd	J		

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Date Collected: 10/26/21 10:35

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-05 Matrix: Ground Water

Sample ID: MW-5 Date Received: 10/27/21 09:16 Field pH: 7.43

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

Fluoride 3.3 mg/L 10/27/21 0.10 5 ans 10/27/21 ans Chloride 22 mg/L 0.75 5 10/27/21 10/27/21 ans Sulfate as SO4 320 mg/L 15 25 10/27/21 10/27/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 750 mg/L 50 10 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <50 mg/L 50 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 1300 mg/L 40 4 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-06 Matrix: Ground Water Date Collected: 10/26/21 11:00 Sample ID: MW-6 Date Received: 10/27/21 09:16 Field pH: 7.60 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury 0.94 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116174 0.0014 Beryllium <0.0014 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 13 mg/L 0.35 10 10/28/21 mrh 11/02/21 ckd Calcium 200 mg/L 3.5 10 10/28/21 mrh 11/02/21 ckd 10/28/21 mrh 11/02/21 Iron 13 mg/L 0.14 1 ckd 11/02/21 Lithium 0.23 mg/L 0.0070 1 10/28/21 mrh ckd Ν Magnesium 100 mg/L 1.4 10 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 34 mg/L 0.70 1 mrh ckd Sodium 110 mg/L 3.5 10 10/28/21 mrh 11/02/21 ckd N <0.014 mg/L 0.014 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony 0.00021 <0.00021 mg/L 1 10/28/21 11/04/21 mrh acs Arsenic 0.0017 mg/L 0.00070 1 10/28/21 mrh 11/04/21 acs 0.035 10/28/21 11/04/21 Barium 1.6 mg/L 5 mrh acs Cadmium 0.00053 mg/L 0.00070 1 10/28/21 11/04/21 J mrh acs Chromium 0.0029 mg/L 0.00063 1 10/28/21 mrh 11/04/21 acs Cobalt 0.00082 mg/L 0.0011 1 10/28/21 mrh 11/04/21 acs <0.0028 mg/L 0.0028 1 10/28/21 11/04/21 Copper mrh acs Lead 0.0014 mg/L 0.0014 1 10/28/21 mrh 11/04/21 acs 10/28/21 11/04/21 Manganese 0.41 mg/L 0.018 1 mrh acs 0.00076 mg/L Molybdenum 0.00028 1 10/28/21 11/04/21 Ν mrh acs Nickel 0.0022 mg/L 0.0035 1 10/28/21 mrh 11/04/21 acs J Selenium <0.0014 mg/L 0.0014 10/28/21 11/04/21 mrh acs <0.00070 mg/L Silver 0.00070 1 10/28/21 mrh 11/04/21 acs Thallium 0.00030 mg/L 0.00070 1 10/28/21 mrh 11/04/21 J acs

CERTIFICATE OF ANALYSIS

0.00056

0.00083 mg/L

10/28/21

11/04/21

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID:	21J1034
Client Project ID:	MW Sampling

Trace ID: 21J1034-06	Matrix: Ground Water	round Water Date Collected: 10/26/21 11:00							
Sample ID: MW-6		Date	Date Received: 10/27/21 09:16			Field pH: 7.60			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	МС
METALS, TOTAL									
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	940 mg/L	5.8	10	10/28/21		11/02/21	ckd	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T116098									
Beryllium	<0.0010 mg/L	0.0010	1	10/27/21	ckd	10/29/21	ckd		
Boron	13 mg/L	0.50	10	10/27/21	ckd	10/29/21	ckd		
Calcium	200 mg/L	5.0	10	10/27/21	ckd	10/29/21	ckd		
Iron	6.9 mg/L	0.10	1	10/27/21	ckd	10/29/21	ckd		
Lithium	0.22 mg/L	0.010	1	10/27/21	ckd	10/29/21	ckd	N	
Magnesium	110 mg/L	2.0	10	10/27/21	ckd	10/29/21	ckd		
Potassium	36 mg/L	1.0	1	10/27/21	ckd	10/29/21	ckd		
Sodium	120 mg/L	5.0	10	10/27/21	ckd	10/29/21	ckd	N	
Zinc	0.0027 mg/L	0.020	1	10/27/21	ckd	10/29/21	ckd	J	
Analysis Method: EPA 6020B Batch: T116167									
Antimony	0.00033 mg/L	0.00020	1	11/08/21	ckd	11/08/21	ckd		
Arsenic	0.0017 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Barium	1.5 mg/L	0.00060	1	11/08/21	ckd	11/08/21	ckd		
Cadmium	0.000072 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd	J	
Chromium	0.0011 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		
Cobalt	0.00042 mg/L	0.0016	1	11/08/21	ckd	11/08/21	ckd	J	
Copper	0.00016 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd	J	
Lead	<0.00040 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Manganese	0.29 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Molybdenum	0.00069 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	N	
Nickel	0.0013 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Selenium	<0.00087 mg/L	0.00087	1	11/08/21	ckd	11/08/21	ckd		
Silver	<0.000040 mg/L	0.000040	1	11/08/21	ckd	11/08/21	ckd		
Thallium	<0.00017 mg/L	0.00017	1	11/08/21	ckd	11/08/21	ckd		
Vanadium	0.00029 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd	J	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-06 Matrix: Ground Water

atrix: Ground Water Date Collected: 10/26/21 11:00

Sample ID: MW-6 Date Received: 10/27/21 09:16 Field pH: 7.60

1300 mg/L

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

Batch: T116175

Total Dissolved Solids

Fluoride	1.6 mg/L	0.10	5	10/27/21	ans	10/27/21	ans	
Chloride	200 mg/L	7.5	50	10/27/21	ans	10/27/21	ans	
Sulfate as SO4	1.3 mg/L	3.0	5	10/27/21	ans	10/27/21	ans	J
Analysis Method: SM 2320 B-11 Batch: T116366								
Bicarbonate Alkalinity as CaCO3 at pH 4.5	960 mg/L	50	10	11/03/21	ans	11/04/21	ans	N
Carbonate Alkalinity as CaCO3 at pH 8.2	<50 mg/L	50	10	11/03/21	ans	11/04/21	ans	N
Analysis Method: SM 2540 C-11								

40

10/28/21

gmr

10/28/21

gmr

CERTIFICATE OF ANALYSIS

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-07 Matrix: Ground Water Date Collected: 10/26/21 10:20 Sample ID: MW-7 Date Received: 10/27/21 09:16 Field pH: 7.01 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury <0.50 ng/L 0.50 11/01/21 ckd 11/02/21 ckd Ν Analysis Method: EPA 6010D Batch: T116174 0.0020 Beryllium <0.0020 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 15 mg/L 0.50 10 10/28/21 mrh 11/02/21 ckd Calcium 130 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd 0.20 10/28/21 11/02/21 Iron 16 mg/L 1 mrh ckd 11/02/21 Lithium <0.010 mg/L 0.010 1 10/28/21 mrh ckd Ν Magnesium 35 mg/L 0.20 1 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 4.5 mg/L 1.0 mrh 1 ckd 1 Sodium 54 mg/L 0.50 10/28/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony 0.00030 <0.00030 mg/L 1 10/28/21 11/04/21 mrh acs Arsenic <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs 0.36 mg/L 0.010 10/28/21 11/04/21 Barium 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Chromium 0.0010 mg/L 0.00090 1 10/28/21 mrh 11/04/21 acs Cobalt 0.00088 mg/L 0.0016 1 10/28/21 mrh 11/04/21 acs J <0.0040 mg/L 0.0040 1 10/28/21 11/04/21 Copper mrh acs <0.0020 mg/L 11/04/21 Lead 0.0020 1 10/28/21 mrh acs 10/28/21 11/04/21 Manganese 2.0 mg/L 0.025 1 mrh acs <0.00040 mg/L 0.00040 10/28/21 11/04/21 Molybdenum 1 mrh Ν acs <0.0050 mg/L Nickel 0.0050 1 10/28/21 mrh 11/04/21 acs Selenium <0.0020 mg/L 0.0020 10/28/21 mrh 11/04/21 acs <0.0010 mg/L 0.0010 Silver 1 10/28/21 mrh 11/04/21 acs Thallium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

0.00067 mg/L

10/28/21

11/04/21

acs

J

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Vanadium

Trace ID: 21J1034-07 Matrix: Ground Water Date Collected: 10/26/21 10:20 Sample ID: MW-7 Date Received: 10/27/21 09:16 Field pH: 7.01 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 470 mg/L 0.82 10 10/28/21 11/02/21 Ν ckd **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T116098 Beryllium <0.0010 mg/L 0.0010 10/27/21 ckd 10/29/21 ckd 1 10/29/21 Boron 16 mg/L 0.25 5 10/27/21 ckd ckd Calcium 130 mg/L 0.50 1 10/27/21 ckd 10/29/21 ckd Iron 17 mg/L 0.10 1 10/27/21 ckd 10/29/21 ckd Lithium 0.011 mg/L 0.010 10/27/21 ckd 10/29/21 1 ckd Ν 10/27/21 10/29/21 Magnesium 36 mg/L 0.20 1 ckd ckd Potassium 4.7 mg/L 1.0 1 10/27/21 ckd 10/29/21 ckd Sodium 56 mg/L 0.50 1 10/27/21 ckd 10/29/21 ckd N 10/27/21 10/29/21 Zinc <0.020 mg/L 0.020 1 ckd ckd Analysis Method: EPA 6020B Batch: T116167 11/08/21 Antimony 0.00016 mg/L 0.00020 1 11/08/21 ckd ckd J Arsenic 0.00033 mg/L 0.0010 1 11/08/21 ckd 11/08/21 ckd J **Barium** 0.35 mg/L 0.00060 1 11/08/21 ckd 11/08/21 ckd Cadmium <0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd <0.00080 mg/L 0.00080 11/08/21 11/08/21 Chromium 1 ckd ckd Cobalt 0.00073 mg/L 0.0016 1 11/08/21 ckd 11/08/21 ckd J <0.00080 mg/L 0.00080 11/08/21 ckd 11/08/21 ckd Copper <0.00040 mg/L 0.00040 1 11/08/21 ckd 11/08/21 Lead ckd 0.00040 11/08/21 11/08/21 Manganese 1.7 mg/L 1 ckd ckd Molybdenum <0.00040 mg/L 0.00040 1 11/08/21 ckd 11/08/21 ckd Ν 0.00013 mg/L 0.00040 1 11/08/21 11/08/21 J. Nickel ckd ckd <0.00087 mg/L 11/08/21 11/08/21 Selenium 0.00087 1 ckd ckd Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00017 mg/L Thallium 0.00017 1 11/08/21 ckd 11/08/21 ckd

CERTIFICATE OF ANALYSIS

0.00080

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

J

Page 24 of 54

0.00058 mg/L

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-07 Matrix: Ground Water Date Collected: 10/26/21 10:20

Sample ID: MW-7 Date Received: 10/27/21 09:16 Field pH: 7.01

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

Fluoride 0.094 mg/L 0.10 10/27/21 5 ans 10/27/21 ans J Chloride 14 mg/L 0.75 5 10/27/21 10/27/21 ans Sulfate as SO4 30 mg/L 3.0 5 10/27/21 10/27/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 630 mg/L 50 10 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <50 mg/L 50 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 630 mg/L 40 4 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-08 Matrix: Ground Water Date Collected: 10/26/21 15:35 Sample ID: MW-8 Date Received: 10/27/21 09:16 Field pH: 6.74 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury <0.50 ng/L 0.50 11/01/21 ckd 11/02/21 ckd Ν Analysis Method: EPA 6010D Batch: T116174 0.0020 Beryllium <0.0020 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 1.4 mg/L 0.050 1 10/28/21 mrh 11/02/21 ckd Calcium 130 mg/L 2.5 5 10/28/21 mrh 11/02/21 ckd 0.20 10/28/21 mrh 11/02/21 Iron 29 mg/L 1 ckd 11/02/21 Lithium 0.043 mg/L 0.010 1 10/28/21 mrh ckd Ν Magnesium 25 mg/L 0.20 1 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 9.4 mg/L 1.0 mrh 1 ckd 1 Sodium 27 mg/L 0.50 10/28/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony 0.00030 <0.00030 mg/L 1 10/28/21 11/04/21 mrh acs Arsenic 0.0067 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs 0.010 10/28/21 11/04/21 Barium 1.0 mg/L 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Chromium 0.0012 mg/L 0.00090 1 10/28/21 mrh 11/04/21 acs Cobalt <0.0016 mg/L 0.0016 10/28/21 mrh 11/04/21 acs <0.0040 mg/L 0.0040 1 10/28/21 11/04/21 Copper mrh acs <0.0020 mg/L 11/04/21 Lead 0.0020 1 10/28/21 mrh acs 11/04/21 Manganese 1.5 mg/L 0.025 1 10/28/21 mrh acs Molybdenum 0.0037 mg/L 0.00040 1 10/28/21 11/04/21 N mrh acs <0.0050 mg/L Nickel 0.0050 1 10/28/21 mrh 11/04/21 acs Selenium <0.0020 mg/L 0.0020 10/28/21 11/04/21 mrh acs Silver <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Thallium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

<0.00080 mg/L

10/28/21

11/04/21

acs

mrh

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Vanadium

Trace ID: 21J1034-08 Matrix: Ground Water Date Collected: 10/26/21 15:35 Sample ID: MW-8 Date Received: 10/27/21 09:16 Field pH: 6.74 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 440 mg/L 0.82 5 10/28/21 11/02/21 Ν ckd **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T116098 Beryllium <0.0010 mg/L 0.0010 10/27/21 ckd 10/29/21 ckd 1.4 mg/L 0.050 10/29/21 Boron 1 10/27/21 ckd ckd Calcium 140 mg/L 0.50 1 10/27/21 ckd 10/29/21 ckd Iron 28 mg/L 0.10 1 10/27/21 ckd 10/29/21 ckd Lithium 0.043 mg/L 0.010 10/27/21 ckd 10/29/21 1 ckd Ν 10/27/21 10/29/21 Magnesium 26 mg/L 0.20 1 ckd ckd Potassium 9.3 mg/L 1.0 1 10/27/21 ckd 10/29/21 ckd Sodium 28 mg/L 0.50 1 10/27/21 ckd 10/29/21 ckd N Zinc 0.0015 mg/L 0.020 1 10/27/21 10/29/21 J ckd ckd Analysis Method: EPA 6020B Batch: T116167 11/08/21 Antimony 0.00033 mg/L 0.00020 1 11/08/21 ckd ckd Arsenic 0.0062 mg/L 0.0010 1 11/08/21 ckd 11/08/21 ckd **Barium** 0.96 mg/L 0.00060 1 11/08/21 ckd 11/08/21 ckd Cadmium <0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd 0.00065 mg/L 0.00080 1 11/08/21 Chromium 11/08/21 ckd ckd J Cobalt 0.00030 mg/L 0.0016 1 11/08/21 ckd 11/08/21 ckd J <0.00080 mg/L 0.00080 11/08/21 ckd 11/08/21 ckd Copper 0.000042 mg/L 0.00040 1 11/08/21 Lead 11/08/21 ckd ckd J 0.00040 11/08/21 11/08/21 Manganese 1.3 mg/L 1 ckd ckd Molybdenum 0.0033 mg/L 0.00040 11/08/21 11/08/21 ckd ckd Ν 0.0010 mg/L 0.00040 1 11/08/21 ckd 11/08/21 Nickel ckd <0.00087 mg/L 11/08/21 11/08/21 Selenium 0.00087 1 ckd ckd Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00017 mg/L Thallium 0.00017 1 11/08/21 ckd 11/08/21 ckd

CERTIFICATE OF ANALYSIS

0.00080

0.00038 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

J

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Date Collected: 10/26/21 15:35

Trace Project ID: 21J1034 Client Project ID: MW Sampling

Trace ID: 21J1034-08 Matrix: Ground Water

630 mg/L

Sample ID: MW-8 Date Received: 10/27/21 09:16 Field pH: 6.74

PARAMETERS RESULTS UNITS DILUTION PREPARED BY ANALYZED BY NOTES MCL RDL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

Batch: T116175 **Total Dissolved Solids**

Fluoride	0.42 mg/L	0.10	5	10/27/21	ans	10/27/21	ans	
Chloride	30 mg/L	0.75	5	10/27/21	ans	10/27/21	ans	
Sulfate as SO4	37 mg/L	3.0	5	10/27/21	ans	10/27/21	ans	
Analysis Method: SM 2320 B-11 Batch: T116366								
Bicarbonate Alkalinity as CaCO3 at pH 4.5	450 mg/L	50	10	11/03/21	ans	11/04/21	ans	N
Carbonate Alkalinity as CaCO3 at pH 8.2	<50 mg/L	50	10	11/03/21	ans	11/04/21	ans	N
Analysis Method: SM 2540 C-11								

40

10/28/21

gmr

10/28/21

gmr

CERTIFICATE OF ANALYSIS

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-09 Matrix: Ground Water Date Collected: 10/26/21 14:30 Sample ID: MW-9 Date Received: 10/27/21 09:16 Field pH: 7.31 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury 0.62 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116174 0.0020 Beryllium <0.0020 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 6.8 mg/L 0.050 1 10/28/21 mrh 11/02/21 ckd Calcium 220 mg/L 2.5 5 10/28/21 mrh 11/02/21 ckd 0.20 10/28/21 mrh 11/02/21 Iron 19 mg/L 1 ckd 11/02/21 Lithium 0.26 mg/L 0.010 1 10/28/21 mrh ckd Ν Magnesium 36 mg/L 0.20 1 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 16 mg/L 1.0 mrh 1 ckd 1 Sodium 32 mg/L 0.50 10/28/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony 0.00030 <0.00030 mg/L 1 10/28/21 11/04/21 mrh acs Arsenic 0.0025 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs 10 10/28/21 11/04/21 Barium 5.0 mg/L 0.10 mrh acs Cadmium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Chromium 0.0029 mg/L 0.00090 1 10/28/21 mrh 11/04/21 acs Cobalt <0.0016 mg/L 0.0016 10/28/21 mrh 11/04/21 acs <0.0040 mg/L 0.0040 1 10/28/21 11/04/21 Copper mrh acs <0.0020 mg/L 11/04/21 Lead 0.0020 1 10/28/21 mrh acs 11/04/21 Manganese 0.72 mg/L 0.025 1 10/28/21 mrh acs Molybdenum 0.017 mg/L 0.00040 1 10/28/21 11/04/21 N mrh acs Nickel <0.0050 mg/L 0.0050 1 10/28/21 mrh 11/04/21 acs Selenium <0.0020 mg/L 0.0020 10/28/21 11/04/21 mrh acs Silver <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Thallium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

<0.00080 mg/L

10/28/21

11/04/21

acs

mrh

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Vanadium

Trace ID: 21J1034-09 Matrix: Ground Water Date Collected: 10/26/21 14:30 Sample ID: MW-9 Date Received: 10/27/21 09:16 Field pH: 7.31 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 690 mg/L 0.82 5 10/28/21 11/02/21 Ν ckd **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T116098 Beryllium <0.0010 mg/L 0.0010 10/27/21 ckd 10/29/21 ckd 0.050 10/29/21 Boron 6.6 mg/L 1 10/27/21 ckd ckd Calcium 210 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd Iron 18 mg/L 0.10 1 10/27/21 ckd 10/29/21 ckd Lithium 0.27 mg/L 0.010 10/27/21 ckd 10/29/21 1 ckd Ν 10/27/21 10/29/21 Magnesium 36 mg/L 0.20 1 ckd ckd Potassium 15 mg/L 1.0 1 10/27/21 ckd 10/29/21 ckd Sodium 33 mg/L 0.50 1 10/27/21 ckd 10/29/21 ckd N Zinc 0.0013 mg/L 0.020 1 10/27/21 10/29/21 J ckd ckd Analysis Method: EPA 6020B Batch: T116167 11/08/21 Antimony 0.00046 mg/L 0.00020 1 11/08/21 ckd ckd Arsenic 0.0027 mg/L 0.0010 1 11/08/21 ckd 11/08/21 ckd **Barium** 5.1 mg/L 0.0060 10 11/08/21 ckd 11/08/21 ckd Cadmium <0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd 0.0018 mg/L 0.00080 1 11/08/21 Chromium 11/08/21 ckd ckd Cobalt 0.00039 mg/L 0.0016 1 11/08/21 ckd 11/08/21 ckd J <0.00080 mg/L 0.00080 11/08/21 ckd 11/08/21 ckd Copper <0.00040 mg/L 0.00040 1 11/08/21 ckd 11/08/21 Lead ckd 0.55 mg/L 0.00040 11/08/21 11/08/21 Manganese 1 ckd ckd Molybdenum 0.019 mg/L 0.00040 11/08/21 11/08/21 1 ckd ckd Ν 0.00080 mg/L 0.00040 1 11/08/21 11/08/21 Nickel ckd ckd Selenium 0.00037 mg/L 0.00087 1 11/08/21 ckd 11/08/21 ckd J Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00017 mg/L Thallium 0.00017 1 11/08/21 ckd 11/08/21 ckd

CERTIFICATE OF ANALYSIS

0.00080

0.00031 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

J

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-09 Matrix: Ground Water Date Collected: 10/26/21 14:30

Sample ID: MW-9 Date Received: 10/27/21 09:16 Field pH: 7.31

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

Fluoride 2.5 mg/L 10/27/21 0.10 5 ans 10/27/21 ans Chloride 13 mg/L 0.75 5 10/27/21 10/27/21 ans Sulfate as SO4 14 mg/L 3.0 5 10/27/21 10/27/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 760 mg/L 50 10 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <50 mg/L 50 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 880 mg/L 40 4 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-10 Matrix: Ground Water Date Collected: 10/26/21 15:05 Sample ID: MW-10 Date Received: 10/27/21 09:16 Field pH: 7.42 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury 0.80 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116174 0.0020 Beryllium <0.0020 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 52 mg/L 0.50 10 10/28/21 mrh 11/02/21 ckd Calcium 140 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd 0.20 10/28/21 mrh 11/02/21 Iron 10 mg/L 1 ckd 11/02/21 Lithium 1.4 mg/L 0.010 1 10/28/21 mrh ckd Ν Magnesium 65 mg/L 0.20 1 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 52 mg/L 1.0 1 mrh ckd Sodium 480 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony <0.00030 mg/L 0.00030 1 10/28/21 11/04/21 mrh acs Arsenic 0.0011 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs 0.010 10/28/21 11/04/21 Barium 1.5 mg/L 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Chromium 0.011 mg/L 0.00090 1 10/28/21 mrh 11/04/21 acs Cobalt 0.0011 mg/L 0.0016 1 10/28/21 mrh 11/04/21 acs J 0.0050 mg/L 1 10/28/21 11/04/21 Copper 0.0040 mrh acs Lead 0.0012 mg/L 0.0020 1 10/28/21 mrh 11/04/21 J acs 10/28/21 11/04/21 Manganese 0.50 mg/L 0.025 1 mrh acs Molybdenum 0.012 mg/L 0.00040 1 10/28/21 11/04/21 mrh acs Ν Nickel 0.0027 mg/L 0.0050 1 10/28/21 mrh 11/04/21 acs J. Selenium <0.0020 mg/L 0.0020 10/28/21 11/04/21 mrh acs <0.0010 mg/L 11/04/21 Silver 0.0010 1 10/28/21 mrh acs Thallium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

10/28/21

11/04/21

acs

0.0018 mg/L

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Vanadium

Trace ID: 21J1034-10 Matrix: Ground Water Date Collected: 10/26/21 15:05 Sample ID: MW-10 Date Received: 10/27/21 09:16 Field pH: 7.42 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 620 mg/L 0.82 10 10/28/21 11/02/21 Ν ckd **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T116098 Beryllium <0.0010 mg/L 0.0010 1 10/27/21 ckd 10/29/21 ckd 51 mg/L 10/29/21 Boron 0.50 10 10/27/21 ckd ckd Calcium 140 mg/L 0.50 1 10/27/21 ckd 10/29/21 ckd Iron 8.2 mg/L 0.10 1 10/27/21 ckd 10/29/21 ckd Lithium 0.010 10/27/21 ckd 10/29/21 1.4 mg/L 1 ckd Ν 1 10/27/21 10/29/21 Magnesium 65 mg/L 0.20 ckd ckd Potassium 48 mg/L 10 10 10/27/21 ckd 10/29/21 ckd Sodium 490 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd N Zinc 0.0016 mg/L 0.020 1 10/27/21 10/29/21 J ckd ckd Analysis Method: EPA 6020B Batch: T116167 <0.0010 mg/L 0.0010 5 11/08/21 11/08/21 402.5 Antimony ckd ckd 1 Arsenic 0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd **Barium** 1.3 mg/L 0.0030 5 11/08/21 ckd 11/08/21 ckd Cadmium <0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd 0.0079 mg/L 0.00080 1 11/08/21 Chromium 11/08/21 ckd ckd 0.00080 mg/L Cobalt 0.0016 1 11/08/21 ckd 11/08/21 ckd J 0.00013 mg/L 0.00080 11/08/21 ckd 11/08/21 J Copper ckd <0.0020 mg/L 0.0020 5 11/08/21 ckd 11/08/21 402.5 Lead ckd 0.37 mg/L 0.00040 11/08/21 11/08/21 Manganese 1 ckd ckd Molybdenum 0.0089 mg/L 0.00040 11/08/21 11/08/21 1 ckd ckd Ν 0.0017 mg/L 0.00040 1 11/08/21 11/08/21 Nickel ckd ckd Selenium 0.00058 mg/L 0.00087 1 11/08/21 ckd 11/08/21 ckd J Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00087 mg/L 5 Thallium 0.00087 11/08/21 ckd 11/08/21 ckd 402.5

CERTIFICATE OF ANALYSIS

0.00080

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

0.0013 mg/L

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Date Collected: 10/26/21 15:05

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-10 Matrix: Ground Water

Sample ID: MW-10 Date Received: 10/27/21 09:16 Field pH: 7.42

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116179

Fluoride 11 mg/L 0.20 10 10/28/21 10/28/21 ans ans Chloride 520 mg/L 15 100 10/28/21 10/28/21 ans Sulfate as SO4 53 mg/L 3.0 5 10/27/21 10/27/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 970 mg/L 50 10 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <50 mg/L 50 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 2000 mg/L 40 4 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

QUALITY CONTROL RESULTS

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116281 Analysis Description: Mercury, Total, Low Level
QC Batch Method: EPA 1631E Analysis Method: EPA 1631E

METHOD BLANK: T116281-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/l	<0.20	0.20	

METHOD BLANK: T116281-BLK2

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	na/L	<0.20	0.20	

METHOD BLANK: T116281-BLK3

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/L	<0.20	0.20	

LABORATORY CONTROL SAMPLE: T116281-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Mercury	na/L	25.0	23.4	94	77-123	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116281-MSD1

Original: 2	21J1034-01
-------------	------------

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Mercury	ng/L	1.88	10.0	10.1	9.92	82	80	71-125	2	24	

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116098 Analysis Description: Sodium, Dissolved QC Batch Method: Analysis Method: EPA 6010D

METHOD BLANK: T116098-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Boron	mg/L	0.0023	0.050	J
Beryllium	mg/L	0.000061	0.0010	J
Calcium	mg/L	<0.50	0.50	

CERTIFICATE OF ANALYSIS

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T116098-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Iron	mg/L	<0.10	0.10	
Potassium	mg/L	0.015	1.0	J
Lithium	mg/L	<0.010	0.010	
Magnesium	mg/L	<0.20	0.20	
Sodium	mg/L	<0.50	0.50	
Zinc	mg/L	<0.020	0.020	

LABORATORY CONTROL SAMPLE: T116098-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	1.00	0.966	97	80-120	
Beryllium	mg/L	0.0500	0.0510	102	80-120	
Calcium	mg/L	10.0	10.3	103	80-120	
Iron	mg/L	10.0	10.4	104	80-120	
Potassium	mg/L	10.0	10.4	104	80-120	
Lithium	mg/L	0.500	0.522	104	80-120	
Magnesium	mg/L	10.0	10.5	105	80-120	
Sodium	mg/L	10.0	10.6	106	80-120	
Zinc	mg/L	1.00	1.04	104	80-120	

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116174
QC Batch Method: EPA 3015 Microwave Assisted Digestions

Analysis Description: Lithium, Total

for Liquids

Analysis Method: EPA 6010D

METHOD BLANK: T116174-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Boron	mg/L	<0.050	0.050	
Beryllium	mg/L	<0.0020	0.0020	
Calcium	mg/L	<0.50	0.50	
Iron	mg/L	<0.20	0.20	
Potassium	mg/L	0.060	1.0	J
Lithium	mg/L	<0.010	0.010	
Magnesium	mg/L	<0.20	0.20	
Sodium	mg/L	<0.50	0.50	
Zinc	mg/L	<0.020	0.020	

CERTIFICATE OF ANALYSIS

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T116174-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	0.889	0.830	93	80-120	
Beryllium	mg/L	0.111	0.109	98	80-120	
Calcium	mg/L	8.89	8.74	98	80-120	
Iron	mg/L	8.89	9.02	101	80-120	
Potassium	mg/L	8.89	9.03	102	80-120	
Lithium	mg/L	0.889	0.880	99	80-120	
Magnesium	mg/L	8.89	9.09	102	80-120	
Sodium	mg/L	8.89	9.07	102	80-120	
Zinc	mg/L	0.889	0.894	101	80-120	

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116167 QC Batch Method: Analysis Description: Barium, Dissolved

Analysis Method: EPA 6020B

METHOD BLANK: T116167-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Silver	mg/L	0.000026	0.000040	J
Arsenic	mg/L	<0.0010	0.0010	
Barium	mg/L	<0.00060	0.00060	
Cadmium	mg/L	<0.00020	0.00020	
Cobalt	mg/L	<0.0016	0.0016	
Chromium	mg/L	<0.00080	0.00080	
Copper	mg/L	<0.00080	0.00080	
Manganese	mg/L	<0.00040	0.00040	
Molybdenum	mg/L	<0.00040	0.00040	
Nickel	mg/L	<0.00040	0.00040	
Lead	mg/L	<0.00040	0.00040	
Antimony	mg/L	0.00017	0.00020	J
Selenium	mg/L	<0.00087	0.00087	
Thallium	mg/L	<0.00017	0.00017	
Vanadium	mg/L	<0.00080	0.00080	

LABORATORY CONTROL SAMPLE: T116167-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Silver	mg/L	0.0600	0.0612	102	80-120	
Arsenic	mg/L	0.0600	0.0630	105	80-120	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T116167-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Barium	mg/L	0.0600	0.0588	98	80-120	
Cadmium	mg/L	0.0600	0.0613	102	80-120	
Cobalt	mg/L	0.0600	0.0604	101	80-120	
Chromium	mg/L	0.0600	0.0629	105	80-120	
Copper	mg/L	0.0600	0.0610	102	80-120	
Manganese	mg/L	0.0600	0.0615	102	80-120	
Molybdenum	mg/L	0.0600	0.0588	98	80-120	
Nickel	mg/L	0.0600	0.0602	100	80-120	
Lead	mg/L	0.0600	0.0616	103	80-120	
Antimony	mg/L	0.0600	0.0577	96	80-120	
Selenium	mg/L	0.0600	0.0630	105	80-120	
Thallium	mg/L	0.0600	0.0617	103	80-120	
Vanadium	mg/L	0.0600	0.0581	97	80-120	

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116174

QC Batch Method: EPA 3015 Microwave Assisted Digestions

for Liquids

Analysis Description: Selenium, Total Analysis Method: EPA 6020B

METHOD BLANK: T116174-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Silver	mg/L	<0.0010	0.0010	
Arsenic	mg/L	<0.0010	0.0010	
Barium	mg/L	<0.010	0.010	
Cadmium	mg/L	<0.0010	0.0010	
Cobalt	mg/L	<0.0016	0.0016	
Chromium	mg/L	<0.00090	0.00090	
Copper	mg/L	<0.0040	0.0040	
Manganese	mg/L	<0.025	0.025	
Molybdenum	mg/L	0.00027	0.00040	J
Nickel	mg/L	<0.0050	0.0050	
Lead	mg/L	<0.0020	0.0020	
Antimony	mg/L	<0.00030	0.00030	
Selenium	mg/L	<0.0020	0.0020	
Thallium	mg/L	<0.0010	0.0010	
Vanadium	mg/L	<0.00080	0.00080	

CERTIFICATE OF ANALYSIS

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T116174-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Silver	mg/L	0.0278	0.0333	120	80-120	
Arsenic	mg/L	0.0556	0.0599	108	80-120	
Barium	mg/L	0.889	0.950	107	80-120	
Cadmium	mg/L	0.0278	0.0297	107	80-120	
Cobalt	mg/L	0.889	0.892	100	80-120	
Chromium	mg/L	0.0278	0.0288	104	80-120	
Copper	mg/L	0.890	0.863	97	80-120	
Manganese	mg/L	0.887	0.878	99	80-120	
Molybdenum	mg/L	0.889	0.942	106	80-120	
Nickel	mg/L	0.889	0.840	95	80-120	
Lead	mg/L	0.0556	0.0533	96	80-120	
Antimony	mg/L	0.0556	0.0608	109	80-120	
Selenium	mg/L	0.0556	0.0560	101	80-120	
Thallium	mg/L	0.0556	0.0542	98	80-120	
Vanadium	mg/L	0.889	0.915	103	80-120	

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: [CALC] QC Batch Method:

Analysis Description: Hardness (Metals) Analysis Method: SM 2340 B-11

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116121

QC Batch Method: IC Prep W

Analysis Description: Sulfate

Analysis Method: EPA 300.0 Rev. 2.1

METHOD BLANK: T116121-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Chloride	mg/L	<0.15	0.15	
Fluoride	mg/L	<0.020	0.020	
Sulfate as SO4	mg/L	<0.60	0.60	

LABORATORY CONTROL SAMPLE: T116121-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Chloride	mg/L	5.00	5.02	100	90-110	
Fluoride	mg/L	1.00	1.02	102	90-110	

CERTIFICATE OF ANALYSIS

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY	CONTROL	SAMPLE.	T116121_RS1
LABURATURI	CONTROL	SAIVIF LE.	1110121-031

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Sulfate as SO4	mg/L	5.00	5.14	103	90-110	

MATRIX SPIKE: T116121-MS1 Original: 21J1034-01

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Unit	Notes
Chloride	mg/L	233	500	794	112	80-120	
Fluoride	mg/L	12.6	100	107	94	80-120	
Sulfate as SO4	mg/L	533	500	1120	118	80-120	

MATRIX SPIKE: T116121-MS2 Original: 21J1034-07

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Unit	Notes
Chloride	mg/L	13.9	25.0	39.6	103	80-120	
Fluoride	mg/L	0.0942	5.00	4.60	90	80-120	
Sulfate as SO4	mg/L	29.6	25.0	54.1	98	80-120	

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116179

QC Batch Method: IC Prep W

Analysis Description: Fluoride
Analysis Method: EPA 300.0 Rev. 2.1

METHOD BLANK: T116179-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Chloride	mg/L	<0.15	0.15	
Fluoride	ma/L	<0.020	0.020	

LABORATORY CONTROL SAMPLE: T116179-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Chloride	mg/L	5.00	5.03	101	90-110	
Fluoride	mg/L	1.00	1.01	101	90-110	

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116236 Analysis Description: Alkalinity, Bicarbonate

QC Batch Method: SM 2320 B-11 Analysis Method: SM 2320 B-11

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T116236-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Bicarbonate Alkalinity as CaCO3 at pH 4.5	mg/L	100	100	100	88-112	
Carbonate Alkalinity as CaCO3 at pH 8.2	mg/L	100	100	100	88-112	

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116366

QC Batch Method: SM 2320 B-11

Analysis Description: Alkalinity, Carbonate

Analysis Method: SM 2320 B-11

LABORATORY CONTROL SAMPLE: T116366-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Bicarbonate Alkalinity as CaCO3 at pH 4.5	mg/L	100	97.3	97	88-112	
Carbonate Alkalinity as CaCO3 at pH 8.2	mg/L	100	97.3	97	88-112	

SAMPLE DUPLICATE: T116366-DUP1

Original: 21J1034-02

Parameter	Units	Original Result	DUP Result	Max RPD RPD Notes
Bicarbonate Alkalinity as CaCO3 at pH 4.5	mg/L	2150	218	163 200
Carbonate Alkalinity as CaCO3 at pH 8.2	mg/L	0	<5.0	200

Trace Project ID: 21J1034
Client Project ID: MW Sampling

QC Batch: T116175 Analysis Description: Total Dissolved Solids

QC Batch Method: SM 2540 C-11 Analysis Method: SM 2540 C-11

METHOD BLANK: T116175-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Total Dissolved Solids	mg/L	1.0	10	J

LABORATORY CONTROL SAMPLE: T116175-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Total Dissolved Solids	ma/L	500	543	109	80-120	_

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

SAMPLE DUPLICATE: T116175-DUP2

Original: 21J1034-01

Parameter	Units	Original Result	DUP Result	RPD	Max RPD	Notes	_
Total Dissolved Solids	mg/L	3600	2800	25	10	623	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Р	leas	e Si	gn										0	Trace No. Co	Project Name:	1 Day* *Results provided end of business day, requires prior approval	Standar 3 Day*	Turnaround Requirements:	Email Address:	Office Phone:	City, State, Zip Code:	Mailing Address:	Report To: Paul Cederquist	Company Name: Grand Haven Board of Light & Power	Report Results To:). N	
		M		6								-	10:26:21	Date Collected)ay* ovided ei	⊠ Standard, 5-10 Days	ınd Re	:SS:	iù.	Zip Code	ress:	Paul C	ame: G	esults		1
		Ĭ.	Released By	15:05	14:30	15:35	10:30	00:11	16:35	12:00	12:35	13:55	11:45	Time Collected	MW Sampling	nd of bus	-10 Days	quirem					ederqu	rand H	To:		1
			sed By	2	0	Š	0		01	0	S	S	S	8	ampl	siness da		ents:					list	aven E		is II	111
a l															ing	ay, requi								Soard c			
	(7							Z 200				-			res prior				Cell				of Light		BORATORIES,	
In exec	,		0	_										Clier		approva				Cell Phone:				& Pow		ă M	
uting this		2	Receive	MW-10	MW-9	MW-8	MW-7	MW-6	MW-5	MW-4	MW-3	MW-2	MW-1R	Client Sample ID	la C									/er		1"1	t
Chain c		/	Med By				14						~	Ë		SL = Sludge OI = Oil	S = S	Matr									
f Custod																sludge sil	S = Soil / Solid	Matrix Key:								88 :	. 1
In executing this Chain of Custody, the client acknowledges the terms as set forth at www.trace-labs.com/terms-of-agreement.	•	IZ QQ	D												Sampled By: C	ם אַ קַ			Billing E	Phone Number:	City, Sta	Billing Address (if different):	Contact Name:	PO#	Bill To:	2241 Black Creek Road Muskegon, MI 49444-2673	}
ent ackn		12	ate	<	_							_	~	Metals Field Filtered (Y / N)	d By:	A = Air D = Drinking Water	WI = Wipes		Billing Email Address:	lumber:	City, State, Zip Code:	ddress (Name:		×	ick Cre	HAIN
owledge		8126	Time	~								_	∀	Matrix Number of	33	g Water	Macto		ress:		ode:	f differer				ek Roa 19444-2	CHAIN-OF-CUSTODY RECORD
s the ter	4	6 2)	9	-									×	Cool HCI	E C							īţ):				2673	USTO
ms as se												_	×	HCI Preservation										i.		5	DYR
t forth at			Rel								-		×	Other T-B,Ca,Fe,	Sb.As.	Ba. Be.Cd.	Cr	П									COR
www.tra			Released By										×	T- Co,Cu, F			_									Fax	
ce-labs.			Υ,	-		-				_		_	×	T- TI, V,Zn, Diss.Metals			-									Frone 231.73.5998 Fax 888.979.4469 www.trace-labs.com	3
com/tern					_		-		_				×	Fluoride,Su												9.4469 abs.co	1
ıs-of-agr			6	<u>-</u>	_	_		_	_				X	рН	4.4.4.			Ana			-					3 8	}
eement.			Rece	-									×	LLHg Radiums 22	26/228			lysis F		Sam		Soil	Che	Logo	Tra		
			eceived By	<									×	Bicarb-Alk,	Carbo	nate-Alk		Analysis Requested		Sampling Time:	МеОН	Volatiles	Checked By:	.ogged By:	Trace Use:	2	
																	- '.	ted		Э	,	Preserv		Ċ	i.	5	Page_
Ī			,	<															1 8		Low Level	ed (circle	H	Ž		Trace ID No.	
			Date	7.	7	6	7	L,		6	6	6	pH=7.%0	Remarks							72	Soil Volatiles Preserved (circle if applicable):				T No.	의
			Time	2 L	$\overline{\sim}$	74	101	8	5	74		841	7.80	Possible Heal							Lab	able):					-

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

21.1034 San	nple Log in Checklist			
Grand Haven Board of Light Project Manager: Jon Mink	Date: 10-27-21	Original Observation	Corrected Temperature	C) *C) -0.4°C)
	Logged by: DH	psen	Tem	IR-9 (CF: +0.1°C) IR-10 (CF: +0.1°C) 20812743 (CF: -0 Temp Blank Client Sample
	Package Description:	alol	ted	IR-9 (CF: +0.1' IR-10 (CF: +0.7 20B12743 (CF Temp Blank Client Sample
		rigin	orrec	9 (C
	Cooler		-1.6	R R M P D
	Package Temp °C Representative Sample Temp °C	1.8	1.9	
Sample Receipt				
es No				
Received on ice or other coolant				
☐	Yes \ \ \ No \ Custody seals intact (if app	licable)		
	UPS Fed Ex US Mail	Ĺ	Oth	er .
Sample Condition				
es No N/A	ken and labeled			
All sample containers arrived unbrol Sufficient sample to run requested a	383			
Correct chemical preservative added	d to samples			1
	See below			
Chemical preservation verified, chec PH 0-2.5 (Lot: HC029115	ck EMD pH test strip used (if applicable) pH 11.0-13.0 (Lot: HC02)	2540)		Other
Air bubbles absent from VOAs	ph 11.0-13.0 (Lot. Neo2	2340)		
<u> </u>	•			
Chain of Custody (COC)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
/es No ✓				
COC filled out properly				
COC signed by client				
Notes:	3-E, 04-E, 05-E,	06 -	F	10-F
			L ,	· · · ·
at 10:00 on 10/27/21				
1/01/1/1				
Na OH added to DH 10/37/3				
11.00 0 10	1 1-1 (12':1			
HNO2 Preserved radiums 10	127/21 @ 13.11			
orm 70-A.40		r.		Analytical Laboratories

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW -1R

Depth to Water: 6.23

Depth to Point: 18.2ft

Purge Start Time: 11:25

Field Personnel:

Purge Rate: _

Stabilization Criteria:

Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3%

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Pump Ušed: Peristaltic

Notes:

Turbidity(NTU)	1.01 1.01 1.01	3,44 3,44 3,44	17.07 17.07 17.07	11:38 11:41 11:44

Turbidity: 10% or <1 pH: +/- 0.1

Pump Used: Peristaltic

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 2

Depth to Water: 14.71

ate: <u>()</u> みし、

Depth to Point: 23.51'
Purge Start Time: 13.35

Field Personnel: ______

Purge Rate: 300w-L/M

Stabilization Criteria: Temperature: 3%

Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV

Notes:

Depth to Water 15.21 15.23 15.23 Temporature		3	24.7 0.0 -129 -171 14.17	14.17 14.17 14.17 1.12 4.12 4.12 1.12 4.12 4.12 1.14 17 14.17	1.42 4.12 14.17 1.00 0.0 0.0 1.12 4.12 4.12 1.12 4.13 4.13 1.14 7.17 14.17	
lme			15.2	15.23	15.21	Water
	,	7	13:81	13:50	13:47	Reading Ime

(Celsius)

36

5

36

9851

Temperature

Specific

3.96

3.96

96

Depth to

Reading Time

Water

72

Ø

. در.

3

8

Oxygen

7

F

Dissolved Conductivity

ORP (mV)

100

1

1

2

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP Field Personnel:

Depth to Point: 20.5'

Depth to Water: _ Well No.: MW 3

Purge Start Time: \2:

0

Purge Rate: _ 300ml/min

Stabilization Criteria: Temperature: 3%

모

6

6

6

. _0

-0

2

Turbidity(NTU)

S

6

Dissolved Oxygen: 10% Spec. Conductivity: 3%

ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1

Notes:

Pump Used: Peristaltic

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Depth to Point: 18.01'

Purge Start Time: 11:40

Depth to Water:

Well No.: MW 4

Field Personnel:

Purge Rate: 3001WL/Min

Stabilization Criteria:

Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10%

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Pump Used: Peristaltic

Notes:

	Г.			T = 22	Γ .		
pН	Turbidity(NTU)	F1981 F 200 21	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Depth to Water	Reading Time
6.74	0	-116	14.	2.56 2.56 2.56	16.68	674	
6.74 6.74 6.74	0.0	-116	.47	2.56	16.68 16.88 16.68	11.03	11:57 12:06
6.74	0.0	116	. H8	2.56	16.68	11.03	12:06
						**	
		3-3-400					

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 5

Depth to Water: 265

Depth to Point: 11.5'

Date: 10- 26-2

Purge Start Time: 10:15

Field Personnel:

Purge Rate:

(Celsius)

6.02

Temperature

Specific

76

Water Depth to

w

6

Reading Time

. 25

16.02 76 871

公丁 -)48 7.43

ORP (mV)

Oxygen

Dissolved Conductivity

Turbidity(NTU)

17.41 7.43

얼

Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3%

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Notes:

Stabilization Criteria:

Pump Used: Peristaltic

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Well No.: MW 6 Client: GHBLP Field Personnel:

Depth to Point: 16.55'

Purge Start Time: 10:40

Depth to Water:

Purge Rate:

Stabilization Criteria:

Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3%

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Pump Used: Peristaltic

Notes:

рH	Turbidity(NTU)	ORP (mV)		Ϊŧ	Temperature (Celsius)	Depth to Water	Reading Time
7.60	3	18	57	2.06	17.59	9.31	W:55
7.60 7.60 7.60	, 4	-18	.57 .57	2.06 2.06 2.06	17.59 17.59 17.59	9.31 9.31	10:53 10:56
7.60		-)8	.57	2.66	17.59	9.31	10:56
						8	

Conductivity Specific (Celsius)

15,24

15.24 15.24

5

Temperature

Depth to

Reading Time

B: 15

Water

ORP (mV)

7

Turbidity(NTU)

1

모

7.0

Oxygen

Dissolved

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Date: 10 - 26 - 21

Client: GHBLP

Well No.: MW 7

Depth to Water: 5.25

Purge Start Time: 10:00

Depth to Point: 18.81'

Field Personnel:

Purge Rate:

ORP: +/- 10 mV Turbidity: 10% or <1 Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3%

Notes:

Stabilization Criteria:

Pump Used: Peristaltic

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 8

Depth to Water: 4.04

Depth to Point: 11.85

Purge Start Time: 15:10

Field Personnel:

Purge Rate:

Stabilization Criteria:

Spec. Conductivity: 3% Temperature: 3%

Turbidity: 10% or <1 pH: +/- 0.1 Dissolved Oxygen: 10% ORP: +/- 10 mV

Pump Used: Peristaltic

Notes:

PH	bidity(NTU)	ORP (mV)					Reading Time
6.74	0.0	-137	0.0	h08.	15.72	4.86	15:25
6.74 6.74 6.74	0.0	-137 -137 -137	0.0	SOB: 508: HOB:	15.72 15.72 15.72	4.86 4.86 4.86	15:25 15:28 15:31
6.74	0.0	-137	0.0	. 805	15.72	4.86	15:31
						·	

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Depth to Water: 8.49 Well No.: MW 9

8

工

Depth to Point: 14.9

Purge Start Time: 14' 10

Date: 10-26-21

Field Personnel:

Purge Rate:_

Depth to ORP (mV) Oxygen Water 오 Turbidity(NTU) Conductivity Specific (Celsius) Dissolved Temperature Reading Time N 5

\$J

6

92

0.

2

a.

W

Stabilization Criteria:

Notes:

_

S

S

1

S

二

5

I

5

1

2

10

0

56

56

2

S

Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3%

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Pump Used: Peristaltic

Specific (Celsius) Depth to

Reading Time

SS:14

14:58

20.0

Water

.07

107

Temperature

90

90

ORP (mV) Oxygen

Dissolved Conductivity

25

20

Turbidity(NTU)

198

198

198

엄

7.42

7.42

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 10

Depth to Water: 5.32

Date: 10-26-2

Depth to Point: 13.00

Purge Start Time: 14:45

Purge Rate: 300000 min

Field Personnel:

ORP: +/- 10 mV Dissolved Oxygen: 10%

Spec. Conductivity: 3% Temperature: 3% Stabilization Criteria:

Turbidity: 10% or <1 pH: +/- 0.1

Notes:

Pump Used: Peristaltic

November 30, 2021

Mr. Paul Cederquist Grand Haven Board of Light and Power-Monthly MWs 1700 Eaton Drive Grand Haven, MI 49417

RE: Trace Project 2

21J1032 & 21J1034

Client Project

Impoundment & MW Sampling

Dear Mr. Cederquist:

Enclosed are your analytical results. The results of this report relate only to the samples listed in the body of this report.

All reports were examined through Trace's validation process to ensure that requirements for quality and completeness were satisfied. All reported analytical results were obtained in accordance with the methods referenced on the reports. Every practical effort was made to meet the reporting limit specifications for this work, however, some results may have raised reporting limits to correct for percent solids.

The results were obtained from Eurofins.

For clients that require NELAC Accreditation, Trace certifies that these test results meet all requirements of the NELAC Standard, except for those analytes with a "N" notation. These analytes have not been evaluated by NELAC at Trace's discretion and will not be reported unless requested by client.

If you have questions concerning this report, please contact me at 231.773.5998 or by email at jmink@trace-labs.com.

Sincerely,

Jon Mink

Senior Project Manager

Enclosures

NJDEP Accreditation No. MI008

SAMPLE SUMMARY

Trace Project ID:

21J1032

Client Project ID:

Impoundment Sampling

Trace ID	Sample ID	Matrix	Collected By	Date Collected	Date Received
21J1032-01	Unit 1/2 Near MW-5	Ground Water	TRACE-EB/TB	10/26/21 11:25	10/27/21 08:52
21J1032-02	Unit 1/2 Near SG-2	Ground Water	TRACE-EB/TB	10/26/21 15:25	10/27/21 08:52

SAMPLE SUMMARY

Trace Project ID:

21J1034

Client Project ID:

MW Sampling

Trace ID	Sample ID	Matrix	Collected By	Date Collected	Date Received
21J1034-01	MW-1R	Ground Water	TRACE-EB/TB	10/26/21 11:45	10/27/21 09:16
21J1034-02	MW-2	Ground Water	TRACE-EB/TB	10/26/21 13:55	10/27/21 09:16
21J1034-03	MW-3	Ground Water	TRACE-EB/TB	10/26/21 12:35	10/27/21 09:16
21J1034-04	MW-4	Ground Water	TRACE-EB/TB	10/26/21 12:00	10/27/21 09:16
21J1034-05	MW-5	Ground Water	TRACE-EB/TB	10/26/21 10:35	10/27/21 09:16
21J1034-06	MW-6	Ground Water	TRACE-EB/TB	10/26/21 11:00	10/27/21 09:16
21J1034-07	MW-7	Ground Water	TRACE-EB/TB	10/26/21 10:20	10/27/21 09:16
21J1034-08	MW-8	Ground Water	TRACE-EB/TB	10/26/21 15:35	10/27/21 09:16
21J1034-09	MW-9	Ground Water	TRACE-EB/TB	10/26/21 14:30	10/27/21 09:16
21J1034-10	MW-10	Ground Water	TRACE-EB/TB	10/26/21 15:05	10/27/21 09:16

AN EXPLANATION OF TERMS AND SYMBOLS WHICH MAY OCCUR IN THIS REPORT

DEFINITIONS

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

MS Matrix Spike

MSD Matrix Spike Duplicate
RPD Relative Percent Difference

DUP Matrix Duplicate

RDL Reporting Detection Limit
MCL Maximum Contamination Limit
TIC Tentatively Identified Compound

<, ND or U Indicates the compound was analyzed for but not detected

* Indicates a result that exceeds its associated MCL or Surrogate control limits

N Indicates that the compound has not been evaluated by NELAC

NA Indicates that the compound is not available.

Environment Testing America

ANALYTICAL REPORT

Eurofins Eaton Analytical - South Bend 110 S Hill Street South Bend, IN 46617 Tel: (574)233-4777

Laboratory Job ID: 810-6209-1

Client Project/Site: Trace-21J1034 & 21J1032

Revision: 1

For:

Trace Analytical Laboratories 2241 Black Creek Road Muskegon, Michigan 49444

Attn: Jon Mink

Karew Fullner

Authorized for release by: 11/29/2021 6:14:27 PM

Karen Fullmer, Project Manager (574)233-4777

karen.fullmer@eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

Δ

5

6

0

9

10

12

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032 Laboratory Job ID: 810-6209-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	12
QC Association Summary	15
Lab Chronicle	16
Certification Summary	20
Method Summary	21
Sample Summary	22
Chain of Custody	23
Receipt Checklists	27

-6

4

5

7

9

10

12

13

Definitions/Glossary

Client: Trace Analytical Laboratories Job ID: 810-6209-1

Project/Site: Trace-21J1034 & 21J1032

Qualifiers

Rad Qualifier Qu

Qualifier Description

U Result is less than the sample detection limit.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

4

Ę

0

0

0

10

13

Case Narrative

Client: Trace Analytical Laboratories
Project/Site: Trace-21J1034 & 21J1032

Job ID: 810-6209-1

Job ID: 810-6209-1

Laboratory: Eurofins Eaton Analytical - South Bend

Narrative

Job Narrative 810-6209-1

Comments

No additional comments.

Revision

The report being provided is a revision of the original report sent on 11/22/2021. The report (revision 1) is being revised due to: Project was logged in as drinking water matrix by accident. Report revised to change matrix..

Receipt

The samples were received on 10/28/2021 9:45 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 14.0° C and 14.2° C.

RAD

Method SM7500 Ra D: The barium carrier recovery is outside the upper control limit (110%) <OR> lower control for the following sample(s): 6209-A-11-D Re-analysis is required.

Method SM7500 Ra D: The barium carrier recovery 69.2mg is outside the established limits of 40.5-64.8mg for the following sample: MW-9 (810-6209-11). Re-analysis is required.

Method SM7500 Ra D: The barium carrier recovery 69.2mg is outside the established limits of 40.5-64.8mg for the following sample: MW-9 (810-6209-11). Re-analysis is required.Insufficient sample was available for re-analysis and matrix is dirty; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

0

8

9

10

12

13

Detection Summary

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032	Job ID: 810-6209-1
Client Sample ID: Unit 1/2 Near MW-5	Lab Sample ID: 810-6209-1
No Detections.	
Client Sample ID: Unit 1/2 Near SG-2	Lab Sample ID: 810-6209-2
No Detections.	
Client Sample ID: MW-1R	Lab Sample ID: 810-6209-3
No Detections.	
Client Sample ID: MW-2	Lab Sample ID: 810-6209-4
No Detections.	
Client Sample ID: MW-3	Lab Sample ID: 810-6209-5
No Detections.	
Client Sample ID: MW-4	Lab Sample ID: 810-6209-6
No Detections.	
Client Sample ID: MW-5	Lab Sample ID: 810-6209-7
No Detections.	
Client Sample ID: MW-6	Lab Sample ID: 810-6209-8
No Detections.	
Client Sample ID: MW-7	Lab Sample ID: 810-6209-9
No Detections.	
Client Sample ID: MW-8	Lab Sample ID: 810-6209-10
No Detections.	
Client Sample ID: MW-9	Lab Sample ID: 810-6209-11
No Detections.	
Client Sample ID: MW-10	Lab Sample ID: 810-6209-12
_	

This Detection Summary does not include radiochemical test results.

No Detections.

2

Job ID: 810-6209-1

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032

Client Sample ID: Unit 1/2 Near MW-5

Lab Sample ID: 810-6209-1

Lab Sample ID: 810-6209-2

Date Collected: 10/26/21 11:25 Date Received: 10/28/21 09:45 Matrix: Ground Water

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.000	U	0.72719		1.00	0.620	pCi/L		11/12/21 13:20	1

Method: SM7500 Ra B - Radium-226

"	vietilou. Sivi7300 Ka	a D - Naui	uiii-220								
				Count	Total						
				Uncert.	Uncert.						
A	Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
F	Ra-226	0.290	U	0.380		1.00	0.410	pCi/L	11/02/21 14:10	11/05/21 10:31	1

Method: SM7500 Ra D - Radium-228

			Count	iolai					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Ra-228	0.500	U	0.620		1.00	0.620 pCi/L	11/02/21 14:13	11/11/21 14:44	1

Client Sample ID: Unit 1/2 Near SG-2

·	•
Date Collected: 10/26/21 15:25	Matrix: Ground Water
Date Received: 10/28/21 09:45	

Method: 7500 Ra D - Radium 226 Radium 228 Combined

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.000	U	0.60745		1.00	0.550	pCi/L		11/12/21 13:20	1

Method: SM7500 Ra B - Radium-226

			Count	iotai					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.310	U	0.330		1.00	0.330 pCi/L	11/02/21 14:10	11/05/21 10:31	1

Method: SM7500 Ra D - Radium-228

١				Count	Total						
				Uncert.	Uncert.						
	Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Į	Ra-228	-0.410	U	0.510		1.00	0.550	pCi/L	11/02/21 14:13	11/11/21 14:44	1

Client Sample ID: MW-1R

Lab Sample ID: 810-6209-3

Date Collected: 10/26/21 11:45

Date Received: 10/28/21 09:45

Matrix: Ground Water

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.410		0.51088		1.00	0.410	pCi/L		11/12/21 13:20	1

Project/Site: Trace-21J1034 & 21J1032

Client Sample ID: MW-1R Lab Sample ID: 810-6209-3

Date Collected: 10/26/21 11:45 Matrix: Ground Water

Date Received: 10/28/21 09:45

Method: SM7500	Ra B -	Radium-226
----------------	--------	------------

		Uncert.	Uncert.					
Analyte	Result Qua	alifier (2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.410	0.330		1.00	0.310 pCi/L	11/02/21 14:10	11/05/21 10:31	1

Total

Count

Count

Method: SM7500 Ra D - Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	0.0800	U	0.390		1.00	0.410	pCi/L	11/02/21 14:13	11/11/21 14:44	1

Client Sample ID: MW-2

Date Collected: 10/26/21 13:55

Lab Sample ID: 810-6209-4

Matrix: Ground Water

Date Received: 10/28/21 09:45

-Method: 7500 Ra D - Radium 226 Radium 228 Combined

Method. 7300 Ka D	- Naululli	ZZO Kauli	uiii 220 CO	IIIDIIIEU						
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	2.27		0.91351		1.00	0.610	pCi/L		11/12/21 13:20	1

Method: SM7500 Ra B - Radium-226

			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Ra-226	1.00		0.680		1.00	0.610 pCi/L	11/02/21 14:10	11/05/21 10:31	1

Total

Method: SM7500 Ra D - Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	1.27		0.610		1.00	0.580	pCi/L	11/02/21 14:13	11/11/21 14:44	1

Client Sample ID: MW-3

Date Collected: 10/26/21 12:35

Lab Sample ID: 810-6209-5

Matrix: Ground Water

Date Collected: 10/26/21 12:35 Date Received: 10/28/21 09:45

Method: 7500 Ra D - Radium 226 Radium 228 Combined

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.01		0.68593		1.00	0.540	pCi/L		11/12/21 13:20	1

Method: SM7500 Ra B - Radium-226

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.310	U	0.490		1.00	0.540	pCi/L	11/02/21 14:10	11/05/21 10:31	1

Client Sample ID: MW-3 Lab Sample ID: 810-6209-5

Date Collected: 10/26/21 12:35 Matrix: Ground Water

Date Received: 10/28/21 09:45

Method:	SM7500	Ra D -	Radium-228

			Count	iotai						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	1.01		0.480		1.00	0.460	pCi/L	11/02/21 14:13	11/11/21 14:44	1

Client Sample ID: MW-4 Lab Sample ID: 810-6209-6

Date Collected: 10/26/21 12:00 Matrix: Ground Water

Date Received: 10/28/21 09:45

Method: 7500 Ra D - Radium 226 Radium 228 Combined

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.87		0.67209		1.00	0.460	pCi/L		11/12/21 13:20	1
226 + 228										

Method: SM7500 Ra B - Radium-226

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC (Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.910		0.460		1.00	0.360	pCi/L	11/02/21 14:10	11/05/21 10:31	1
	Analyte	Analyte Result	Analyte Result Qualifier	Count Uncert. Analyte Result Qualifier (2σ+/-)	Count Total Uncert. Uncert. Analyte Result Qualifier (2\sigmu+/-) (2\sigmu+/-)	Count Total Uncert. Uncert. Analyte Result Qualifier (2σ+/-) (2σ+/-) RL	Count Total Uncert. Uncert. Analyte Result Qualifier (2σ+/-) (2σ+/-) RL MDC	Count Total Uncert. Uncert. Analyte Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit	Count Total Uncert. Uncert. Analyte Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared	Count Total Uncert. Uncert. Analyte Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared Analyzed

Method: SM7500 Ra D - Radium-228

		Count	Total					
		Uncert.	Uncert.					
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Ra-228	0.960	0.490		1.00	0.460 pCi/L	11/02/21 14:13	11/11/21 14:44	1

Client Sample ID: MW-5

Date Collected: 10/26/21 10:35

Lab Sample ID: 810-6209-7

Matrix: Ground Water

Date Collected: 10/26/21 10:35 Date Received: 10/28/21 09:45

Method: 7500 Ra D - Radium 226 Radium 228 Combined

			Count Uncert.							
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.000	U	0.60539		1.00	0.530	pCi/L		11/12/21 13:20	1

Method: SM7500 Ra B - Radium-226

			Count	iotai						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac	
Ra-226	0.160	U	0.310		1.00	0.350 pCi/L	11/02/21 14:10	11/05/21 10:31	1	

Method: SM7500 Ra D - Radium-228

			Count	iotai					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Ra-228	0.340	U	0.520		1.00	0.530 pCi/L	11/02/21 14:13	11/11/21 14:44	1

Job ID: 810-6209-1

Client Sample ID: MW-6 Date Collected: 10/26/21 11:00 Date Received: 10/28/21 09:45 Lab Sample ID: 810-6209-8

Matrix: Ground Water

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.000	U	0.76485		1.00	0.630	pCi/L		11/12/21 13:20	1
+ 228										

Method: SM7500 Ra B - Radium-226

mothodi omi oco itt	a D Itaai	u							
			Count	Total					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.0600	U	0.570		1.00	0.370 pCi/L	11/02/21 14:10	11/12/21 11:43	1

Method: SM7500 Ra D - Radium-228

				Count	Total						
				Uncert.	Uncert.						
	Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Į	Ra-228	-2.15	U	0.510		1.00	0.630	pCi/L	11/02/21 14:13	11/11/21 14:44	1

Client Sample ID: MW-7 Lab Sample ID: 810-6209-9

Date Collected: 10/26/21 10:20 **Matrix: Ground Water** Date Received: 10/28/21 09:45

Method: 7500 Ra D - Radium 226 Radium 228 Combined

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.33		0.70434		1.00	0.490	pCi/L		11/12/21 13:20	1
226 + 228										

Method: SM7500 Ra B - Radium-226

		Count	Total					
		Uncert.	Uncert.					
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.790	0.550		1.00	0.490 pCi/L	11/02/21 14:10	11/05/21 10:31	1

Method: SM7500 Ra D - Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	0.540		0.440		1.00	0.440	pCi/L	11/02/21 14:13	11/11/21 14:44	1

Client Sample ID: MW-8 Lab Sample ID: 810-6209-10

Date Collected: 10/26/21 15:35 **Matrix: Ground Water** Date Received: 10/28/21 09:45

Method: 7500 Ra D - Radium 226 Radium 228 Combine	Method	: 7500 Ra D	- Radium	226 Radium	228	Combined
---	--------	-------------	----------	------------	-----	----------

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.860		0.63640		1.00	0.530	pCi/L		11/12/21 13:20	1

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032

Client Sample ID: MW-8 Lab Sample ID: 810-6209-10

Date Collected: 10/26/21 15:35 **Matrix: Ground Water**

Date Received: 10/28/21 09:45

Method: SM7500 Ra B - Radi

			Journe	. ota.					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.860		0.450		1.00	0.350 pCi/L	11/02/21 14:10	11/05/21 10:31	1

Total

Count

Method: SM7500 Ra D - Radium-228

			Count	Total							
			Uncert.	Uncert.							
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac	
Ra-228	-1.22	U	0.450		1.00	0.530	pCi/L	11/02/21 14:13	11/11/21 14:44	1	

Client Sample ID: MW-9 Lab Sample ID: 810-6209-11 **Matrix: Ground Water**

Date Collected: 10/26/21 14:30 Date Received: 10/28/21 09:45

Method: 7500 Ra D - Radium 226 Radium 228 Combined

Method. 7 300 Ra D	- Itaululli	ZZU Maui	uiii 220 00	IIIDIIIEU						
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	2.56		0.69527		1.00	0.470	pCi/L		11/11/21 16:33	1

Method: SM7500 Ra B - Radium-226

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.840		0.450		1.00	0.370	pCi/L	11/02/21 14:16	11/05/21 11:46	1

Method: SM7500 Ra D - Radium-228

Ra-228	1.72		0.530		1.00	0.470 pCi/L	11/02/21 14:19	11/11/21 12:18	1
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
			Uncert.	Uncert.					
			Count	Total					

Client Sample ID: MW-10 Lab Sample ID: 810-6209-12 **Matrix: Ground Water**

Date Collected: 10/26/21 15:05 Date Received: 10/28/21 09:45

Method: 7500 Ra D - Radium 226 Radiu	ım 228 Com	oined
	Count	Total

			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium	2.03		0.71505		1.00	0.500 pCi/L		11/11/21 16:33	1

226 + 228

Method: SM7500 Ra B - Radium-226

		Count	iotai					
		Uncert.	Uncert.					
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.930	0.480		1.00	0.380 pCi/L	11/02/21 14:16	11/05/21 11:46	1

Client Sample Results

Client: Trace Analytical Laboratories Job ID: 810-6209-1

Project/Site: Trace-21J1034 & 21J1032

Client Sample ID: MW-10 Lab Sample ID: 810-6209-12

Date Collected: 10/26/21 15:05

Date Received: 10/28/21 09:45

Matrix: Ground Water

Method: SM75	00 Ra D - Radi	um-228								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	1.10		0.530		1.00	0.500	pCi/L	11/02/21 14:19	11/11/21 12:18	1

4

_

8

9

11

13

Client: Trace Analytical Laboratories

Job ID: 810-6209-1

Project/Site: Trace-21J1034 & 21J1032

Method: SM7500 Ra B - Radium-226

Lab Sample ID: MB 810-6416/1-A

Matrix: Drinking Water Analysis Batch: 7018

Client Sample ID: Method Blank

I imits

90 - 110

Analyzed

Prep Type: Total/NA Prep Batch: 6416

Count Total мв мв Uncert. Uncert.

LCS LCS

MS MS

Result Qual

8.080

Qual

Result

8 750

Result Qual

7.940

Analyte Result Qualifier $(2\sigma + / -)$ Ra-226 0.07000 U 0.250

Spike

Added

8.73

Spike

Added

Added

8.95

Spike

9 11

 $(2\sigma + / -)$

11/02/21 14:10 11/05/21 10:31

Client Sample ID: Lab Control Sample

Dil Fac

Prep Type: Total/NA Prep Batch: 6416

Lab Sample ID: LCS 810-6416/2-A

Matrix: Drinking Water Analysis Batch: 7018

Total

RL

1.00

MDC Unit

0.310 pCi/L

RL

1.00

RL

1 00

Uncert. $(2\sigma + / -)$

MDC Unit

0.370 pCi/L

%Rec 91

Prepared

%Rec.

Lab Sample ID: 810-6209-9 MS

Matrix: Ground Water Analysis Batch: 7018

Analyte

Ra-226

Analyte

Ra-226

Analyte

Analyte

Ra-226

Total

Uncert. $(2\sigma + / -)$

MDC Unit 0.360 pCi/L %Rec Limits 96

%Rec.

Prep Type: Total/NA

Prep Batch: 6416

Client Sample ID: MW-7

Lab Sample ID: 810-6209-9 MSD

Sample Sample

Result Qual

Result Qual

0 790

Matrix: Ground Water Analysis Batch: 7018

Total Uncert.

 $(2\sigma + / -)$

Prep Batch: 6416

Prep Type: Total/NA

Prep Batch: 6420

Prep Type: Total/NA

Client Sample ID: MW-7

Sample Sample Spike MSD MSD

Ra-226 0.790

RL1.00

MDC Unit %Rec 0.330 pCi/L

%Rec. Limits 80 - 120

Client Sample ID: Method Blank

80 - 120

RPD RPD Limit

Lab Sample ID: MB 810-6420/1-A

Matrix: Drinking Water Analysis Batch: 7017

Total

MB MB Uncert. Uncert. Result Qualifier $(2\sigma + / -)$ 0.5800

 $(2\sigma + / -)$ 0.400

Count

RI

1.00

MDC Unit 0.350 pCi/L

Prepared 11/02/21 14:16

Analyzed

11/05/21 11:46

Client Sample ID: Lab Control Sample

Limits

90 - 110

Dil Fac

Lab Sample ID: LCS 810-6420/2-A

Matrix: Drinking Water Analysis Batch: 7017

Total LCS LCS Uncert.

Analyte Added Ra-226 8.73 8.170

Result Qual $(2\sigma + / -)$

MDC Unit 0.360 pCi/L %Rec 94 %Rec.

Prep Type: Total/NA

Prep Batch: 6420

Lab Sample ID: 810-6209-11 MS

Matrix: Ground Water Analysis Batch: 7017

RL

1.00

Client Sample ID: MW-9 Prep Type: Total/NA Prep Batch: 6420

Total

Spike MS MS Uncert. Sample Sample Added Analyte Result Qual Result Qual $(2\sigma + / -)$ Ra-226 0.840 9.04 8.630

RL MDC Unit 1.00 0.400 pCi/L

%Rec

%Rec.

Eurofins Eaton Analytical - South Bend

Limits

80 - 120

2

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032 Job ID: 810-6209-1

Method: SM7500 Ra B - Radium-226

Method: SM7500 Ra B - Radium-226

Lab Sample ID: 810-6209-11 MSD

Client Sample ID: MW-9

Matrix: Ground Water
Analysis Batch: 7017
Prep Batch: 6420

Total Spike MSD MSD %Rec. **RPD** Sample Sample Uncert. RPD Analyte Result Qual Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Limit Ra-226 0.840 8.86 7.400 1.00 0.350 pCi/L 80 - 120 15 20

Method: SM7500 Ra D - Radium-228

Lab Sample ID: MB 810-6417/1-A

Matrix: Drinking Water

Analysis Batch: 7201

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 6417

Count Total MB MB Uncert. Uncert. $(2\sigma + / -)$ Analyte Result Qualifier $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac 11/02/21 14:13 11/11/21 15:31 Ra-228 -0.3600 U 0.390 1.00 0.440 pCi/L

Lab Sample ID: LCS 810-6417/2-A Client Sample ID: Lab Control Sample Matrix: Drinking Water Prep Type: Total/NA

Matrix: Drinking Water

Analysis Batch: 7201

Prep Batch: 6417

Total

Spike LCS LCS Uncert. %Rec. **Analyte** Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits 80 - 120 Ra-228 8.84 7.400 1.00 0.370 pCi/L 84

Lab Sample ID: 810-6209-10 MS

Matrix: Ground Water

Analysis Batch: 7201

Client Sample ID: MW-8

Prep Type: Total/NA

Prep Batch: 6417

Total Sample Sample Spike MS MS Uncert. %Rec. Result Qual Added RL **MDC** Unit %Rec **Analyte** Result Qual $(2\sigma + / -)$ Limits -1.22 U Ra-228 8.98 8.550 1.00 0.370 pCi/L 70 - 130

Lab Sample ID: 810-6209-10 MSD

Matrix: Ground Water

Client Sample ID: MW-8

Prep Type: Total/NA

Analysis Batch: 7201 Prep Batch: 6417

Total Sample Sample Spike MSD MSD Uncert. %Rec. **RPD** Analyte Result Qual Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits **RPD** Limit Ra-228 -1.22 U 9.15 8.240 1.00 0.490 pCi/L 70 - 130 20 90

Lab Sample ID: MB 810-6421/1-A Client Sample ID: Method Blank

Matrix: Drinking Water Prep Type: Total/NA
Analysis Batch: 7161 Prep Batch: 6421

Count Total MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Ra-228 0.1000 U 0.430 1.00 0.450 pCi/L 11/02/21 14:19 11/11/21 12:18

QC Sample Results

Client: Trace Analytical Laboratories Job ID: 810-6209-1

Project/Site: Trace-21J1034 & 21J1032

Method: SM7500 Ra D - Radium-228 (Continued)

Lab Sample ID: LCS 810-6421/2-A	Client Sample ID: Lab Control Sample
Matrix: Drinking Water	Prep Type: Total/NA
Analysis Batch: 7161	Prep Batch: 6421

A	nalysis Batch: 7161								Prep Bate	ch: 642
					Total					
		Spike	LCS	LCS	Uncert.				%Rec.	
Aı	nalyte	Added	Result	Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits	
Ra	a-228	8.84	9.590		- <u> </u>	1.00	0.470 pCi/L	108	80 - 120	

4

6

8

10

11

13

QC Association Summary

Client: Trace Analytical Laboratories Job ID: 810-6209-1 Project/Site: Trace-21J1034 & 21J1032

Rad

Prep Batch: 6416

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
810-6209-1	Unit 1/2 Near MW-5	Total/NA	Ground Water	RAD Prep	
810-6209-2	Unit 1/2 Near SG-2	Total/NA	Ground Water	RAD Prep	
810-6209-3	MW-1R	Total/NA	Ground Water	RAD Prep	
810-6209-4	MW-2	Total/NA	Ground Water	RAD Prep	
810-6209-5	MW-3	Total/NA	Ground Water	RAD Prep	
810-6209-6	MW-4	Total/NA	Ground Water	RAD Prep	
810-6209-7	MW-5	Total/NA	Ground Water	RAD Prep	
810-6209-8	MW-6	Total/NA	Ground Water	RAD Prep	
810-6209-9	MW-7	Total/NA	Ground Water	RAD Prep	
810-6209-10	MW-8	Total/NA	Ground Water	RAD Prep	
MB 810-6416/1-A	Method Blank	Total/NA	Drinking Water	RAD Prep	
LCS 810-6416/2-A	Lab Control Sample	Total/NA	Drinking Water	RAD Prep	
810-6209-9 MS	MW-7	Total/NA	Ground Water	RAD Prep	
810-6209-9 MSD	MW-7	Total/NA	Ground Water	RAD Prep	

Prep Batch: 6417

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
810-6209-1	Unit 1/2 Near MW-5	Total/NA	Ground Water	RAD Prep	_
810-6209-2	Unit 1/2 Near SG-2	Total/NA	Ground Water	RAD Prep	
810-6209-3	MW-1R	Total/NA	Ground Water	RAD Prep	
810-6209-4	MW-2	Total/NA	Ground Water	RAD Prep	
810-6209-5	MW-3	Total/NA	Ground Water	RAD Prep	
810-6209-6	MW-4	Total/NA	Ground Water	RAD Prep	
810-6209-7	MW-5	Total/NA	Ground Water	RAD Prep	
810-6209-8	MW-6	Total/NA	Ground Water	RAD Prep	
810-6209-9	MW-7	Total/NA	Ground Water	RAD Prep	
810-6209-10	MW-8	Total/NA	Ground Water	RAD Prep	
MB 810-6417/1-A	Method Blank	Total/NA	Drinking Water	RAD Prep	
LCS 810-6417/2-A	Lab Control Sample	Total/NA	Drinking Water	RAD Prep	
810-6209-10 MS	MW-8	Total/NA	Ground Water	RAD Prep	
810-6209-10 MSD	MW-8	Total/NA	Ground Water	RAD Prep	

Prep Batch: 6420

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
810-6209-11	MW-9	Total/NA	Ground Water	RAD Prep	
810-6209-12	MW-10	Total/NA	Ground Water	RAD Prep	
MB 810-6420/1-A	Method Blank	Total/NA	Drinking Water	RAD Prep	
LCS 810-6420/2-A	Lab Control Sample	Total/NA	Drinking Water	RAD Prep	
810-6209-11 MS	MW-9	Total/NA	Ground Water	RAD Prep	
810-6209-11 MSD	MW-9	Total/NA	Ground Water	RAD Prep	

Prep Batch: 6421

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
810-6209-11	MW-9	Total/NA	Ground Water	RAD Prep	
810-6209-12	MW-10	Total/NA	Ground Water	RAD Prep	
MB 810-6421/1-A	Method Blank	Total/NA	Drinking Water	RAD Prep	
LCS 810-6421/2-A	Lab Control Sample	Total/NA	Drinking Water	RAD Prep	

Page 15 of 27

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032

Client Sample ID: Unit 1/2 Near MW-5

Date Collected: 10/26/21 11:25 Date Received: 10/28/21 09:45 Lab Sample ID: 810-6209-1

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D			7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7018	11/05/21 10:31	JB	EA SB
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Client Sample ID: Unit 1/2 Near SG-2 Lab Sample ID: 810-6209-2

Date Collected: 10/26/21 15:25 Date Received: 10/28/21 09:45 Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D			7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7018	11/05/21 10:31	JB	EA SB
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Client Sample ID: MW-1R

Date Collected: 10/26/21 11:45

Lab Sample ID: 810-6209-3

Matrix: Ground Water

Date Collected: 10/26/21 11:45 Date Received: 10/28/21 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D		1	7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7018	11/05/21 10:31	JB	EA SB
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Client Sample ID: MW-2

Date Collected: 10/26/21 13:55

Lab Sample ID: 810-6209-4

Matrix: Ground Water

Date Collected: 10/26/21 13:55 Date Received: 10/28/21 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D		1	7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7018	11/05/21 10:31	JB	EA SB
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Eurofins Eaton Analytical - South Bend

Page 16 of 27

Job ID: 810-6209-1

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032

Client Sample ID: MW-3

Lab Sample ID: 810-6209-5

Matrix: Ground Water

Date Collected: 10/26/21 12:35 Date Received: 10/28/21 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D			7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7018	11/05/21 10:31	JB	EA SB
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Lab Sample ID: 810-6209-6

Lab Sample ID: 810-6209-7

Lab Sample ID: 810-6209-8

Matrix: Ground Water

Matrix: Ground Water

Matrix: Ground Water

Date Collected: 10/26/21 12:00 Date Received: 10/28/21 09:45

Client Sample ID: MW-4

Batch **Batch** Dilution Batch **Prepared Prep Type** Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA 7500 Ra D EA SB Analysis 7233 11/12/21 13:20 JB Total/NA RAD Prep 6416 11/02/21 14:10 ML EA SB Prep Total/NA Analysis SM7500 Ra B 7018 11/05/21 10:31 JB EA SB 1 Total/NA EA SB Prep RAD Prep 6417 11/02/21 14:13 ML EA SB Total/NA Analysis SM7500 Ra D 1 7201 00 (Start) 11/11/21 14:44 (End) 11/11/21 17:44

Client Sample ID: MW-5

Date Collected: 10/26/21 10:35

Date Received: 10/28/21 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D			7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7018	11/05/21 10:31	JB	EA SB
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Client Sample ID: MW-6

Date Collected: 10/26/21 11:00 Date Received: 10/28/21 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D		1	7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7223		JB	EA SB
					(Start)	11/12/21 11:43		
					(End)	11/12/21 12:13		

Eurofins Eaton Analytical - South Bend

Page 17 of 27

11/29/2021 (Rev. 1)

Job ID: 810-6209-1

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032

Client Sample ID: MW-6

Lab Sample ID: 810-6209-8

Matrix: Ground Water

Date Collected: 10/26/21 11:00 Date Received: 10/28/21 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Lab Sample ID: 810-6209-9

Matrix: Ground Water

Date Collected: 10/26/21 10:20 Date Received: 10/28/21 09:45

Client Sample ID: MW-7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D			7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7018	11/05/21 10:31	JB	EA SB
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Client Sample ID: MW-8 Lab Sample ID: 810-6209-10

Date Collected: 10/26/21 15:35 Matrix: Ground Water

Date Received: 10/28/21 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D		1	7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7018	11/05/21 10:31	JB	EA SB
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Client Sample ID: MW-9 Lab Sample ID: 810-6209-11

Date Collected: 10/26/21 14:30 Matrix: Ground Water

Date Received: 10/28/21 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D		1	7165	11/11/21 16:33	JB	EA SB
Total/NA	Prep	RAD Prep			6420	11/02/21 14:16	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7017	11/05/21 11:46	JB	EA SB
Total/NA	Prep	RAD Prep			6421	11/02/21 14:19	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7161	11/11/21 12:18	00	EA SB

Eurofins Eaton Analytical - South Bend

2

4

6

7

9

11

13

Lab Chronicle

Client: Trace Analytical Laboratories Job ID: 810-6209-1

Project/Site: Trace-21J1034 & 21J1032

Client Sample ID: MW-10 Lab Sample ID: 810-6209-12

Date Collected: 10/26/21 15:05

Date Received: 10/28/21 09:45

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D		1	7165	11/11/21 16:33	JB	EA SB
Total/NA	Prep	RAD Prep			6420	11/02/21 14:16	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7017	11/05/21 11:46	JB	EA SB
Total/NA	Prep	RAD Prep			6421	11/02/21 14:19	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7161	11/11/21 12:18	00	EA SB

Laboratory References:

EA SB = Eurofins Eaton Analytical - South Bend, 110 S Hill Street, South Bend, IN 46617, TEL (574)233-4777

_

6

ا

9

10

12

13

Accreditation/Certification Summary

Client: Trace Analytical Laboratories Job ID: 810-6209-1

Project/Site: Trace-21J1034 & 21J1032

Laboratory: Eurofins Eaton Analytical - South Bend

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
Michigan		State	9926	03-22-22
The following analyte the agency does not		report, but the laboratory is not c	ertified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
7500 Ra D		Ground Water	Combined Radium 226 + 228	3
7500 Ra D SM7500 Ra B	RAD Prep	Ground Water Ground Water	Combined Radium 226 + 228 Ra-226	3

4

7

0

10

11

40

Method Summary

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032 Job ID: 810-6209-1

Method	Method Description	Protocol	Laboratory
7500 Ra D	Radium 226 Radium 228 Combined	SM	EA SB
SM7500 Ra B	Radium-226	SM	EA SB
SM7500 Ra D	Radium-228	SM	EA SB
RAD Prep	Preparation, Radiologicals	None	EA SB

Protocol References:

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

EA SB = Eurofins Eaton Analytical - South Bend, 110 S Hill Street, South Bend, IN 46617, TEL (574)233-4777

Sample Summary

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032

Job I	D:	810)-620	09-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
810-6209-1	Unit 1/2 Near MW-5	Ground Water	10/26/21 11:25	10/28/21 09:45
810-6209-2	Unit 1/2 Near SG-2	Ground Water	10/26/21 15:25	10/28/21 09:45
810-6209-3	MW-1R	Ground Water	10/26/21 11:45	10/28/21 09:45
810-6209-4	MW-2	Ground Water	10/26/21 13:55	10/28/21 09:45
810-6209-5	MW-3	Ground Water	10/26/21 12:35	10/28/21 09:45
810-6209-6	MW-4	Ground Water	10/26/21 12:00	10/28/21 09:45
810-6209-7	MW-5	Ground Water	10/26/21 10:35	10/28/21 09:45
310-6209-8	MW-6	Ground Water	10/26/21 11:00	10/28/21 09:45
810-6209-9	MW-7	Ground Water	10/26/21 10:20	10/28/21 09:45
810-6209-10	MW-8	Ground Water	10/26/21 15:35	10/28/21 09:45
810-6209-11	MW-9	Ground Water	10/26/21 14:30	10/28/21 09:45
810-6209-12	MW-10	Ground Water	10/26/21 15:05	10/28/21 09:45

Eaton Analytical

110 S. Hill Street South Bend, IN 46617 T: 1.800.332.4345

F: 1.574.233.8207

Order#

Batch #

						010-04	209 Chair	1 of Custod	ıy							
www.EurofinsUS.com/Eaton						LHAU	N (1 =					Page		of		
Shaded area for	or EEA us	e only				CHAI	N OF	C0310	או אביטו							
REPORT TO:					SAMPLER (Signature)				PWS ID#	STATE (sample origin)	PROJECT NAME	PC	D#			
Jon Mink, Tim Brewer (jmink@trace-lat Analyitical Laboratories, Inc., 2241 Bla 773-5998	os.com, tbrew ck Creek Rd.,	ver@trace-labs.o , Muskegon, Mi	com) 49444	Trace 4 231-				МІ				21J10	134.8	- 10		ш
BILL TO:					Yes		No	POPU	LATION SERVED	SOURCE WATER		21J1		H.S		TIME
Accounts Payable, Trace Analytical La Muskegon, MI 49444	boratories, Inc	c., 2241 Black (Creek	Rd.,	COMPLIANCE MONITORING									CONTAINERS	X CODE	TURNAROUND
LAB Number	C	COLLECTION	I		SAMPLING SITE				TEST NA	ME	SAMPLE REMARKS	CHLORI	INATED	OF C	MATRIX	RN AN
	DATE	TIME	AM	PM					p	Accent	able	YES	NO	#	Ž	2
1	10/26/21	11:25	x		Unit 1/2 Near MW-5(FF)			Radium 226	6/228	1			x	1	GW	SW
2	10/26/21	15:25		x	Unit 1/2 Near SG-2(FF)			Radium 226	6/228				x	1	GW	SW
3	10/26/21	11:45	x		MW-1R(FF)			Radium 220	6/228				x	1	GW	sw
4	10/26/21	13:55		x	MW-2(FF)			Radium 220	6/228				x	1	GW	SW
5 (4) 11 (4) (4) (5) (6) (7) (8) (7) (8) (7) (8) (8)	10/26/21	12:35		x	MW-3(FF)			Radium 220	6/228				x	1	GW	sw
6	10/26/21	12:00		x	MW-4(FF)			Radium 220	5/228				x	1	GW	sw
7 Company Company	10/26/21	10:35	x		MW-5(FF)			Radium 220	5/228				x	1	GW	sw
8	10/26/21	11:00	х		MW-6(FF)	Į.		Radium 22	6/228				x	1	GW	sw
9 (2.14) 1.14 (4.14) (4.14)	10/26/21	10:20	x		MW-7(FF)			Radium 22	5/228				x	1	GW	sw
10	10/26/21	15:35		x	MW-8(FF)	2		Radium 22	5/228				x	1	GW	sw
11 of the second consumption of the second	10/26/21	14:30		x	MW-9(FF)			Radium 22	5/228				х	1	GW	sw
12	10/26/21	15:05		x	MW-10(FF)			Radium 22	5/228				x	1	GW	SW
13																
14																
RELINQUISHED BY:(Signature)		DATE	T	IME	RECEIVED BY:(Signature)		DATE	dium 226/	LAB RESERV	ES THE RIGHT TO RETURN UNI	JSED PORTIONS OF NON-	AQUEOUS	SAMPLES 1	LO CLIEN.	т	\neg
11111		10/	B	:24		- 11			LAB COMMENTS			157,50	19.70		1	W 6
WY		1927/21	AM	[PM	Fedex	- 10		AM PM	1 11	_ 17 ~ ~	oh/o	1	garacture.	14	410	
RELINQUISHED BY:(Signature)		DATE			RECEIVED BY:(Signature)		DATE	TIME	111111	5 7754	CIVO	U	_	76	رسار	
Feder				Loss				A44 594				(IR 03) 3	iac	7
RELINQUISHED BY:(Signature)		DATE		IME	RECEIVED FOR LABORATORY BY:		DATE	TIME			112			/	0	0
			AM	PM	Stelle	- 10	282	0944 AM PM	CONDITIONS UPON R	et/Blue Ambient	4.0 °C Upon	Receipt_	X	N/A	951	28
MATRIX CODES:		TURN-ARC			E (TAT) - SURCHARGES											
DW-DRINKING WATER RW-REAGENT WATER		SW = Standar			*	IV	= Immediat	e Verbal: (3 wo								
GW-GROUND WATER		RV* = Rush Ve			• • •			e Written: (3 w			Samples received una					
EW-EXPOSURE WATER SW-SURFACE WATER		RW* = Rush W	/ritten:	(5 worl	king days) 75%		P" = Weeken		CALL		may be subject to add					
PW-POOL WATER WW-WASTE WATER		* Please cal	II, exp	oedite	ed service not available for all testing	S.	IAI" = Less	than 48 hours	CALL		06-LO-F0435 Issue	60 F#	ective Da	te: 2010	3-09-20	

06-LO-F0435 Issue 6.0 Effective Date: 2016-09-20

	eu	rof	Fi	ns
00	_ 0.			

Eaton Analytical

110 S. Hill Street South Bend, IN 46617 T: 1.800.332.4345 F: 1.574.233.8207

Order # Batch #

www.EurofinsUS.com/Eaton						C	HAIN OF	CHIST	ODY RECO	PD		D-		-4		
Shaded area fo	r EEA us	se only					I IAIN OI	0031	ODT RECO	ND .		Pag	e	01		_
REPORT TO:					SAMPLER (Signature)			PWS ID #	STATE (sample origin)	PROJECT NAME		PO#			T
Jon Mink, Tim Brewer (jmink@trace-lab: Analytical Laboratories, Inc., 2241 Blac 773-5998										МІ						
BILL TO: Accounts Payable, Trace Analytical Lab Muskegon, MI 49444	oratories, In	nc., 2241 Black	Creek	Rd.,	COMPLIANCE MONITORING	Yes	No	POF	PULATION SERVED	SOURCE WATER			J1034 & JJ1032	CONTAINERS	MATRIX CODE	TURNAROUND TIME
LAB Number	C	COLLECTION	4		S	AMPLING SITE			TEST NA	AME	SAMPLE REMARKS	СНГС	RINATE	OF CO	TRIX	RNAR
	DATE	TIME	AM	PM								YES	NO	#	₹	1 2
1	10/28/21	11:25	×		Unit 1/2 Near MW-5			Radium 2	26/228				×	1	GW	SW
2	10/26/21	15:25		×	Unit 1/2 Near SG-2			Radium 2	26/228				×	1	GW	sw
3	10/26/21	11:45	×		MW-1R			Radium 2	26/228			and the second	×	1	GW	SW
4	10/26/21	13:55		x	MW-2			Radium 2	26/228			-	x	1	GW	SW
5	10/26/21	12:35		×	MW-3			Radium 2:	26/228				×	1	GW	sw
6	10/26/21	12:00		x	MW-4			Radium 2	26/228		i i	-	×	1	GW	sw
7	10/26/21	10:35	×		MW-5			Radium 2	26/228				×	1	GW	SW
8	10/26/21	11:00	×		MW-6			Radium 2	26/228				x	1	GW	sw
9	10/26/21	10:20	×		MW-7			Radium 2	26/228				×	1	GW	sw
10 Company of the second secon	10/26/21	15:35		x	MW-8			Radium 2	26/228				×	1	GW	SW
11	10/26/21	14:30		х	MW-9	•		Radium 2	26/228				×	1	GW	SW
12	10/26/21	15:05		×	MW-10			Radium 2	26/228				×	1	GW	sw
13				-												
14 RELINQUISHED BY:(Signature)		DATE	TI	ME	RECEIVED BY:(Signa	ature)	DATE	dium 226/	LAB RESERV	VES THE RIGHT TO RETURN UN	USED PORTIONS OF NON-A	VQUEOU:	SAMPLES	TO CLIEN	π	
			-	PM	1			111 514	可以有关的证明	於於此地震院						
RELINQUISHED BY:(Signature)		DATE			RECEIVED BY:(Signa	ature)	DATE	TIME								
RELINQUISHED BY:(Signature)		DATE		PM ME	RECEIVED FOR LABO	RATORY BY:	DATE	AM PM		NAMES OF THE PROPERTY OF THE						
,				Ι					CONDITIONS UPON F	RECEIPT (check one): et/Blue Ambient	°C Upon I	Receipt		NA		
MATRIX CODES:		TURN-ARC		PM TIM	L E (TAT) - SURCHARG	ES		AM PM	Committee of the second	TO STORY OF STREET STATE STREET, STREE	market of warming		(Control of		201420852	
DW-DRINKING WATER RW-REAGENT WATER GW-GROUND WATER EW-EXPOSURE WATER SW-SURFACE WATER PRA-POOL WATER		SW = Standar RV" = Rush Ve RW" = Rush Ve	rbal: (5	works	ng days) 50%		IV" = Immediat IV" =Immediat SP" = Weeken STAT" = L666	te Written: (3 w	working days) 125% CALL		Samples received unanthan 48 hours holding to	me rema	aining			
WW-WASTE WATER Sample analysis will be provided acc	andian Ar M				d service not available						06-LO-F0435 Issue 6	.0 Eff	ective Da	te: 2016	-09-20	

Spurgeon, Sheri

From:

Fullmer, Karen

Sent:

Monday, November 01, 2021 1:37 PM

To:

Spurgeon, Sheri

Subject:

FW: Revised chain of custody for J6209

Attachments:

Eurofins COC-Revised for Trace Labs 21J1034 and 21J1032.pdf

Sheri,

Here is a revised COC for Job 6209.

Best regards,

Karen Fullmer

Analytical Service Manager

Eurofins Eaton Analytical, LLC

110 South Hill Street South Bend, IN 46617

Office: +1 574-472-5513 Mobile: +1 574-309-8853

E-Mail: karen.fullmer@eurofinset.com Website: www.EurofinsUS.com/Env

From: Britani Wright <b wright@trace-labs.com>
Sent: Thursday, October 28, 2021 5:27 PM

To: Fullmer, Karen < Karen.Fullmer@eurofinset.com >; Jon Mink < jmink@trace-labs.com >

Subject: Revised chain of custody

EXTERNAL EMAIL*

Hi Karen,

I've attached a revised Chain of Custody for the radium samples that we sent in yesterday afternoon-for Trace Labs ID#'s 21J1034 & 21J1032. The only thing that needs to be changed is that the (FF) after each sampling site ID needs to be removed. Sorry for the inconvenience.

Thank you,

Britani Wright

1

Page 25 of 27

11/29/2021 (Rev. 1)

-

Л

5

6

0

9

10

12

3

C: 616-916-4328 bwright@trace-labs.com

Trace Analytical Laboratories, Inc. 2241 Black Creek Rd. Muskegon, MI 49444 231.773.5998 ext. 243

CONFIDENTIALITY NOTICE:

The contents of this email message and any attachments are intended solely for the addressee(s) and may contain confidential and/or privileged information and may be legally protected from disclosure. If you are not the intended recipient of this message or their agent, or if this message has been addressed to you in error, please immediately alert the sender by reply email and then delete this message and any attachments. If you are not the intended recipient, you are hereby notified that any use, dissemination, copying, or storage of this message or its attachments is strictly prohibited.

* WARNING - EXTERNAL: This email originated from outside of Eurofins Environment Testing America. Do not click any links or open any attachments unless you trust the sender and know that the content is safe!

Login Sample Receipt Checklist

Client: Trace Analytical Laboratories Job Number: 810-6209-1

List Source: Eurofins Eaton Analytical - South Bend Login Number: 6209

List Number: 1

Creator: Spurgeon, Sheri

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Samples do not require splitting or compositing.	True	
Container provided by EEA	True	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Ple	ease Si	g Released By				1 15:25	10.36.21 11:25	Trace Date Time No. Collected Collected	Project Name: Impoundment Sampling	*Results provided end of business day, requires prior approval	☐ 1 Day*		Turnaround Requirements:	Email Address:	Office Phone:	City, State, Zip Code:	Mailing Address:	Report To: Paul Cederquist	Company Name: Grand Haven Board of Light & Power	Report Results To:	ANALYTICAL LABORAT)	
In executing this Cha	Dall	A Reserved By				Unit 1/2 Near SG-2	Unit 1/2 Near MW-5	Client Sample ID	Sampling	00011	S	× σ	Z		Cell Phone:				of Light & Power		BORATORIES, INC.		
(a) (a) (b) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a	8 14cdoil	Date				G-2	N-5 Y W	Metals Field Filtered (Y / N) Matrix	Sampled By: 七分		SL = Sludge A = Air	S = Soil / Solid WI = Wipes	Matrix Key:	Billing Email Address:	Phone Number:	City, State, Zip Code:	Billing Address (if different):	Contact Name:	PO#	Bill To:	2241 Black Creek Road Muskegon, MI 49444-2673	CHAIN-OF-CUSTODY I	
4) dges the terms as set forth at w	8:262	Time Relea					5 × × ×	Number of Containers Cool HCI HNO3 H2SO4 NaOH Olher T-B,Ca,Fe,S						9:			ferent):				Road 44-2673	CHAIN-OF-CUSTODY RECORD	
ww.trace-labs.com/terms-of-ag		Released By					× × × ×	T- Co,Cu, P T- TI, V,Zn, Diss.Metals Fluoride,Sul	Mn,M (Sam	g,K,Na e as To	otals)	es	Ar								Fax 888.979.4469 www.trace-labs.com		
reement.		Received By					×	LLHg Radiums 22 Bicarb-Alk, (nate-Al	k		Analysis Requested	e ping	ġ	MeOH Lov	Soil Volatiles Preserved (circle if applicable):	Checked By:	Logged By:	Trace Use:	21110	Page_	
	+	Date Time			0.01	\$ 29	pH=7.11	Remarks		***						Low Level Lab	d (circle if applicable):		5	•	1032 1032	of	,

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

21J1032 Grand Haven Board of Light Project Manager: Jon Mink

Sample Log In Checklist

Date: $ 0-27-2 $ Time: $9\cdot20$ Logged by: DH Package Description: $Cooler$	Original Observation	Corrected Temperature	IR-9 (CF: +0.1°C)	IR-10 (CF: +0.1°C)	20B12743 (CF: -0.4°C)	emp Blank	Client Sample
Package Temp °C	-1.7	-1.6	-	/	7		
Representative Sample Temp °C	1.8	1.9		1			1

	Representative dampie temp of 1.0 1.7 1
ample Receipt	
s No	
Received on ice or other coolant	· · · · · · · · · · · · · · · · · · ·
lce still present upon receipt	
Custody seals present	
Trace Courier Client Drop-off UPS	Fed Ex US Mail Other
ample Condition	
es No N/A.	
All sample containers arrived unbroken	
Sufficient sample to run requested analy Correct chemical preservative added to	
Samples preserved at Trace	sumples
Chemical preservation verified, check El	MD pH test strip used (if applicable)
pH 0-2.5 (Lot: HC029115)	pH 11.0-13.0 (Lot: HC022540)
Air bubbles absent from VOAs	
Chain of Custody (COC)	•
/es No ✓	
COC filled out properly	
COC signed by client	3
Notes:	
* 1	
•	
	\
Form 70-A.40	
Effective 10/2/21	TRACE Analytical Laboratori

Turbidity: 10% or <1 pH: +/- 0.1

ORP: +/- 10 mV Dissolved Oxygen: 10% Spec. Conductivity: 3%

Temperature: 3% Stabilization Criteria:

Notes:

Specific

Dissolved Conductivity

11.00

1.00

00

(Celsius)

0

5

0 57

1

Temperature

Water Depth to

Reading Time

ORP (mV) Oxygen

(=

Turbidity(NTU)

0.0

모

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP Impoundment ID: Unit by NWS Depth to Point

Field Personnel:

Sample Tubing Depth: 2017

Purge Start Time: 10:55

Purge Rate:

							i.
				1			
			3				
		. ,					

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Spec. Conductivity: 3% Dissolved Oxygen: 10%

Temperature: 3% Stabilization Criteria:

Notes:

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Impoundment ID: Wirt & byS62

Purge Start Time: 14,55

Depth to Point:

Date:_

Field Personnel:

Purge Rate: Sample Tubing Depth: 20 台ナ

				T			T
рH	Turbidity(NTU)	ORP (mV)	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Depth to Water	Reading Time
8.39	3.7	100	9.87	1.63	12.13	1	どび
8.39 8.39 8.39	3.8 3.7	160	9.87 9.87 9.87	1.63 1.63	12.13 12.13 12.13)	15:15 15:18 15:21
8.39	3.7	100	9.87	1.63	12,13)	15:21
-						*	
	-						

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Plea	se Si	gn											Trace No.	Project Name:	*Results] <u>×</u>	Turnar	Email Address:	Office Phone:	City, State	Mailing Address:	Report To	Company	Report	<u> </u>	
	die		6		-			-			-	10-26-21	Date Collected		provided (1 Day	tandard,	ound Re	dress:	one:	City, State, Zip Code:	ddress:	Paul (Name: (Report Results To:		
		Released By	15:05	14:30	15:35	10:20	11:00	16:35	12:00	IJ: 35	13:55	1:45	Time Collected	MW Sampling	end of business day		Standard, 5-10 Days	Turnaround Requirements:			e.		Report To: Paul Cederquist	Frand Haven Bo	То:		Щ
In page riting this Official of Controls the planet polar and the fact that	10/10	Received By	MW-10	MW-9	MW-8	MW-7	MW-6	MW-5	MW-4	MW-3	MW-2	MW-1R	Client Sample ID	ng	*Results provided end of business day, requires prior approval. OI = Oil	SL = Sludge	S = Soil / Solid	Matrix Key:		Cell Phone:				Company Name: Grand Haven Board of Light & Power		SORATORIES, INC.	
	12/12/01	Date	~									\ \	Metals Field Filtered (Y / N)	Sampled By:		ge A=Air		Key:	Billing Email Address:	Phone Number:	City, State, Zip Code:	Billing Address (if different):	Contact Name:	PO#	Bill To:	Trace Analytical Laboratori 2241 Black Creek Road Muskegon, MI 49444-2673	CHAIN
4)	8326 2	Time	G									∀ 5 ×	Matrix Number of Containers Cool HCI HNO ₃ H ₂ SO ₄ NaOH	38) 18	g Water	d waste			dress:		Ode:	if different):				Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673	CHAIN-OF-CUSTODY RECORD
		Released By										×	H ₂ SO ₄ A Sales			7											RECORD
		Ву	1116									×	T- TI, V,Zn, Diss.Metals Fluoride,Su	(Sam	e as To											Phone 231.773.5998 Fax 888.979.4469 www.trace-labs.com	
		Receive	1 4 1								 	×	pH LLHg Radiums 22	26/228				Analysis Re		Sampli	7	Soil Vo	Checked By:	Logged By:	Trace	3 %	
		ceived By	4									×	Bicarb-Alk,	Carbo	nate-Al	k		Requested		Sampling Time:	MeOH Low	latiles Preserved (ad By:	1By: DA	race Use: 🧷	ZIJ[0;	Page_
		Date Tir	J 7.42	7.31	6.74	7.01	7.60	17.43	1-6-74	6.91	16.48	pH=7.%0	Remarks								Low Level Lab	Soil Volatiles Preserved (circle if applicable):				Trace ID No.	of 1
		Time	-		_		\sim	S	$\stackrel{\leftarrow}{-}$		∞	0	Possible Heal	th Haz	ards?	-89-1			3		σ	۳					-

21J1034

Sample Log In Checklist

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Grand Haven Board of Light Project Manager: Jon Mink :	Date: 10-27-21 Time: 9:20 Logged by: DH Package Description: Coole(Package Temp °C Representative Sample Temp °C	A L Original Observation	Corrected Temperature	IR-9 (CF: +0.1°C) R-10 (CF: +0.1°C) 20812743 (CF: -0.4°C) Temp Blank Client Sample
Sample Receipt				
Yes No Received on ice or other coolant Ice still present upon receipt Custody seals present Yes Trace Courier Client Drop-off UPS	☑No Custody seals intact (if app ☑Fed Ex ☑US Mail	licable)	Othe	er
Sample Condition				
Yes No N/A All sample containers arrived unbroken a Sufficient sample to run requested analy Correct chemical preservative added to Samples preserved at Trace See	rses samples		а.	
Chemical preservation verified, check EN				

pH 11.0-13.0 (Lot: HC022540)

05-E, 06-E,

DH 10/17/21 Preserved radiums 10/27/21@13:11

pH 0-2.5 (Lot: HC029115)

Air bubbles absent from VOAs

All bottle labels agree with COC COC filled out properly COC signed by client

Form 70-A.40 Effective 10/2/21

Yes

Notes:

HNO3

Chain of Custody (COC)

TRACE Analytical Laboratories, Inc.

Other

Turbidity: 10% or <1 pH: +/- 0.1

ORP: +/- 10 mV Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3% Stabilization Criteria:

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW -1R

Depth to Water: 6.23

Date: 10. 26.21

Depth to Point: 18.2ft

Field Personnel: EB

Purge Start Time: 11:25

Purge Rate: __

7						
Reading Time		11. 20 11. 11. 11. 11.				
705+6+			-	2 5 60		
nepth to						
Water	75	7.51 7.51	1.8.1			
Temperature	<i>L</i>	ر ا ا				1
(Celsius)	1.0	11.011.0	/ . ()			
Specific	1		G			
Conductivity	トガン	74 844 844 BA	アプレ		-	
Dissolved						
Oxygen	1.01	1.81	-0		-	
ORP (mV)						
	-25	، من	ر الا			
Turbidity(NTU)						3
	22.6	22.6 22.6 22.6	22.6			
PΗ	7.86	7.86 7.80 7.86	7.86			

Pump Ušed: Peristaltic

Notes:

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Pump Used: Peristaltic

Spec. Conductivity: 3%

Dissolved Oxygen: 10%

Stabilization Criteria:

Notes:

Temperature: 3%

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 2

Depth to Water: 14.71

Date: (()~ み(6・ よ)

Purge Start Time: 13:35 Depth to Point: 23.51'

Field Personnel: FB

Purge Rate:

pH /	Turbidity(NTU)		1	ity	ure	Depth to Water \S	Reading Time 13	
2	0	-129	0.0	4.12	M.17 14.17	15.21	4	
847 847 847	0.0 0.0 0.0	-129	0	4.12 4.12	11.17	15.23 15.23	3:47 13:50 13:52	
847	0.0	-129	0.0	4.12	1 14.17	15.23	13:52	
		1						
						-		

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Dissolved Oxygen: 10% Spec. Conductivity: 3% Stabilization Criteria:

Notes:

Temperature: 3%

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 3

Depth to Water: 1.90

Depth to Point: 20.5'

Purge Start Time: 12: 10

Field Personnel:

300ml/min

Purge Rate: _

į				10112				
	PI	Turbidity(NTU)			Ϊţ	ומות		Reading Time Depth to
	- 4 - 6	5	19	かげ	3.96 3.96 3.96	15.86 15.86 15.86	12. 72	12:27
	6.91 6.91 6.91	6	1	2,14 2,14 2,14	3.96	15,86	12.72 12.72	12:27 12:30 12:38
•		<u>.</u>	1 2	2.14	3.96	15.86	12.72	12:38
					- HT			
	50 20 30							

Turbidity: 10% or <1 pH: +/- 0.1

ORP: +/- 10 mV Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3% Stabilization Criteria:

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 4

Depth to Water: _

Date: 10-26-21

Depth to Point: 18.01'

Field Personnel: EB

Purge Start Time: 11:40 Purge Rate: 300100/11/15

Reading Time	1	:			2		
	1.07	1.8.1	12:06				
Water	41.05	11.03	11.03				
Temperature (Celsius)	16.68	16.68 16.68	16.62				
Specific Conductivity	75 75 75) J	ر آ ا				
Dissolved		(
Oxygen	14,	. 47	84.				
ORP (mV)							
	-116	-116	1116				
Turbidity(NTU)							
	0,00,0	0.0	0.0				
护	117 117	7/1	11/2				
	6. 1	0. 7	6		5		

Pump Used: Peristaltic

Notes:

Specific (Celsius)

76

76

ORP (mV)

シナ

1

8FI

8H/

Turbidity(NTU)

Oxygen

Dissolved Conductivity

모

17.41

7. 43

7.43

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 5

Depth to Water:

Depth to

Reading Time

10:25

30

Water

6

Temperature

16.02

16. OJ

Date: 10-26-21

Depth to Point: 11.5'

Purge Start Time: 10:15

Field Personnel: Th

Purge Rate: _

Tompora+1150: 30/	Stabilization Criteria:

Spec. Conductivity: 3% lemperature: 3%

ORP: +/- 10 mV Dissolved Oxygen: 10% Turbidity: 10% or <1

Notes:

pH: +/- 0.1

Specific

(Celsius)

17.59

7.59

17.59

Temperature

Conductivity

Water Depth to

P

W

0

3/

2.2

Reading Time

8

0:53

10:56

Oxygen Dissolved

ORP (mV)

1

2

8

Turbidity(NTU)

모

7.60 | 7.60 | 7.60

N

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 6

Depth to Water: _

Date: 15-26-21

Field Personnel: EB

Depth to Point: 16.55'

Purge Start Time: 10:40

Purge Rate: _

Turbidity: 10% or <1	ORP: +/- 10 mV	Dissolved Oxygen: 10%	Spec. Conductivity: 3%	Temperature: 3%	Stabilization Criteria:

Notes:

Depth to Water

6.21

Reading Time

D: 15

(Celsius)

15,24

15.24 15.24

. J

Temperature

Specific

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 7

Depth to Water: 5,25

Date: 10 - 26-21

Depth to Point: 18.81'

Field Personnel:_

Purge Start Time: 10:00

Purge Rate: __

Tomposet 20/
050505011111111111111111111111111111111

Stabilization Criteria:

Notes:

멀

7.0

7.0

ORP (mV)

7

7

Turbidity(NTU)

5

Ľ

Oxygen

Dissolved Conductivity

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 8

Depth to Water: 4.04

Depth to Point: 11.85

Purge Start Time: 15:10

Purge Rate: _

Field Personnel:_

모	Turbidity(NTU)		Oxygen	ity	ture	Depth to Water	Reading Time
6.74	0.0	-137 -137 -137	0.0	h08.	15.72 15.72 15.72	4.86	15:25
6.74 6.74 6.74	0.0 0.0 0.0	-137	0.0	208. 208. 408.	15.72	4.86 4.86 4.86	15:25 15:28 15:3
6.74	0.0	-137	0.0	. 805	15.72	4.8%	15:31
						· / (25
	з						

Stabilization Criteria: Temperature: 3%

Notes:

Dissolved Oxygen: 10% Spec. Conductivity: 3%

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Dissolved Oxygen: 10% ORP: +/- 10 mV

Spec. Conductivity: 3%

Temperature: 3%

Stabilization Criteria:

Notes:

Turbidity: 10% or <1 pH: +/- 0.1

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 9

Depth to Water: 8.49

Date: 10-26-21

Depth to Point: 14.9

Purge Start Time: 14' 10

Purge Rate: _

Field Personnel:

P	_	0	00	CN	S 7	50	70
	Turbidity(NTU)	RP (mV)	Dissolved Oxygen	~			Reading Time
7.31	アン	2	. 56	1.25	16.12	9.31	14:20 14:24
7.31 7.31 7.31	5.4 5.4	-9	56 .56 .56	1.25 1.25 1.25	16.12 16.13 16.13	9.3)	
7.31	5.4	- 9	. 56	 り 。	اله. \ع	.3/	14.77
-							

Spec. Conductivity: 3%
Dissolved Oxygen: 10%
ORP: +/- 10 mV
Turbidity: 10% or <1
pH: +/- 0.1

Stabilization Criteria:

Notes:

Temperature: 3%

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 10

Depth to Water: 5.32

Date: 10. 26.21

Depth to Point: 13.00

Purge Start Time: 14:45

Section Constitution Constituti

Field Personnel:

Purge Rate: 300 und min

ORP (mV) Oxygen Specific (Celsius) Water Depth to 모 Turbidity(NTU) Dissolved Conductivity Reading Time Temperature 6.07 198 SS:h1 16.66 7.42 23 25 6.07 14:58 198 861. 15:01 25 0.00 2

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

November 09, 2021

Mr. Paul Cederquist Grand Haven Board of Light and Power-Monthly MWs 1700 Eaton Drive Grand Haven, MI 49417

RE: Trace Project

21J1157

Client Project

Surface Water Sampling

Dear Mr. Cederquist:

Enclosed are your analytical results. The results of this report relate only to the samples listed in the body of this report.

All reports were examined through Trace's validation process to ensure that requirements for quality and completeness were satisfied. All reported analytical results were obtained in accordance with the methods referenced on the reports. Every practical effort was made to meet the reporting limit specifications for this work, however, some results may have raised reporting limits to correct for percent solids.

For clients that require NELAP Accreditation, Trace certifies that these test results meet all requirements of the NELAP Standard, except for those analytes with a "N" notation. These analytes have not been evaluated by NELAP at Trace's discretion and will not be reported unless requested by client.

If you have questions concerning this report, please contact me at 231.773.5998 or by email at jmink@trace-labs.com.

Sincerely,

Jon Mink Senior Project Manager Enclosures

NJDEP Accreditation No. MI008

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

SAMPLE SUMMARY

Trace Project ID:

21J1157

Client Project ID:

Surface Water Sampling

Trace ID	Sample ID	Matrix	Collected By	Date Collected	Date Received
21J1157-01	SW-SG-1	Surface Water	TRACE-EB/TB	10/28/21 10:15	10/28/21 15:58
21J1157-02	SW-N-SG-2	Surface Water	TRACE-EB/TB	10/28/21 09:10	10/28/21 15:58
21J1157-03	SW-SE-MW-7	Surface Water	TRACE-EB/TB	10/28/21 12:05	10/28/21 15:58
21J1157-04	SW-NE-MW-10	Surface Water	TRACE-EB/TB	10/28/21 10:30	10/28/21 15:58

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

AN EXPLANATION OF TERMS AND SYMBOLS WHICH MAY OCCUR IN THIS REPORT

DEFINITIONS

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

MS Matrix Spike

MSD Matrix Spike Duplicate
RPD Relative Percent Difference

DUP Matrix Duplicate

RDL Reporting Detection Limit
MCL Maximum Contamination Limit
TIC Tentatively Identified Compound

<, ND or U Indicates the compound was analyzed for but not detected

Indicates a result that exceeds its associated MCL or Surrogate control limits
 Indicates that the laboratory is not accredited by NELAP for this compound

NA Indicates that the compound is not available.

NOTE: Samples for volatiles that have been extracted with a water miscible solvent were corrected for the

total volume of the solvent/water mixture.

Solid matrices Method Blanks are at 100% solids as such results are the same wet or dry.

DATA QUALIFIERS

Trace ID: T116265-DUP1	
Analysis: SM 2540 C-11	
Total Dissolved Solids	Note 623 : The relative percent difference between the sample and sample duplicate is out of control. The sample result should be considered estimated.
Trace ID: T116384-MSD1	
Analysis: EPA 6010D	
Calcium	Note 207: The RPD between the MS and the MSD was out of control. Because both spike recoveries were in control, no data require qualification.

CERTIFICATE OF ANALYSIS

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Vanadium

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-01 Matrix: Surface Water Date Collected: 10/28/21 10:15 Sample ID: SW-SG-1 Date Received: 10/28/21 15:58 Field pH: 8.46 **PARAMETERS** RESULTS UNITS DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116283 Mercury 2.2 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116267 0.0018 Beryllium <0.0018 mg/L 1 11/01/21 mrh 11/02/21 ckd Boron 0.053 mg/L 0.045 1 11/01/21 mrh 11/02/21 ckd Calcium 72 mg/L 0.45 1 11/01/21 mrh 11/02/21 ckd 11/01/21 mrh 11/02/21 Iron 0.61 mg/L 0.18 1 ckd 11/02/21 Lithium 0.0070 mg/L 0.0090 1 11/01/21 mrh ckd J, N Magnesium 22 mg/L 0.18 1 11/01/21 mrh 11/02/21 ckd 11/01/21 11/02/21 Potassium 4.6 mg/L 0.90 mrh ckd 1 1 Sodium 24 mg/L 0.45 11/01/21 mrh 11/02/21 ckd N <0.018 mg/L 0.018 11/01/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116267 Antimony <0.00027 mg/L 0.00027 1 11/01/21 11/04/21 mrh acs Arsenic 0.0014 mg/L 0.00090 1 11/01/21 mrh 11/04/21 acs 0.057 mg/L 0.0090 11/01/21 11/04/21 Barium 1 mrh acs Cadmium <0.00090 mg/L 0.00090 1 11/01/21 mrh 11/04/21 acs Chromium 0.0016 mg/L 0.00081 1 11/01/21 mrh 11/04/21 acs Cobalt <0.0014 mg/L 0.0014 11/01/21 mrh 11/04/21 acs 0.0022 mg/L 0.0036 1 11/01/21 11/04/21 Copper mrh acs J Lead 0.00086 mg/L 0.0018 1 11/01/21 mrh 11/04/21 J acs 11/01/21 11/04/21 Manganese 0.046 mg/L 0.022 1 mrh acs Molybdenum 0.0013 mg/L 0.00036 1 11/01/21 11/04/21 N mrh acs 11/04/21 Nickel 0.0020 mg/L 0.0045 1 11/01/21 mrh acs J. Selenium <0.0018 mg/L 0.0018 11/01/21 11/04/21 mrh acs <0.00090 mg/L 11/04/21 Silver 0.00090 1 11/01/21 mrh acs Thallium <0.00090 mg/L 0.00090 1 11/01/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00072

0.0017 mg/L

11/01/21

11/04/21

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-01 Sample ID: SW-SG-1		Date Collected: 10/28/21 10:15 Date Received: 10/28/21 15:58			Field pH: 8.46				
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	ВҮ	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: SM 2340 B-11									
Batch: [CALC]	"								
Hardness as CaCO3	270 mg/L	0.74	1	11/01/21		11/02/21	ckd	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T116384									
Beryllium	<0.0010 mg/L	0.0010	1	11/03/21	ckd	11/04/21	ckd		
Boron	0.047 mg/L	0.050	1	11/03/21	ckd	11/04/21	ckd	J	
Calcium	69 mg/L	0.50	1	11/03/21	ckd	11/04/21	ckd		
Iron	0.058 mg/L	0.10	1	11/03/21	ckd	11/04/21	ckd	J	
Lithium	0.0033 mg/L	0.010	1	11/03/21	ckd	11/04/21	ckd	J, N	
Magnesium	21 mg/L	0.20	1	11/03/21	ckd	11/04/21	ckd		
Potassium	4.0 mg/L	1.0	1	11/03/21	ckd	11/04/21	ckd		
Sodium	22 mg/L	0.50	1	11/03/21	ckd	11/04/21	ckd	N	
Zinc	0.0018 mg/L	0.020	1	11/03/21	ckd	11/04/21	ckd	J	
Analysis Method: EPA 6020B Batch: T116167									
Antimony	0.00035 mg/L	0.00020	1	11/08/21	ckd	11/08/21	ckd		
Arsenic	0.0013 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Barium	0.051 mg/L	0.00060	1	11/08/21	ckd	11/08/21	ckd		
Cadmium	<0.0010 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Chromium	<0.00080 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		
Cobalt	0.00017 mg/L	0.0016	1	11/08/21	ckd	11/08/21	ckd	J	
Copper	0.0011 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		
Lead	0.00011 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	J	
Manganese	0.012 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Molybdenum	0.0012 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	N	
Nickel	0.0012 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Selenium	<0.00087 mg/L	0.00087	1	11/08/21	ckd	11/08/21	ckd		
Silver	<0.000040 mg/L	0.000040	1	11/08/21	ckd	11/08/21	ckd		
Thallium	<0.00017 mg/L	0.00017	1	11/08/21	ckd	11/08/21	ckd		

CERTIFICATE OF ANALYSIS

0.00080

0.00053 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

J

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-01 Matrix: Surface Water Date Collected: 10/28/21 10:15

Sample ID: SW-SG-1 Date Received: 10/28/21 15:58 Field pH: 8.46

PARAMETERS RESULTS UNITS DILUTION PREPARED BY ANALYZED ΒY NOTES MCL RDL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116228

Fluoride 0.094 mg/L 0.10 10/29/21 5 ans 10/29/21 ans J Chloride 43 mg/L 0.75 5 10/29/21 10/29/21 ans Sulfate as SO4 34 mg/L 3.0 5 10/29/21 10/29/21 ans ans Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 220 mg/L 10 1 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <10 mg/L 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116265

Total Dissolved Solids 320 mg/L 40 11/01/21 mr 11/02/21 mr

Date Collected: 10/28/21 09:10

Date Received: 10/28/21 15:58

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Field pH: 7.57

ANALYTICAL RESULTS

Matrix: Surface Water

<0.0016 mg/L

0.0031 mg/L

0.00086 mg/L

0.055 mg/L

0.0010 mg/L

<0.0050 mg/L

<0.0020 mg/L

<0.0010 mg/L

<0.0010 mg/L

0.00061 mg/L

Trace Project ID: 21J1157

Trace ID: 21J1157-02

Cobalt

Copper

Manganese

Molybdenum

Lead

Nickel

Silver

Selenium

Thallium

Vanadium

Sample ID: SW-N-SG-2

Client Project ID: Surface Water Sampling

PARAMETERS RESULTS UNITS DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116283 Mercury 7.5 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116267 Beryllium <0.0020 mg/L 0.0020 1 11/01/21 mrh 11/02/21 ckd Boron 0.13 mg/L 0.050 1 11/01/21 mrh 11/02/21 ckd Calcium 59 mg/L 0.50 1 11/01/21 mrh 11/02/21 ckd 0.20 11/01/21 mrh 11/02/21 Iron 0.41 mg/L 1 ckd 11/02/21 Lithium 0.011 mg/L 0.010 1 11/01/21 mrh ckd Ν Magnesium 22 mg/L 0.20 1 11/01/21 mrh 11/02/21 ckd 11/01/21 11/02/21 Potassium 4.6 mg/L 1.0 mrh ckd 1 1 Sodium 28 mg/L 0.50 11/01/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 11/01/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116267 Antimony 0.00030 11/01/21 <0.00030 mg/L 1 11/04/21 mrh acs Arsenic 0.0010 mg/L 0.0010 1 11/01/21 mrh 11/04/21 acs 0.068 mg/L 0.010 11/01/21 11/04/21 Barium 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 11/01/21 mrh 11/04/21 acs Chromium 0.0021 mg/L 0.00090 1 11/01/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.0016

0.0040

0.0020

0.025

0.00040

0.0050

0.0020

0.0010

0.0010

0.00080

1

1

1

1

1

1

1

11/01/21

11/01/21

11/01/21

11/01/21

11/01/21

11/01/21

11/01/21

11/01/21

11/01/21

11/01/21

mrh

mrh

mrh

mrh

mrh

mrh

mrh

mrh

mrh

11/04/21

11/04/21

11/04/21

11/04/21

11/04/21

11/04/21

11/04/21

11/04/21

11/04/21

11/04/21

acs

J

J

N

J

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Vanadium

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-02 Matrix: Surface Water Date Collected: 10/28/21 09:10 Sample ID: SW-N-SG-2 Date Received: 10/28/21 15:58 Field pH: 7.57 **PARAMETERS** RESULTS UNITS DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 240 mg/L 0.82 11/01/21 11/02/21 Ν ckd METALS, DISSOLVED Analysis Method: EPA 6010D Batch: T116384 Beryllium <0.0010 mg/L 0.0010 11/03/21 ckd 11/04/21 ckd 0.12 mg/L 0.050 11/03/21 11/04/21 Boron 1 ckd ckd Calcium 59 mg/L 0.50 1 11/03/21 ckd 11/04/21 ckd Iron 0.14 mg/L 0.10 1 11/03/21 ckd 11/04/21 ckd Lithium 0.0073 mg/L 0.010 11/03/21 11/04/21 J, N 1 ckd ckd 11/03/21 11/04/21 Magnesium 21 mg/L 0.20 1 ckd ckd Potassium 4.3 mg/L 1.0 1 11/03/21 ckd 11/04/21 ckd Sodium 26 mg/L 0.50 1 11/03/21 ckd 11/04/21 ckd N 11/04/21 Zinc 0.00092 mg/L 0.020 1 11/03/21 J ckd ckd Analysis Method: EPA 6020B Batch: T116167 11/08/21 Antimony 0.00029 mg/L 0.00020 1 11/08/21 ckd ckd Arsenic 0.00091 mg/L 0.0010 1 11/08/21 ckd 11/08/21 ckd J **Barium** 0.066 mg/L 0.00060 1 11/08/21 ckd 11/08/21 ckd Cadmium <0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd <0.00080 mg/L 0.00080 11/08/21 11/08/21 Chromium 1 ckd ckd Cobalt 0.00015 mg/L 0.0016 1 11/08/21 ckd 11/08/21 ckd J 0.00034 mg/L 0.00080 11/08/21 ckd 11/08/21 Copper ckd 1 11/08/21 11/08/21 Lead 0.000098 mg/L 0.00040 ckd ckd J. 0.048 mg/L 0.00040 11/08/21 11/08/21 Manganese 1 ckd ckd Molybdenum 0.0011 mg/L 0.00040 11/08/21 11/08/21 ckd ckd Ν 0.0014 mg/L 0.00040 1 11/08/21 ckd 11/08/21 Nickel ckd <0.00087 mg/L 11/08/21 Selenium 0.00087 1 11/08/21 ckd ckd Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00017 mg/L Thallium 0.00017 1 11/08/21 ckd 11/08/21 ckd

CERTIFICATE OF ANALYSIS

0.00080

0.00038 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

J

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ΒY

ANALYTICAL RESULTS

RDL

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-02 Sample ID: SW-N-SG-2

Matrix: Surface Water

RESULTS UNITS

Date Collected: 10/28/21 09:10

Date Received: 10/28/21 15:58

DILUTION

PREPARED

Field pH: 7.57

BY ANALYZED

NOTES MCL

METALS, DISSOLVED

PARAMETERS

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116228

Fluoride 0.14 mg/L 0.10 10/29/21 10/29/21 5 ans ans Chloride 52 mg/L 1.5 10 11/02/21 11/02/21 jma jma Sulfate as SO4 3.0 10/29/21 10/29/21 <3.0 mg/L 5 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 210 mg/L 10 1 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <10 mg/L 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116265

Total Dissolved Solids 340 mg/L 40 4 11/01/21 mr 11/02/21 mr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-03 Matrix: Surface Water Date Collected: 10/28/21 12:05 Sample ID: SW-SE-MW-7 Date Received: 10/28/21 15:58 Field pH: 7.80 **PARAMETERS** RESULTS UNITS DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116283 Mercury 3.0 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116267 Beryllium <0.0020 mg/L 0.0020 1 11/01/21 mrh 11/02/21 ckd Boron 0.049 mg/L 0.050 1 11/01/21 mrh 11/02/21 ckd J Calcium 71 mg/L 0.50 1 11/01/21 mrh 11/02/21 ckd 0.20 11/01/21 11/02/21 Iron 0.99 mg/L 1 mrh ckd 11/01/21 11/02/21 Lithium <0.010 mg/L 0.010 1 mrh ckd Ν Magnesium 21 mg/L 0.20 1 11/01/21 mrh 11/02/21 ckd 11/01/21 11/02/21 Potassium 4.7 mg/L 1.0 mrh 1 ckd 1 Sodium 23 mg/L 0.50 11/01/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 11/01/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116267 Antimony 0.00030 11/01/21 <0.00030 mg/L 1 11/04/21 mrh acs Arsenic 0.0017 mg/L 0.0010 1 11/01/21 mrh 11/04/21 acs 0.058 mg/L 0.010 11/01/21 11/04/21 Barium 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 11/01/21 mrh 11/04/21 acs Chromium 0.0026 mg/L 0.00090 1 11/01/21 mrh 11/04/21 acs Cobalt <0.0016 mg/L 0.0016 11/01/21 mrh 11/04/21 acs 0.0033 mg/L 0.0040 1 11/01/21 11/04/21 Copper mrh acs J Lead 0.0021 mg/L 0.0020 1 11/01/21 mrh 11/04/21 acs 0.071 mg/L 11/01/21 11/04/21 Manganese 0.025 1 mrh acs Molybdenum 0.0013 mg/L 0.00040 1 11/01/21 11/04/21 Ν mrh acs 11/04/21 Nickel 0.0025 mg/L 0.0050 1 11/01/21 mrh acs J. Selenium <0.0020 mg/L 0.0020 11/01/21 11/04/21 mrh acs <0.0010 mg/L 0.0010 11/04/21 Silver 1 11/01/21 mrh acs Thallium <0.0010 mg/L 0.0010 1 11/01/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

11/01/21

11/04/21

acs

0.0023 mg/L

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Vanadium

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-03 Matrix: Surface Water Date Collected: 10/28/21 12:05 Sample ID: SW-SE-MW-7 Date Received: 10/28/21 15:58 Field pH: 7.80 **PARAMETERS** RESULTS UNITS DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 270 mg/L 0.82 11/01/21 11/02/21 Ν ckd **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T116384 Beryllium <0.0010 mg/L 0.0010 11/03/21 ckd 11/04/21 ckd 0.050 11/03/21 11/04/21 Boron 0.045 mg/L 1 ckd ckd J Calcium 70 mg/L 0.50 1 11/03/21 ckd 11/04/21 ckd Iron 0.067 mg/L 0.10 1 11/03/21 ckd 11/04/21 ckd J Lithium 0.0034 mg/L 0.010 11/03/21 ckd 11/04/21 1 ckd J. N 11/03/21 11/04/21 Magnesium 21 mg/L 0.20 1 ckd ckd Potassium 4.1 mg/L 1.0 1 11/03/21 ckd 11/04/21 ckd Sodium 21 mg/L 0.50 1 11/03/21 ckd 11/04/21 ckd N 11/04/21 Zinc 0.0016 mg/L 0.020 1 11/03/21 J ckd ckd Analysis Method: EPA 6020B Batch: T116167 11/08/21 Antimony 0.00023 mg/L 0.00020 1 11/08/21 ckd ckd Arsenic 0.0013 mg/L 0.0010 1 11/08/21 ckd 11/08/21 ckd **Barium** 0.051 mg/L 0.00060 1 11/08/21 ckd 11/08/21 ckd Cadmium <0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd <0.00080 mg/L 0.00080 11/08/21 11/08/21 Chromium 1 ckd ckd Cobalt 0.00018 mg/L 0.0016 1 11/08/21 ckd 11/08/21 ckd J 0.0013 mg/L 0.00080 11/08/21 ckd 11/08/21 Copper 0.000089 mg/L 0.00040 1 11/08/21 11/08/21 Lead ckd ckd J 0.022 mg/L 0.00040 11/08/21 11/08/21 Manganese 1 ckd ckd Molybdenum 0.0012 mg/L 0.00040 11/08/21 11/08/21 ckd ckd Ν 0.0013 mg/L 0.00040 1 11/08/21 ckd 11/08/21 Nickel ckd <0.00087 mg/L 11/08/21 11/08/21 Selenium 0.00087 ckd ckd Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00017 mg/L Thallium 0.00017 1 11/08/21 ckd 11/08/21 ckd

CERTIFICATE OF ANALYSIS

0.00080

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

J

0.00054 mg/L

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

RDL

0.10

0.75

3.0

10

10

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-03

Sample ID: SW-SE-MW-7

Matrix: Surface Water

Date Collected: 10/28/21 12:05

Date Received: 10/28/21 15:58

Field pH: 7.80

PARAMETERS

RESULTS UNITS

0.093 mg/L

41 mg/L

32 mg/L

DILUTION

PREPARED

10/29/21

10/29/21

10/29/21

11/03/21

11/03/21

ans

ans

ans

ans

ans

mr

BY ANALYZED

10/29/21

10/29/21

10/29/21

11/04/21

11/04/21

BY NOTES

MCL

METALS, DISSOLVED

WET CHEMISTRY

Fluoride

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116228

Chloride Sulfate as SO4

ŀ

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 Carbonate Alkalinity as CaCO3 at pH 8.2

Carbonate Aikainity as Cacco at pri o.

Analysis Method: SM 2540 C-11

Batch: T116265

Total Dissolved Solids

330 mg/L

220 mg/L

<10 mg/L

38

3.846154

5

5

5

1

11/01/21

11/02/21

mr

ans

ans

ans

ans

J

Ν

Ν

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-04 Sample ID: SW-NE-MW-10	Matrix: Surface Water		Collected: 10/28 Received: 10/28		Fie	eld pH: 7.89			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: EPA 1631E Batch: T116283									
Mercury	8.8 ng/L	0.50	1	11/01/21	ckd	11/02/21	ckd	N	
Analysis Method: EPA 6010D Batch: T116267									
Beryllium	<0.0020 mg/L	0.0020	1	11/01/21	mrh	11/02/21	ckd		
Boron	0.20 mg/L	0.050	1	11/01/21	mrh	11/02/21	ckd		
Calcium	62 mg/L	0.50	1	11/01/21	mrh	11/02/21	ckd		
Iron	0.25 mg/L	0.20	1	11/01/21	mrh	11/02/21	ckd		
Lithium	0.015 mg/L	0.010	1	11/01/21	mrh	11/02/21	ckd	N	
Magnesium	24 mg/L	0.20	1	11/01/21	mrh	11/02/21	ckd		
Potassium	4.7 mg/L	1.0	1	11/01/21	mrh	11/02/21	ckd		
Sodium	29 mg/L	0.50	1	11/01/21	mrh	11/02/21	ckd	N	
Zinc	<0.020 mg/L	0.020	1	11/01/21	mrh	11/02/21	ckd		
Analysis Method: EPA 6020B Batch: T116267									
Antimony	<0.00030 mg/L	0.00030	1	11/01/21	mrh	11/04/21	acs		
Arsenic	0.00091 mg/L	0.0010	1	11/01/21	mrh	11/04/21	acs	J	
Barium	0.067 mg/L	0.010	1	11/01/21	mrh	11/04/21	acs		
Cadmium	<0.0010 mg/L	0.0010	1	11/01/21	mrh	11/04/21	acs		
Chromium	0.0017 mg/L	0.00090	1	11/01/21	mrh	11/04/21	acs		
Cobalt	<0.0016 mg/L	0.0016	1	11/01/21	mrh	11/04/21	acs		
Copper	<0.0040 mg/L	0.0040	1	11/01/21	mrh	11/04/21	acs		
Lead	<0.0020 mg/L	0.0020	1	11/01/21	mrh	11/04/21	acs		
Manganese	0.10 mg/L	0.025	1	11/01/21	mrh	11/04/21	acs		
Molybdenum	0.0010 mg/L	0.00040	1	11/01/21	mrh	11/04/21	acs	N	
Nickel	<0.0050 mg/L	0.0050	1	11/01/21	mrh	11/04/21	acs		
Selenium	<0.0020 mg/L	0.0020	1	11/01/21	mrh	11/04/21	acs		
Silver	<0.0010 mg/L	0.0010	1	11/01/21	mrh	11/04/21	acs		
Thallium	<0.0010 mg/L	0.0010	1	11/01/21	mrh	11/04/21	acs		

CERTIFICATE OF ANALYSIS

0.00080

0.00086 mg/L

11/01/21

11/04/21

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-04 Sample ID: SW-NE-MW-10	Matrix: Surface Water		Date Collected: 10/28/21 10:30 Date Received: 10/28/21 15:58			ld pH: 7.89			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	250 mg/L	0.82	1	11/01/21		11/02/21	ckd	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T116384									
Beryllium	<0.0010 mg/L	0.0010	1	11/03/21	ckd	11/04/21	ckd		
Boron	0.18 mg/L	0.050	1	11/03/21	ckd	11/04/21	ckd		
Calcium	56 mg/L	0.50	1	11/03/21	ckd	11/04/21	ckd		
Iron	0.077 mg/L	0.10	1	11/03/21	ckd	11/04/21	ckd	J	
Lithium	0.010 mg/L	0.010	1	11/03/21	ckd	11/04/21	ckd	N	
Magnesium	21 mg/L	0.20	1	11/03/21	ckd	11/04/21	ckd		
Potassium	4.4 mg/L	1.0	1	11/03/21	ckd	11/04/21	ckd		
Sodium	27 mg/L	0.50	1	11/03/21	ckd	11/04/21	ckd	N	
Zinc	<0.020 mg/L	0.020	1	11/03/21	ckd	11/04/21	ckd		
Analysis Method: EPA 6020B Batch: T116167									
Antimony	0.00032 mg/L	0.00020	1	11/08/21	ckd	11/08/21	ckd		
Arsenic	0.00097 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd	J	
Barium	0.059 mg/L	0.00060	1	11/08/21	ckd	11/08/21	ckd		
Cadmium	<0.0010 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Chromium	0.00043 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd	J	
Cobalt	0.00013 mg/L	0.0016	1	11/08/21	ckd	11/08/21	ckd	J	
Copper	0.00056 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd	J	
Lead	0.00013 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	J	
Manganese	0.024 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Molybdenum	0.00094 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	N	
Nickel	0.0013 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Selenium	<0.00087 mg/L	0.00087	1	11/08/21	ckd	11/08/21	ckd		
Silver	<0.000040 mg/L	0.000040	1	11/08/21	ckd	11/08/21	ckd		
Thallium	<0.00017 mg/L	0.00017	1	11/08/21	ckd	11/08/21	ckd		

CERTIFICATE OF ANALYSIS

0.00080

0.00031 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

J

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-04 Matrix: Surface Water Date Collected: 10/28/21 10:30

Sample ID: SW-NE-MW-10 Date Received: 10/28/21 15:58 Field pH: 7.89

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116228

Fluoride 0.12 mg/L 0.10 10/29/21 10/29/21 5 ans ans Chloride 52 mg/L 1.5 10 11/02/21 11/02/21 jma jma Sulfate as SO4 31 mg/L 3.0 5 10/29/21 10/29/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 190 mg/L 10 1 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <10 mg/L 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116265

Total Dissolved Solids 300 mg/L 40 4 11/01/21 mr 11/02/21 mr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

QUALITY CONTROL RESULTS

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: T116283 Analysis Description: Mercury, Total, Low Level

QC Batch Method: EPA 1631E Analysis Method: EPA 1631E Analysis Method: EPA 1631E

METHOD BLANK: T116283-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/l	<0.20	0.20	

METHOD BLANK: T116283-BLK2

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/L	<0.20	0.20	

METHOD BLANK: T116283-BLK3

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/L	<0.20	0.20	

LABORATORY CONTROL SAMPLE: T116283-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Mercury	ng/L	25.0	23.4	94	77-123	

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: T116267 Analysis Description: Beryllium, Total
QC Batch Method: EPA 3015 Microwave Assisted Digestions Analysis Method: EPA 6010D

for Liquids

METHOD BLANK: T116267-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Boron	mg/L	<0.050	0.050	
Beryllium	mg/L	<0.0020	0.0020	
Calcium	mg/L	0.17	0.50	J
Iron	mg/L	<0.20	0.20	
Potassium	mg/L	0.18	1.0	J
Lithium	mg/L	<0.010	0.010	
Magnesium	mg/L	0.057	0.20	J
Sodium	mg/L	0.39	0.50	J

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T116267-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Zinc	mg/L	<0.020	0.020	

LABORATORY CONTROL SAMPLE: T116267-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	0.889	0.857	96	80-120	
Beryllium	mg/L	0.111	0.110	99	80-120	
Calcium	mg/L	8.89	8.88	100	80-120	
Iron	mg/L	8.89	9.16	103	80-120	
Potassium	mg/L	8.89	9.15	103	80-120	
Lithium	mg/L	0.889	0.887	100	80-120	
Magnesium	mg/L	8.89	9.28	104	80-120	
Sodium	mg/L	8.89	9.42	106	80-120	
Zinc	mg/L	0.889	0.921	104	80-120	

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: T116384 Analysis Description: Zinc, Dissolved QC Batch Method: Analysis Method: EPA 6010D

METHOD BLANK: T116384-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Boron	mg/L	<0.050	0.050	
Beryllium	mg/L	<0.0010	0.0010	
Calcium	mg/L	<0.50	0.50	
Iron	mg/L	<0.10	0.10	
Potassium	mg/L	0.029	1.0	J
Lithium	mg/L	<0.010	0.010	
Magnesium	mg/L	<0.20	0.20	
Sodium	mg/L	<0.50	0.50	
Zinc	mg/L	<0.020	0.020	

LABORATORY CONTROL SAMPLE: T116384-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	1.00	0.932	93	80-120	
Beryllium	mg/L	0.0500	0.0519	104	80-120	
Calcium	mg/L	10.0	10.0	100	80-120	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T116384-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Iron	mg/L	10.0	10.1	101	80-120	_
Potassium	mg/L	10.0	9.86	99	80-120	
Lithium	mg/L	0.500	0.493	99	80-120	
Magnesium	mg/L	10.0	10.0	100	80-120	
Sodium	mg/L	10.0	9.67	97	80-120	
Zinc	mg/L	1.00	1.01	101	80-120	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116384-MSD1

Original: 21J1157-01

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Boron	mg/L	0.0467	1.00	0.978	0.972	93	93	75-125	0.7	20	
Beryllium	mg/L	0	0.0500	0.0533	0.0522	107	104	75-125	2	20	
Calcium	mg/L	69.2	10.0	80.6	77.8	114	86	75-125	28	20	207
Iron	mg/L	0.0584	10.0	10.2	10.0	101	100	75-125	1	20	
Potassium	mg/L	4.00	10.0	14.1	14.0	101	100	75-125	1	20	
Lithium	mg/L	0.00333	0.500	0.499	0.493	99	98	75-125	1	20	
Magnesium	mg/L	20.8	10.0	31.2	30.2	104	94	75-125	10	20	
Sodium	mg/L	21.5	10.0	31.3	31.1	98	96	75-125	2	20	
Zinc	mg/L	0.00178	1.00	0.985	0.980	98	98	75-125	0.5	20	

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: T116167 QC Batch Method: Analysis Description: Chromium, Dissolved

Analysis Method: EPA 6020B

METHOD BLANK: T116167-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Silver	mg/L	0.000026	0.000040	J
Arsenic	mg/L	<0.0010	0.0010	
Barium	mg/L	<0.00060	0.00060	
Cadmium	mg/L	<0.00020	0.00020	
Cobalt	mg/L	<0.0016	0.0016	
Chromium	mg/L	<0.00080	0.00080	
Copper	mg/L	<0.00080	0.00080	
Manganese	mg/L	<0.00040	0.00040	
Molybdenum	mg/L	<0.00040	0.00040	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T116167-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Nickel	mg/L	<0.00040	0.00040	
Lead	mg/L	<0.00040	0.00040	
Antimony	mg/L	0.00017	0.00020	J
Selenium	mg/L	<0.00087	0.00087	
Thallium	mg/L	<0.00017	0.00017	
Vanadium	mg/L	<0.00080	0.00080	

LABORATORY CONTROL SAMPLE: T116167-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Silver	mg/L	0.0600	0.0612	102	80-120	
Arsenic	mg/L	0.0600	0.0630	105	80-120	
Barium	mg/L	0.0600	0.0588	98	80-120	
Cadmium	mg/L	0.0600	0.0613	102	80-120	
Cobalt	mg/L	0.0600	0.0604	101	80-120	
Chromium	mg/L	0.0600	0.0629	105	80-120	
Copper	mg/L	0.0600	0.0610	102	80-120	
Manganese	mg/L	0.0600	0.0615	102	80-120	
Molybdenum	mg/L	0.0600	0.0588	98	80-120	
Nickel	mg/L	0.0600	0.0602	100	80-120	
Lead	mg/L	0.0600	0.0616	103	80-120	
Antimony	mg/L	0.0600	0.0577	96	80-120	
Selenium	mg/L	0.0600	0.0630	105	80-120	
Thallium	mg/L	0.0600	0.0617	103	80-120	
Vanadium	mg/L	0.0600	0.0581	97	80-120	

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: T116267

QC Batch Method: EPA 3015 Microwave Assisted Digestions

for Liquids

Analysis Description: Nickel, Total Analysis Method: EPA 6020B

METHOD BLANK: T116267-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Silver	mg/L	<0.0010	0.0010	
Arsenic	mg/L	<0.0010	0.0010	
Barium	mg/L	<0.010	0.010	
Cadmium	mg/L	<0.0010	0.0010	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T116267-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Cobalt	mg/L	<0.0016	0.0016	
Chromium	mg/L	<0.00090	0.00090	
Copper	mg/L	<0.0040	0.0040	
Manganese	mg/L	<0.025	0.025	
Molybdenum	mg/L	<0.00040	0.00040	
Nickel	mg/L	<0.0050	0.0050	
Lead	mg/L	<0.0020	0.0020	
Antimony	mg/L	<0.00030	0.00030	
Selenium	mg/L	<0.0020	0.0020	
Γhallium	mg/L	<0.0010	0.0010	
Vanadium	mg/L	<0.00080	0.00080	

LABORATORY CONTROL SAMPLE: T116267-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Silver	mg/L	0.0278	0.0329	118	80-120	
Arsenic	mg/L	0.0556	0.0602	108	80-120	
Barium	mg/L	0.889	0.994	112	80-120	
Cadmium	mg/L	0.0278	0.0307	111	80-120	
Cobalt	mg/L	0.889	0.923	104	80-120	
Chromium	mg/L	0.0278	0.0303	109	80-120	
Copper	mg/L	0.890	0.882	99	80-120	
Manganese	mg/L	0.887	0.918	104	80-120	
Molybdenum	mg/L	0.889	0.945	106	80-120	
Nickel	mg/L	0.889	0.869	98	80-120	
Lead	mg/L	0.0556	0.0542	98	80-120	
Antimony	mg/L	0.0556	0.0634	114	80-120	
Selenium	mg/L	0.0556	0.0584	105	80-120	
Thallium	mg/L	0.0556	0.0552	99	80-120	
Vanadium	mg/L	0.889	0.974	110	80-120	

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: [CALC] Analysis Description: Hardness (Metals)
QC Batch Method: Analysis Method: SM 2340 B-11

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

QC Batch: T116228

QC Batch Method: IC Prep W

Analysis Description: Chloride

Analysis Method: EPA 300.0 Rev. 2.1

METHOD BLANK: T116228-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Chloride	mg/L	<0.15	0.15	
Fluoride	mg/L	<0.020	0.020	
Sulfate as SO4	mg/L	<0.60	0.60	

LABORATORY CONTROL SAMPLE: T116228-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Chloride	mg/L	5.00	5.16	103	90-110	_
Fluoride	mg/L	1.00	1.03	103	90-110	
Sulfate as SO4	mg/L	5.00	4.89	98	90-110	

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: T116313

Analysis Description: Chloride

QC Batch Method: IC Prep W

Analysis Method: EPA 300.0 Rev. 2.1

METHOD BLANK: T116313-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Chloride	ma/L	<0.15	0.15	

LABORATORY CONTROL SAMPLE: T116313-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Chloride	mg/L	5.00	4.57	91	90-110	

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: T116366 QC Batch Method: SM 2320 B-11 Analysis Description: Alkalinity, Carbonate

Analysis Method: SM 2320 B-11

LABORATORY CONTROL SAMPLE: T116366-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Bicarbonate Alkalinity as CaCO3 at pH 4.5	mg/L	100	97.3	97	88-112	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T116366-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Carbonate Alkalinity as CaCO3 at pH 8.2	mg/L	100	97.3	97	88-112	

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: T116265 Analysis Description: Total Dissolved Solids
QC Batch Method: SM 2540 C-11 Analysis Method: SM 2540 C-11

METHOD BLANK: T116265-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Total Dissolved Solids	mg/L	9.0	10	J

LABORATORY CONTROL SAMPLE: T116265-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Total Dissolved Solids	ma/L	500	527	105	80-120	

SAMPLE DUPLICATE: T116265-DUP1 Original: 21J1157-01

Total Dissolved Solids	mg/L	320	368	14	10	623
Parameter	Units	Result	Result	RPD	RPD	Notes
		Original	DUP		Max	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Pleas	se Sig	n			-		7	C	7	1586.01	Trace Date No. Collected	Project Name:	*Results provide	3 Day*	Turnaround Requirements: X Standard, 5-10 Days	Email Address:	Office Phone:	City, State, Zip Code:	Mailing Address:	Report To: Paul Cederquist	Company Nam	Report Results To:) 2 m		
	M	" "			-	+	5	5	0	_	cted Co	A Sauton S	led end o		Requiard, 5-101			Code:	92	ul Cede	e: Gran	ults To:			
		Released By					0:30	12:05	91.19	20.	Time Collected	Surface \	f busines		rement Days					rquist	d Have	0-20			
(4) In executing this Chain of Custody, the client acknowledges the terms as set forth at www.trace-labs.com/terms-of-agreement.	K	By Received By					SW-NE-MW-10	SW-SE-MW-7	SW-N-SG-2	SW-SG-1	Client Sample ID	Water Sampling	St. = Sludge "Results provided end of business day, requires prior approval. OI = Oil	W = Water	s: Matrix Key: S = Soil / Solid		Cell Phone:				Company Name: Grand Haven Board of Light & Power		ATORING.		1
dv the client ac	108001	, Date					_		_	_	Metals Field	Sampled By:	A = Air D = Drinking Water		: WI = Wipes	Billing Email Address:	Phone Number:	City, State, Zip Code:	Billing Address (if different):	Contact Name:	PO#	Bill To:	2241 Black Creek Road Muskegon, MI 49444-2673	Trace Analytical Laboratories, Inc.	
	16	\dashv		+	+	+	<u>≺</u> ⊗	∀	×	∀	Filtered (Y / N) Matrix	1//1	ing Wa	iid Wa	S	ddress		Code:	(if diffe				eek H 4944	alLal	
does	53	Time			\top		5	5	S	5	Number of Containers	100	iter	ste					erent):				t-26	oorat	
the ten	2)	4			+		×	×	×	×	Cool HCI 30		-										73	ories	
rms a		þ			+		×	×	×	×	HCI Preservation H ₂ SO ₄ NaOH	B												, Inc.	
SP		ŀ			\pm	\pm																		1.50	
2		ᄝ			+		×	_	نـــ	×	Other T-B,Ca,Fe	Sh As	Ba Be C	Cd C	,	1									
*www		Released By	-	+	+	+	4			×	T- Co,Cu,												¥ a	모	
t acc		By -		+	+	+	90			X	T- TI, V,Zn				-								x 888	one :	
ahe c		-	\dashv	+	+		<			×	Diss.Metal			als)									3.97s	231.7	
m/fa		-		-	+	+	1		-	$\frac{1}{\times}$	Fluoride,S				es es								Fax 888.979.4469 www.trace-labs.com	Phone 231.773.5998	
	\vdash	+		+	+			-		×	рН												om o	998	
groe-		ŀ			+	-	6	-		×	LLHg				⊢ Anal	<u> </u>	1	_				1			
nemo nemo		ᇛ			+	+	8	_		X	Radiums 2	26/228			Analysis Requested		Sar	Т	Soi	S,	<u></u>	쿫			
		Received By			-	+	65			X	Bicarb-Alk		1075 00000		Req		Sampling Time:	МеОН	Vola	cked	Logged By:	race Use:			ı
		By			-	+	100			+	2.23.27.110	,		7-12-	—est		Time	임	tiles P	By:	Ϋ́	Jse:	6	2	
		-			-	+			\vdash	-					— <u>e</u>				resen	_	1		ć	-	١
		\dashv		_										_				Low Level	ved (c	区	X	2	-	Ггасс	Ĺ
	\vdash	Date					pH=7.89	08.7.=Hd	pH=7.5	pH=8.4(Remarks							Level Lab	Soil Volatiles Preserved (dircle if applicable):		2	_		Trace ID No.	80
		Time			_	-	20	96	\simeq	6	Possible He	alth Han	ards?		\dashv			8	<u></u>						П

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Spec. Conductivity: 3% Dissolved Oxygeh: 10% ORP: +/- 10 mV Turbidity: 10% ar <1 pH: +/- 0.1	Stabilization Criteria: Temperature: 3%	рН	Turbidity(NTU)	ORP (mV)	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Reading Time		Surface Water ID: W-SS-2	Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form
ity: 3% in: 10% or <1	teria:	 7.57	0,0	6	0.02	. 472	9.43	9:00	Purge Start Time: 중: 서도	: N-55-ð	lytical La
		7.57	0.0	6	60.07	· 472	9.93	9:03	ie: 8:45		boratorio
Pum	Notes:	7.57	0.0	6	16.02	472	9.93	9:06	_ Purgo		es: Low Flow We
Pump Used: Peristaltic	:S:								Purge Rate: 30		ow Well F
tic								,	300 malmin		ourging Fi
									,		Field Measuren
											urements
				-							s Form
								,			

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1	pΗ	bidity(NTU)	ORP (mV)	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Reading Time		Surface Water ID : 56 -	Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form Client: GHBLP Date: 10-28-21 Field Personnel: EB/TB
teria: % ity: 3% en: 10%	8.46	72.4	196	7.91	.581	11.28	80:01	Purge Start Time: 9:55	: 56-1	lytical La
	3.46	22.4	136	7.91	185.	11.28	10:11	\$.50 \$.50 \$.50 \$.50 \$.50 \$.50 \$.50 \$.50	J	boratorie
Notes:	8.46	12,4	196	7.91	.581	11.28	16: 13	Purg		S: Low Flow W
Notes: Pump Used: Peristaltic								Purge Rate: <u>දිප</u> ප		ow Well I
altic						1		Soom Clusion		Purging F
								2		Field Measure
					-					suremen
									,	ts Form
				7 8						

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Stabil Temp Spec. Disso ORP: Turbii pH:+	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Turbi.	ORP (mV)	Dissolved Oxygen	Specific Conduct	Tempera (Celsius)	Readi		Surfac	Tra
Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1		Turbidity(NTU)	mV)	٥	Specific Conductivity	Temperature (Celsius)	Reading Time	-	ce Water ID	Trace Anal
eria: 6 17: 3% 17: 10%	7.89		53	10.05	.463	10.20	10:20	Purge Start Time: 10:05	Surface Water ID: NE-MW-10	ytical La
	7.89	14.9	25	10.05	.463	10.20	10:23	e: 10:05	2-10	boratorie
Notes: Pump Used: Peristaltic	7.89	14.9	5	(0,05	.463	16.30	16:26	Purge Rate:		Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form
ristaltic								Sooul Inin	ř	ell Purging Fi
								,		Field Measureme
										ements Fo
										ä

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Client: GHBLP	072 16.72 16.73 16	Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1		Turbidity(NTU)	ORP (mV)	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Reading Time		Surface Water ID	Client: GHBLP	Trace Ana
Date: 10-28-21 Date	Date: 10.28.31 Field Measur Date: 10.28.31 Field Personnel: 15. 11.58 12.01 10.73 10.73 10.75 9.75 9.75 9.75 Notes: Notes: Pump Used: Peristaltic	teria: % ity: 3% n: 10%	7.86	0	52	9.75	.476	10.72	11:55	ourge Start Tin	: SE-MU		lytical La
Pump Used: Peristaltic	Purge Rate:		7.80	10.1	57	9.75	,476		11:58	ne: 11.40	;		boratori
	Field Personnel:	Notes: Pump Used: Peristaltic	%	[0,1	S.	9,75	,476	16.72	(2:0)		·	Date: 10-28-21	es: Low Flow Well Pur
ements Form 5/ TR													

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

roject Manager: Jon Mink		8
	Date: 10/29/21 5	erature
	Time: 9 3 7 Logged by: DW Package Description:	
<u> </u>	Package Description:	Corrected Temp IR-9 (CF: +0.1°C) IR-10 (CF: +0.1°C 20812743 (CF: -C.1°C) Temp Blank Client Sample
· · · · · · · · · · · · · · · · · · ·		Corrected Tem IR-9 (CF: +0.1° IR-10 (CF: +0.1 20B12743 (CF: Temp Blank Client Sample
	Package Temp °C - 0.4 Representative Sample Temp °C 5.2	-0.3 V
Sample Receipt Yes / No		
Received on ice or other coolant Country Coustody seals present Courier Client Drop-off UPS	- The state with applicable)	Other
Sample Condition		e e
All sample containers arrived unbroken Sufficient sample to run requested analy Correct chemical preservative added to	yses	•
Samples preserved at Trace Chemical preservation verified, check EN pH 0-2.5 (Lot: HC029115)	MD pH test strip used (if applicable)	
	Company Company (197)	Other
Chemical preservation verified, check END pH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC)	MD pH test strip used (if applicable)	Other
Chemical preservation verified, check END PH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No All bottle labels agree with COC	MD pH test strip used (if applicable)	□ Other
Chemical preservation verified, check END PH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No	MD pH test strip used (if applicable)	□ Other
Chemical preservation verified, check END PH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No All bottle labels agree with COC COC filled out properly COC signed by client	MD pH test strip used (if applicable) PH 11.0-13.0 (Lot: HC022540)	□ Other
Chemical preservation verified, check END pH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No All bottle labels agree with COC COC filled out properly	MD pH test strip used (if applicable) PH 11.0-13.0 (Lot: HC022540)	□ Other
Chemical preservation verified, check END PH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No All bottle labels agree with COC COC filled out properly COC signed by client	MD pH test strip used (if applicable) PH 11.0-13.0 (Lot: HC022540)	Other
Chemical preservation verified, check END PH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No All bottle labels agree with COC COC filled out properly COC signed by client	MD pH test strip used (if applicable) PH 11.0-13.0 (Lot: HC022540)	Other
Chemical preservation verified, check END PH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No All bottle labels agree with COC COC filled out properly COC signed by client	MD pH test strip used (if applicable) PH 11.0-13.0 (Lot: HC022540)	Other
Chemical preservation verified, check END PH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No All bottle labels agree with COC COC filled out properly COC signed by client	MD pH test strip used (if applicable) PH 11.0-13.0 (Lot: HC022540)	□ Other

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

November 30, 2021

Mr. Paul Cederquist Grand Haven Board of Light and Power-Monthly MWs 1700 Eaton Drive Grand Haven, MI 49417

RE: Trace Project 21J1157

Client Project Surface Water Sampling

Dear Mr. Cederquist:

Enclosed are your analytical results. The results of this report relate only to the samples listed in the body of this report.

All reports were examined through Trace's validation process to ensure that requirements for quality and completeness were satisfied. All reported analytical results were obtained in accordance with the methods referenced on the reports. Every practical effort was made to meet the reporting limit specifications for this work, however, some results may have raised reporting limits to correct for percent solids.

The results were obtained from Eurofins.

For clients that require NELAC Accreditation, Trace certifies that these test results meet all requirements of the NELAC Standard, except for those analytes with a "N" notation. These analytes have not been evaluated by NELAC at Trace's discretion and will not be reported unless requested by client.

If you have questions concerning this report, please contact me at 231.773.5998 or by email at jmink@trace-labs.com.

Sincerely,

Jon Mink

Senior Project Manager

Enclosures

NJDEP Accreditation No. MI008

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

SAMPLE SUMMARY

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID	Sample ID	Matrix	Collected By	Date Collected	Date Received
21J1157-01	SW-SG-1	Surface Water	TRACE-EB/TB	10/28/21 10:15	10/28/21 15:58
21J1157-02	SW-N-SG-2	Surface Water	TRACE-EB/TB	10/28/21 09:10	10/28/21 15:58
21J1157-03	SW-SE-MW-7	Surface Water	TRACE-EB/TB	10/28/21 12:05	10/28/21 15:58
21J1157-04	SW-NE-MW-10	Surface Water	TRACE-EB/TB	10/28/21 10:30	10/28/21 15:58

AN EXPLANATION OF TERMS AND SYMBOLS WHICH MAY OCCUR IN THIS REPORT

DEFINITIONS

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

MS Matrix Spike

MSD Matrix Spike Duplicate
RPD Relative Percent Difference

DUP Matrix Duplicate

RDL Reporting Detection Limit
MCL Maximum Contamination Limit
TIC Tentatively Identified Compound

<, ND or U Indicates the compound was analyzed for but not detected

* Indicates a result that exceeds its associated MCL or Surrogate control limits

N Indicates that the compound has not been evaluated by NELAC

NA Indicates that the compound is not available.

Environment Testing America

ANALYTICAL REPORT

Eurofins Eaton Analytical - South Bend 110 S Hill Street South Bend, IN 46617 Tel: (574)233-4777

Laboratory Job ID: 810-6473-1 Client Project/Site: Trace - 21J1157

Revision: 1

For:

Trace Analytical Laboratories 2241 Black Creek Road Muskegon, Michigan 49444

Attn: Jon Mink

Karew Fullner

Authorized for release by: 11/30/2021 11:40:43 AM

Karen Fullmer, Project Manager (574)233-4777

karen.fullmer@eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

8

- -

12

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	8
QC Association Summary	9
Lab Chronicle	10
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receipt Checklists	18

4

5

_

8

10

12

13

Definitions/Glossary

Client: Trace Analytical Laboratories Job ID: 810-6473-1

Project/Site: Trace - 21J1157

Qualifiers

Rad

Qualifier Qualifier Description

U Result is less than the sample detection limit.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

А

3

6

7

8

16

. .

12

13

Case Narrative

Client: Trace Analytical Laboratories

Project/Site: Trace - 21J1157

Job ID: 810-6473-1

Laboratory: Eurofins Eaton Analytical - South Bend

Narrative

Job Narrative 810-6473-1

Comments

No additional comments.

Revision

The report being provided is a revision of the original report sent on 11/18/2021. The report (revision 1) is being revised due to: Samples were logged in as drinking water by accident..

Receipt

The samples were received on 11/1/2021 9:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 12.4° C.

Receipt Exceptions

The Chain-of-Custody (COC) was incomplete as received and/or improperly completed. Bottles did not match coc at all and in-house coc was created. Client sent updated coc.

RAD

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 810-6473-1

Detection Summary

	- <i>y</i>
Client: Trace Analytical Laboratories	Job ID: 810-6473-1
Project/Site: Trace - 21J1157	
Client Sample ID: 21J1157/SW-SG-1	Lab Sample ID: 810-6473-1
No Detections.	
Client Sample ID: 21J1157/SW-N-SG-2	Lab Sample ID: 810-6473-2
No Detections.	
Client Sample ID: 21J1157/SW-SE-MW-7	Lab Sample ID: 810-6473-3
No Detections.	
Client Sample ID: 21J1157/SW-NE-MW-10	Lab Sample ID: 810-6473-4
No Detections.	

Client: Trace Analytical Laboratories Job ID: 810-6473-1

Project/Site: Trace - 21J1157

Client Sample ID: 21J1157/SW-SG-1

Date Collected: 10/28/21 10:15 Date Received: 11/01/21 09:00

Lab Sample ID: 810-6473-1

Matrix: Surface Water

Method: 7500 Ra D - Radium 226 Radium 228 Combined

	Count	Total
	Uncert.	Uncert.
Decult Ovelifier	(0-1/)	(0-1/)

Analyte RL MDC Unit Prepared Analyzed Dil Fac Result Qualifier $(2\sigma +/-)$ Combined Radium 226 0.000 U 0.80802 1.00 0.500 pCi/L 11/15/21 09:30

Method: SM7500 Ra B - Radium-226

			Count	Total							
			Uncert.	Uncert.							
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac	
Ra-226	-0.820	П	0.650		1 00	0.340	nCi/l	11/04/21 13:22	11/12/21 11:43		

Method: SM7500 Ra D - Radium-228

			Count	iotai						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	0.150	U	0.480		1.00	0.500	pCi/L	11/12/21 10:12	11/15/21 12:05	1

Lab Sample ID: 810-6473-2 Client Sample ID: 21J1157/SW-N-SG-2

Date Received: 11/01/21 09:00

Date Collected: 10/28/21 09:10 **Matrix: Surface Water**

Method: 7500 Ra D - Radium 226 Radium 228 Combined

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.000	U	0.76837		1.00	0.500	pCi/L		11/15/21 09:30	1

Method: SM7500 Ra B - Radium-226

			Count	iotai					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.0800	U	0.600		1.00	0.350 pCi/L	11/04/21 13:22	11/12/21 11:43	1

Total

Method: SM7500 Ra D - Radium-228

			Count	Total							
			Uncert.	Uncert.							
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepa	red	Analyzed	Dil Fac
Ra-228	-0.0800	U	0.480		1.00	0.500	pCi/L	11/12/21	10:12	11/15/21 12:05	1

Client Sample ID: 21J1157/SW-SE-MW-7 Lab Sample ID: 810-6473-3

Count

Date Collected: 10/28/21 12:05 **Matrix: Surface Water** Date Received: 11/01/21 09:00

			Count	Total					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.670		0.83006		1.00	0.480 pCi/L		11/15/21 09:30	1

Eurofins Eaton Analytical - South Bend

Client Sample Results

Client: Trace Analytical Laboratories Job ID: 810-6473-1

Project/Site: Trace - 21J1157

Lab Sample ID: 810-6473-3 Client Sample ID: 21J1157/SW-SE-MW-7

Date Collected: 10/28/21 12:05 **Matrix: Surface Water** Date Received: 11/01/21 09:00

Method: SM7	500 Ra B - Radi	um-226								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-226	-0.470	U	0.670		1.00	0.330	pCi/L	11/04/21 13:22	11/12/21 11:43	1
_ Method: SM75	500 Ra D - Radi	um-228								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	0.670		0.490		1.00	0.480	pCi/L	11/12/21 10:12	11/15/21 12:05	1

Client Sample ID: 21J1157/SW-NE-MW-10 Lab Sample ID: 810-6473-4 **Matrix: Surface Water**

Date Collected: 10/28/21 10:30 Date Received: 11/01/21 09:00

Method: 7500 Ra D	- Radium	226 Radii	um 228 Co	mbined						
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.45		0.54489		1.00	0.380	pCi/L		11/15/21 09:30	1

Method: SM7500 F	la B - Radi	um-226								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.650		0.370		1.00	0.310	pCi/L	11/04/21 13:22	11/08/21 11:28	1

Method: SM750	0 Ra D - Radi	um-228								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	0.800		0.400		1.00	0.380	pCi/L	11/12/21 10:12	11/15/21 12:05	1

Client: Trace Analytical Laboratories

Project/Site: Trace - 21J1157

Job ID: 810-6473-1

Method: SM7500 Ra B - Radium-226

Lab Sample ID: MB 810-6604/1-A

Matrix: Drinking Water Analysis Batch: 7022

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 6604

Count Total MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Ra-226 0.5000 0.240 1.00 0.180 pCi/L 11/04/21 13:22 11/08/21 11:28

Lab Sample ID: LCS 810-6604/2-A

Matrix: Drinking Water Analysis Batch: 7022

Analyte

Ra-226

Analyte

Ra-228

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 6604

Total Spike LCS LCS Uncert. %Rec. Added Result Qual $(2\sigma + / -)$ RL**MDC** Unit %Rec Limits 8.73 1.00 90 - 110 9.470 0.190 pCi/L 108

RL

1.00

Method: SM7500 Ra D - Radium-228

-0.1600 U

Lab Sample ID: MB 810-7205/1-A

Matrix: Drinking Water Analysis Batch: 7351

Count Total MB MB Uncert. Uncert. Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$

Spike

0.430

Lab Sample ID: LCS 810-7205/2-A

Matrix: Drinking Water Analysis Batch: 7351

Client Sample ID: Lab Control Sample

11/12/21 10:12 11/15/21 12:18

Prepared

Client Sample ID: Method Blank

Analyzed

Prep Type: Total/NA Prep Batch: 7205

Prep Type: Total/NA

Prep Batch: 7205

Dil Fac

Total LCS LCS Uncert. %Rec.

MDC Unit

0.460 pCi/L

Added RL **MDC** Unit %Rec Limits **Analyte** Result Qual $(2\sigma + / -)$ Ra-228 8.83 7.490 1.00 0.520 pCi/L 85 80 - 120

QC Association Summary

Client: Trace Analytical Laboratories Job ID: 810-6473-1

Project/Site: Trace - 21J1157

Rad

Prep Batch: 6604

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
810-6473-1	21J1157/SW-SG-1	Total/NA	Surface Water	RAD Prep	
810-6473-2	21J1157/SW-N-SG-2	Total/NA	Surface Water	RAD Prep	
810-6473-3	21J1157/SW-SE-MW-7	Total/NA	Surface Water	RAD Prep	
810-6473-4	21J1157/SW-NE-MW-10	Total/NA	Surface Water	RAD Prep	
MB 810-6604/1-A	Method Blank	Total/NA	Drinking Water	RAD Prep	
LCS 810-6604/2-A	Lab Control Sample	Total/NA	Drinking Water	RAD Prep	

Prep Batch: 7205

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
810-6473-1	21J1157/SW-SG-1	Total/NA	Surface Water	RAD Prep	
810-6473-2	21J1157/SW-N-SG-2	Total/NA	Surface Water	RAD Prep	
810-6473-3	21J1157/SW-SE-MW-7	Total/NA	Surface Water	RAD Prep	
810-6473-4	21J1157/SW-NE-MW-10	Total/NA	Surface Water	RAD Prep	
MB 810-7205/1-A	Method Blank	Total/NA	Drinking Water	RAD Prep	
LCS 810-7205/2-A	Lab Control Sample	Total/NA	Drinking Water	RAD Prep	

Job ID: 810-6473-1

Client: Trace Analytical Laboratories Project/Site: Trace - 21J1157

Client Sample ID: 21J1157/SW-SG-1

Date Collected: 10/28/21 10:15 Date Received: 11/01/21 09:00

Lab Sample ID: 810-6473-1

Matrix: Surface Water

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	7500 Ra D		1	7295	11/15/21 09:30	JB	EA SB	
Total/NA	Prep	RAD Prep			6604	11/04/21 13:22	ML	EA SB	
Total/NA	Analysis	SM7500 Ra B		1	7224		JB	EA SB	
					(Start)	11/12/21 11:43			
					(End)	11/12/21 12:13			
Total/NA	Prep	RAD Prep			7205	11/12/21 10:12	00	EA SB	
Total/NA	Analysis	SM7500 Ra D		1	7351		00	EA SB	
					(Start)	11/15/21 12:05			
					(End)	11/15/21 15:05			

Client Sample ID: 21J1157/SW-N-SG-2

Date Collected: 10/28/21 09:10 Date Received: 11/01/21 09:00

Lab Sample ID: 810-6473-2

Matrix: Surface Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D		1	7295	11/15/21 09:30	JB	EA SB
Total/NA	Prep	RAD Prep			6604	11/04/21 13:22	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7224		JB	EA SB
					(Start)	11/12/21 11:43		
					(End)	11/12/21 12:13		
Total/NA	Prep	RAD Prep			7205	11/12/21 10:12	00	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7351		00	EA SB
					(Start)	11/15/21 12:05		
					(End)	11/15/21 15:05		

Client Sample ID: 21J1157/SW-SE-MW-7

Date Collected: 10/28/21 12:05 Date Received: 11/01/21 09:00

Lab Sample ID: 810-6473-3

Prep Type	Batch	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Type Analysis	7500 Ra D	Kuii	_ <u> </u>	7295	11/15/21 09:30		EA SB
Total/NA	Prep	RAD Prep			6604	11/04/21 13:22	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7224		JB	EA SB
	•				(Start)	11/12/21 11:43		
					(End)	11/12/21 12:13		
Total/NA	Prep	RAD Prep			7205	11/12/21 10:12	00	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7351		00	EA SB
					(Start)	11/15/21 12:05		
					(End)	11/15/21 15:05		

Client Sample ID: 21J1157/SW-NE-MW-10

Date Collected: 10/28/21 10:30 Date Received: 11/01/21 09:00

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D		1	7295	11/15/21 09:30	JB	EA SB

Eurofins Eaton Analytical - South Bend

Page 10 of 18

Matrix: Surface Water

Lab Sample ID: 810-6473-4 **Matrix: Surface Water**

Lab Chronicle

Client: Trace Analytical Laboratories Job ID: 810-6473-1

Project/Site: Trace - 21J1157

Client Sample ID: 21J1157/SW-NE-MW-10

Lab Sample ID: 810-6473-4 **Matrix: Surface Water** Date Collected: 10/28/21 10:30

Date Received: 11/01/21 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	RAD Prep			6604	11/04/21 13:22	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7022	11/08/21 11:28	JB	EA SB
Total/NA	Prep	RAD Prep			7205	11/12/21 10:12	00	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7351		00	EA SB
					(Start)	11/15/21 12:05		
					(End)	11/15/21 15:05		

Laboratory References:

EA SB = Eurofins Eaton Analytical - South Bend, 110 S Hill Street, South Bend, IN 46617, TEL (574)233-4777

Accreditation/Certification Summary

Client: Trace Analytical Laboratories Job ID: 810-6473-1

Project/Site: Trace - 21J1157

Laboratory: Eurofins Eaton Analytical - South Bend

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
Michigan		State	9926	03-22-22
the agency does not o	offer certification.		, , ,	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
7500 Ra D		Surface Water	Combined Radium 226 + 22	8
SM7500 Ra B	RAD Prep	Surface Water	Ra-226	
SM7500 Ra D	RAD Prep	Surface Water	Ra-228	

4

5

7

0

10

4.6

13

Method Summary

Client: Trace Analytical Laboratories

Project/Site: Trace - 21J1157

Job ID: 810-6473-1

Method	Method Description	Protocol	Laboratory
7500 Ra D	Radium 226 Radium 228 Combined	SM	EA SB
SM7500 Ra B	Radium-226	SM	EA SB
SM7500 Ra D	Radium-228	SM	EA SB
RAD Prep	Preparation, Radiologicals	None	EA SB

Protocol References:

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

EA SB = Eurofins Eaton Analytical - South Bend, 110 S Hill Street, South Bend, IN 46617, TEL (574)233-4777

2

4

5

6

9

10

11

13

Sample Summary

Client: Trace Analytical Laboratories

Project/Site: Trace - 21J1157

Lab Sample ID Client Sample ID Matrix Collected Received <u>10/28/21 10:15</u> <u>11/01/21 09:00</u> Surface Water 810-6473-1 21J1157/SW-SG-1 810-6473-2 21J1157/SW-N-SG-2 Surface Water 10/28/21 09:10 11/01/21 09:00 810-6473-3 21J1157/SW-SE-MW-7 Surface Water 10/28/21 12:05 11/01/21 09:00 10/28/21 10:30 11/01/21 09:00 810-6473-4 21J1157/SW-NE-MW-10 Surface Water

Job ID: 810-6473-1

3

4

5

8

3

12

13

8	eurofin	S

110 S. Hill Street South Bend, IN 46617 T: 1.800.332.4345

Order #

			Lato	eaton Analytical F: 1.574.233.8207										_
www.EurofinsUS.com/Eaton					Cł	HAIN OF	CUSTODY REC	ORD		Pag	Α	of		
Shaded area for	or EEA us	se only	100	TO 4 4 51 5 5 10						1		_ 0,		-
REPORT TO:				SAMPLER (Signature	±)		PWS ID #	STATE (sample origi	n) PROJECT NAME		PO#	-		
Jon Mink, Tim Brewer (mink@trace-lat Analytical Laboratories, Inc., 2241 Bla 773-5998								МІ						
BILL TO:					Yes No			SOURCE WATER		21	J1157	SS		IME
Accounts Payable, Trace Analytical La Muskegon, MI 49444	boratories, In	nc., 2241 Black	Creek Rd ,	COMPLIANCE MONITORING							CONTAINERS	CODE	TURNAROUND TIME	
LAB Number		COLLECTION	V	s	SAMPLING SITE		TEST	NAM5H ACC	Campterelonke	CHLO	RINATED		MATRIX C	NARO
	DATE	TIME	AM PA	А				PITACC	thrank	YES	NO	# OF	MA	T. R.
1	10/28/21	10:15	×	SW-SG-1			Radium 226/228	✓			×	1	sw	sw
2	10/28/21	9:10	×	SW-N-8G-2			Radium 226/228				×	1	sw	sw
3	10/28/21	12:05	x	SW-SE-MW-7			Radium 226/228	/			×	1	SW	SW
4	10/28/21	10:30	×	SW-NE-MW-10			Radium 226/228	V			ж	1	SW	SW
5														
6														
7														
8														
9														
10														
11					***									
12				1 1 1 2 2	18 51		11/00		ouch site		+			
13					1 2 1	الهيدا الكيدا الل		40/119	WW I SUC					
14								0 0		-	-			
RELINQUISHED BY:(Signature)		DATE	TIME	RECEIVED BY:(Sign	ature)	DATE	bium 226/1							
011		. 1	,	The state of the s	,		LAB COMMENTS	SERVES THE RIGHT TO RETURN L	NUSED PORTIONS OF NON-	AQUEOUS	SAMPLES TO	O CLIENT		
7/16		10/29/2	-											
RELINQUISHED BY:(Signature)		DATE	AM PA		ature)	DATE	AM PM							
, and the second of the second									(II	1				
			AM P				AM PM		1	13/	15-6-1	250		
RELINQUISHED BY:(Signature)		DATE	TIME	RECEIVED FOR LABO	RATORY BY	DATE		N RECEIPT (check one):				-113	== 10	
				Sea	2001	11-1-21	0900 load	: Wet/Blue Ambient	12.4 °C Upon 1	Paraint		N/A		
		-	AM PN			1171011	AM PM	and the second of the second of the second		Salara E	ALLA ALLA	TVA		V. 11
MATRIX CODES:				ME (TAT) - SURCHARD	55									
DW-DRINKING WATER RW-REAGENT WATER		RV" = Rush Vi		5 working days) 0% king days) 50%			e Verball (3 working days) 1009 te Written (3 working days) 1259							
GW-GROUND WATER EW-EXPOSURE WATER		RW" = Rush V				SP° = Weeken	•	MLL	Samples received unan than 48 hours holding to	ved unannounced with less				
SW-SURFACE WATER PW-POOL WATER			,- /-			STAT" = Less			- may be subject to addit	ional char	ges.		_	
WW-WASTE WATER		· Please ca	II, expedit	ed service not available	for all testing				00 10 50405 4					
Comple each sign will be assisted as		a standard 5	E 4 04/-4	Continue Transport	7 - 6 1				06-LO-F0435 Issue 6	0 Effe	ctive Date	2016-0	/9-20	

Sample analysis will be provided according to the standard EEA/Water Services Terms, which are available upon request. Any other terms proposed by Customer are deemed material alterations and are rejected unless expressly agreed to in writing by

South Bend, IN

110 S Hill Street

Chain of Custody Record

W F.												
	eu	ro	fin	S								

Phone (574) 233-4777 Phone (574) 233-8207 Sampler:				La	ab PM:						Carri	Carrier Tracking No(s):				COC No:		
Client Information Client Contact: Phone.				E-Mail:					State of Origin:									
race											State	or Origin				Page: Page 1 of		
mpany:	PWSID:				Analysis Re						equested					Job#:		
Address: Due Date Requested:									Analysis Ke						\dashv	Preservation Codes:		
y:	TAT Requested (days):															A - HCL M - Hexane B - NaOH N - None		
te, Zip:	Compliance Project: Δ Yes Δ No													- 1	C - Zn Acetate O - AsNaO2 D - Nitric Acid P - Na2O4S E - NaHSO4 Q - Na2SO3			
one.	PO #:					338										F - MeOH R - Na2S2O3 G - Amchlor S - H2SO4		
ail.	WO #:				N O	2 G										H - Ascorbic Acid I - Ice U - Acetone J - DI Water U - Acetone V - MCAA		
ect Name.	Project #:				Sample (Yes or No)	4										K - EDTA W - pH 4-5 L - EDA Z - other (specify)		
	SSOW#:				Sample (Yes or	788							11.			Other:		
mple identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W-water, S-solid, O-waste/oli	ald Filtered	Rad		þ	H	A	cc	epi	tabl	е	Total Number of	Special Instruction Bu		
		><	Preservation		-										ᅒ	Special Instructions/Note:		
2151-01						1						1			1			
1 02						1						1			1			
03						1						1			١,			
V 04					11	1						1			V			
					44		_											
					-11	\perp	_						$\perp \perp$		\perp			
2					11	<u>, </u>			\dashv		\sqcup			\sqcup				
Liters F	lece	IVE	IC F	=4	41	w	+		\vdash	-	H	-	-	++	+			
Coc ismpleted by SS					++	+	+			-	\vdash	+	++	++	+			
TOO BINDEREN OU 55					++	\forall						+	++	++	+			
ssible Hazard Identification					Sa	ample	Dispo	sal (A	fee m	ay be a	ssess	ed if s	amples a	re retail	ned	longer than 1 month)		
	son B Unkn	own	Radiological			└ Re	tum 7	o Clien	t		Dispos	al By La		1 (e For Months		
verable Requested: I, II, III, IV, Other (specify)							nstruc	tions/Q	Req	uireme	nts:							
ety Kit Relinquished by:		Date:	7		Time						٨		Shipment:					
quished by	Date/Time		Co	mpany		Receiv	ed by	SRI	ع	20	0		Date/Time	-21	0	900 EEA		
nquished by Date/Time:			Co	mpany		Received by: Date/							Date/Time			Company		
equished by:	Date/Time Company					Receiv	red by:						Date/Time		_	Company		
ustody Seals Intact: Custody Seal No.:						Cooler	Tempe	erature(s)	°C and	Other Re	marke	1	1	40	_	23		

_

	eu	rof	ins
--	----	-----	-----

Eaton Analytical

110 S. Hill Street South Bend, IN 46617 T: 1.800.332.4345

F: 1.574.233.8207

Order #

Batch # ____

www.EurofinsUS.com/Eaton		· ·				CI	HAIN OF	CUSTODY R	RECOF	RD		Page		of		-
REPORT TO:				and the second	SAMPLER (Signature))		PWS ID #		STATE (sample origin)	PROJECT NAME	F	PO#			
Jon Mink, Tim Brewer (jmink@trace-lab Analyitical Laboratories, Inc., 2241 Blac 773-5998							Ti.			MI						ш
BILL TO: Accounts Payable, Trace Analytical Lat Muskegon, MI 49444	boratories, In	c., 2241 Black (Creek I	Rd.,	COMPLIANCE MONITORING	Yes	No	POPULATION SE	RVED	SOURCE WATER		21J	1163	CONTAINERS	MATRIX CODE	TURNAROUND TIME
LAB Number		COLLECTION			SA	AMPLING SITE		1	TEST NAM	ΛE	SAMPLE REMARKS		RINATED	P	MTRI)	URNA
a transaction of agreement special	DATE	TIME	AM	PM								YES	NO x	#:	GW	sw
1 company of the state of the s	10/26/21	14:00	-	X	Field Blank			Radium 226/228					 		GW	
2	10/26/21	16:05	_	x	Solinst Pump			Radium 226/228				<u> </u>	X	1		SW
3	10/26/21	16:07	_	х	Master Flex Pump			Radium 226/228					X	1	GW	SW
4	10/27/21	14:00		х	Field Blank			Radium 226/228					x	1	GW	SW
5	10/27/21	15:30	_	x	Solinst Pump			Radium 226/228					X	1	GW	SW
6	10/27/21	15:35		x	Master Flex Pump			Radium 226/228					x	1	GW	SW
7	10/28/21	14:00		x	Field Blank		1	Radium 226/228					x	1	GW	SW
8	10/28/21	14:20		×	Solinst Pump			Radium 226/228					x	1	GW	SW
9	10/28/21	14:25		x	Master Flex Pump			Radium 226/228					x	1	GW	SW
10																
11																
12								0						-		
13							4	RIC. 4	pou	us W/ a	151157	-01	ma	u O	4	
14								-					65	HE	N	
RELINQUISHED BY:(Signature)		DATE 10/29/21	12	ME ;43	I FEAT IX	ature)	DATE	AM PM		ES THE RIGHT TO RETURN UNI	USED PORTIONS OF NON-	AQUEOUS	SAMPLES T	O CLIENT		
RELINQUISHED BY: (Signature)		DATE	TI	ME	RECEIVED BY:(Signa	ature)	DATE	TIME AM PM								
RELINQUISHED BY:(Signature)		DATE	AM	IME PM	RECEIVED FOR LABO	zea	DATE	TIME	Is UPON RE	CENT (check one):	*C Upon	Receipt	X	N/A	1	
MATRIX CODES:		TURN-ARC	DUNE	TIM	E (TAT) - SURCHARG	ES										
DW-DRINKING WATER RW-REAGENT WATER GW-GROUND WATER EW-EXPOSURE WATER		SW = Standar RV* = Rush Ve	erbal: (5 worki	ng days) 50%	0		te Verbal: (3 working days) te Written: (3 working days)	100% 125% CALL		Samples received unathan 48 hours holding				_	
SW-SURFACE WATER PW-POOL WATER WW-WASTE WATER		* Please ca			eng cays) /5%	for all testing		than 48 hours	CALL		may be subject to add	tional cha	arges.	n: 204e	00.20	

Sample analysis will be provided according to the standard EEA/Water Services Terms, which are available upon request. Any other terms proposed by Customer are deemed material alterations and are rejected unless expressly agreed to in writing by EEA.

Page 17 of 18

Login Sample Receipt Checklist

Client: Trace Analytical Laboratories Job Number: 810-6473-1

List Source: Eurofins Eaton Analytical - South Bend Login Number: 6473

List Number: 1

Creator: Spurgeon, Sheri

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
Samples were received on ice.	False	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	False	Refer to Job Narrative for details.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Samples do not require splitting or compositing.	True	
Container provided by EEA	True	

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673

Р	lease S				4	(X) - - - - -	_	101 1286-01	Trace Date Ti	Project Name: Surfa	*Results provided end of	☐ 1 Day*	X Standard, 5-10 Days ☐ 3 Day*	Turnaround Requirements:	Email Address:	Office Phone:	City, State, Zip Code:	Mailing Address:	Report To: Paul Cederquist	Company Name: Grand	Report Results To:	a A	
In executing this (Released By Received By			6:30 sw-ne-mw-10	12:05 SW-SE-MW-7	9,10 SW-N-SG-2	(b: 15) SW-SG-1	Time Client Sample ID Collected	Surface Water Sampling	*Results provided end of business day, requires prior approval.		900			Cell Phone:			rquist	Company Name: Grand Haven Board of Light & Power		TABORATORIUS, INC.	+
In executing this Chain of Custody, the client acknowledges the terms as set forth at www.trace-labs.com/terms-of-agr	(a) 800/ Mahon 2	Date			-10 Y W 5 X	7 W 5 X X	Y W 5 X	У W 5 X	Metals Field Filtered (Y / N) Matrix Number of Containers Cool HCl HNO ₃ H ₂ SO ₄ NaOH	Sampled By: EB/TB	OI = OII	ıdge	S = Soil / Solid WI = Wipes W = Water LW = Liquid Waste		Billing Email Address:	Phone Number:	City, State, Zip Code:	Billing Address (if different):	Contact Name:	PO#	Bill To:	Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673	CHAIN-OT-COSTOD TARCOAD
set forth at www.trace-labs.com/terms-of-ag		Released By			7 7 7 7 7			××××	T-B,Ca,Fe T- Co,Cu, T- TI, V,Zn Diss.Metal Fluoride,S	Pb, Li,I n, Mn,M ls (Sam	Mo,Ni lg,K,N ne as	Se,/ la Total	Ag Is)	Ana								Phone 231.773.5998 Fax 888.979.4469 www.trace-labs.com	
reement.		Received By			6			×	Radiums 2			Alk		alysis Requested		Sampling Time:	MeOH Low Level	Soil Volatiles Preserved (dircle if applicable):	Checked By: DH	Logged By:	Trace Use: 2	211 P	rage
		Date Time			pH=7.89	pH=7.86	pH=7.57	pH=8.46	Remarks Possible He	olth Us	and of						.evel Lab	rcle if applicable):		<		Trace ID No.	2

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673

Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygeh: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1		рН	ORP (mV)	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Reading Time		Surface Wat	Client: GHBLP	Trace A
n Criteria: e: 3% uctivity: 3% xygen: 10% mV 0% or <1	1.0		6	0.00	, H72	9.43	e 9:00	Purge Start Tir	Surface Water ID : N -	.pg	nalvtical I
	1.07	0.0	6	60.07	. 472	9.93	9:03	Purge Start Time: 8:45	P		boratorie
Notes: Pump Used: Peristaltic	1.5.7	0.0	6	16.02	472	9.93	9.06	Purge Rate:		Date: 16-28-31	Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form
eristaltic								30sym/min		Field	ell Purging Fig
										Field Personnel: ES	old Measurer
										17B	nents Form
									-		

Stabilizatio Temperatui Spec. Condi Dissolved O ORP: +/- 10 Turbidity: 1 pH: +/- 0.1	P	Turbidity(NTU)	ORP (mV)	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Reading Time		Surface \	Trace Ar
Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1	8.46	Y(UTU)	196	7.91	.581	ature 11. 28	Time [0:08	Purge Star	Surface Water ID : 56 -	Analytical
	8.46	1 22.4	196	7.91	185.	8 11.28	10:11	Purge Start Time: 9:55		Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form Date: 10-28-21 Field Personnel: EB/TB
Notes:	8.46	かば	196	7.91	185.	11.28	16: 13	Purge		ies: Low Flow W
Notes: Pump Used: Peristaltic						7		Purge Rate: <u>کوہ ب</u>		ow Well Pu
C								Soon Chuin	a	ırging Fielc Field Pe
										Field Measure
										ments Forn / 丁B_
										3

Sta Ten Spe Dis: OR: PH:	рН	Tur	ORI	Diss Oxy	Spe	Ten (Cel	Rea		Surf	Clie	Tr	
Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1		Turbidity(NTU)	ORP (mV)	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Reading Time	-	face Water ID	Client: GHBLP	ace Anal	
e eria: 6 17: 3% 17: 10%	789	14.9	S	10.05	594	10.20	10:20	Purge Start Time: <u>\\\`\\</u>	Surface Water ID: NE-MW-10		ytical La	
	7.89	14.9	70	10.05	.463	(0.20	10:23	1e: 10:05	0-10		boratori	
Notes: Pump Used: Peristaltic	7.89	14.9	S.	(0,05	.463	16.30	16:26	Purge Rate: 300/w		Date: 10-28-21	Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form	
							*	300ml/min		Field Personnel: にも	ging Field Measu	
										8/78	rements Form	
			-									

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673

Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1	뫄	Specific Conductivity Dissolved Oxygen ORP (mV)	Reading Time Temperature (Celsius)	Trace Ar Client: GHBLP Surface Water
Criteria: 3% tivity: 3% ggen: 10% % or <1	7.86 7.80	9.75 9.75 52 53 53 53	11:55 11:58	Trace Analytical Laborato Client: GHBLP Surface Water ID: SE-MW-7
Notes: Pump Used: Peristaltic	7.80	,476 62	10.72	ies: Low Flow Wo
			District Annual Prince	irging Field Measuren Field Personnel: 正分/
				nents Form

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673

21J1157 Grand Haven Board of Light	nple Log In Checklist
Project Manager: Jon Mink	INIE FOR III CUSCKIIST
Sample Receipt Yes No Received on ice or other coolant I fee still present upon receipt	Date: 10 29 12 Time: 9 37 Corrected Temperature Conginal Observation Conginal Obser
Custody seals present	
Trace Courier Client Drop-off UP	
4	
Sample Condition	
All sample containers arrived unbroken Sufficient sample to run requested anal Correct chemical preservative added to Samples preserved at Trace Chemical preservation verified, check E pH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs	lyses o samples
Chain of Custody (COC)	
Yes No All bottle labels agree with COC COC filled out properly COC signed by client	5.
Notes:	
,	
orm 70-A.40 ffective 10/2/21	
:	TRACE Analytical Laboratories, Inc.

Phone: 231.773.5998 Fax: 888.979.4469 www.trace-labs.com

December 7, 2021

Paul Cederquist Grand Haven Board of Light and Power 1700 Eaton Drive Grand Haven, MI 49417

R.E. Missing Static Water Elevations for October

Paul,

Unfortunately do to a loss of the data sheets / notebook from the 25th of October not all of the measurements for static water elevations were available to be reported. All of the wells that were scheduled to be sampled had the results transferred to their respective sampling log sheets prior to starting sampling and were included in the spreadsheet. However those points that were measured but not sampled were only recorded on the missing log.

Trace has looked everywhere for the missing log but it unfortunately cannot be located.

Going forward we will be recording the field measurements into an excel spreadsheet as soon as the sampling event is completed.

Sorry for the inconvenience.

Sincerely,

Jon Mink Senior Project Manager

golder.com

Kent Walters Project No. GL21461064
Geologist March 8, 2022

APPENDIX B

Revised Fourth Quarter 2021 Monitoring Report, Former JB Sims Generating Station, Inactive 1/2 Impoundment

REPORT

Fourth Quarter 2021 Monitoring Report

Former JB Sims Generating Station Inactive 1/2 Impoundment

Submitted to:

Grand Haven Board of Light and Power

1700 Eaton Drive Grand Haven, Michigan

Submitted by:

Golder Associates Inc.

27200 Haggerty Road, Suite B-12 Farmington Hills, Michigan, USA 48331-5719 +1 248 295-0135

21461064

January 25, 2022 (Revised March 8, 2022)

Distribution List

Grand Haven Board of Light and Power

Michigan Department of Environment, Great Lakes, and Energy

i

Table of Contents

1.0	INTR	ODUCTION	1
	1.1	Site Description and Background	2
	1.2	Geologic and Hydrogeologic Setting	2
	1.3	Groundwater Monitoring Well Network	2
2.0	GRO	UNDWATER MONITORING ACTIVITIES	3
	2.1	Sample Methodology and Analysis	3
	2.2	Groundwater Elevation Measurements	4
	2.3	Groundwater Gradient and Flow Velocity	4
	2.4	Groundwater Sampling	5
	2.5	Laboratory Analyses	5
3.0	ANAI	YTICAL RESULTS AND STATISTICAL ANALYSES	6
	3.1	Statistical Methodology	6
	3.1.1	Detection Monitoring	7
	3.1.2	Assessment Monitoring	7
	3.2	Statistical Analysis Results	9
	3.2.1	Data Screening	9
	3.2.2	Detection Monitoring Statistical Results	10
	3.2.3	Assessment Monitoring Statistical Results	10
4.0	CON	CLUSIONS	11
5.0	REFE	RENCES	12

TABLES

TABLE 1

Summary of Locations

TABLE 2

Groundwater Elevation Summary

TABLE 3

Analytical Results Summary

FIGURES

FIGURE1

Site Location Map

FIGURE 2

Site Plan

FIGURE 3

Groundwater Contour Map - October 1, 2021

FIGURE 4

Groundwater Contour Map – October 25, 2021 (Fourth Quarter Monitoring Event)

FIGURE 5

Groundwater Contour Map - November 23, 2021

FIGURE 6

Groundwater Contour Map - December 17, 2021

APPENDICES

APPENDIX A

Statistical Summary

APPENDIX B

Laboratory Report and Field Forms

1.0 INTRODUCTION

Grand Haven Board of Light and Power (GHBLP) began groundwater monitoring at the former JB Sims Generating Station (JB Sims, Site) in 2017 with the implementation of United States Environmental Protection Agency (USEPA) coal combustion residual (CCR) rule (40 Code of Federal Regulations [CFR] 257 Subpart D; published in 80 FR 21302-21501, April 17, 2015) for CCR Units.

On December 28, 2018, the State of Michigan enacted Public Act No. 640 of 2018 (PA 640) to amend the Natural Resources and Environmental Protection Act, also known as Part 115 of PA 451 of 1994, as amended (Michigan Part 115 Solid Waste Rules, Part 115 amendment. Currently, the Inactive Units 1/2 Impoundment (Inactive 1/2 Impoundment) is not subject to the Part 115 amendment. However, this determination may change depending on the closure options approved for the site. As such, this report is submitted to present results of sampling and preliminary statistical analyses for Inactive 1/2 Impoundment monitoring wells only. Since the detection monitoring well network is currently being evaluated, alternate background monitoring wells are being considered and statistical results are expected to change. The purpose of this report is to comply with Rule 907(11) and Rule 908(6) and should be considered a data submittal only.

The CCR units at JB Sims as defined by the Federal CCR Rule includes:

- Inactive 1/2 Impoundment
 - Unlined surface impoundment
 - Ceased receiving CCR materials in 2012
 - Monitored following the Federal CCR Rule
 - Closure determination is still being evaluated. In the interim, quarterly statistical evaluation in accordance with PA 640 Part 115 amendment is included in this report.
- Former 3A/B Impoundments
 - Two engineered and clay lined surface impoundments
 - Ceased receiving CCR materials in July 2020
 - CCR material removed from within the surface impoundments in 2020
 - Monitored following the Federal CCR Rule and PA 640 Part 115 amendment
 - Quarterly statistical evaluation in accordance with PA 640 Part 115 amendment and reported in a separate report

This Fourth Quarter 2021 Monitoring Report has been prepared to document groundwater monitoring activities conducted for only the Inactive 1/2 Impoundment at JB Sims, the groundwater monitoring activities for the former Unit 3 impoundments is included in a separate report submittal. As noted earlier, the Inactive 1/2 Impoundment is not regulated under the Part 115 amendment unless the impoundment is closed in place. Closure plans for the Inactive 1/2 Impoundment remain pending following EPA determination of the unit boundary on January 14, 2021. Since the Inactive 1/2 Impoundment closure determination is still being evaluated, this Fourth Quarter 2021 Monitoring Report has been prepared to document the groundwater monitoring activities to EGLE. Further discussions regarding the monitoring well networks for both Inactive 1/2 Impoundment and Former 3A/B Impoundments is ongoing. Specifically, piezometers and stilling wells were recently installed and a Field Summary Report with recommendations for background groundwater data is forth coming. As such, statistical analysis results may change significantly based on a revised background dataset and this report's purpose is for data submittal only.

1.1 Site Description and Background

The Site is located on the southwestern portion of Harbor Island in Grand Haven, Michigan, and is operated by GHBLP. The Former JB Sims is situated on the west end of Harbor Island with the Grand River and South Channel of the Grand River surrounding the island, which flows westerly toward Lake Michigan, approximately one mile west of the Site. Figure 1, Site Location Map, depicts the location of the Site relative to the surrounding area.

The Site is a former coal-fired power generation facility which ceased operations in February 2020. The Inactive 1/2 Impoundment ceased receiving CCR materials in 2012. The coal-fired power generation facility ceased operations in February 2020 and ceased accepting CCR materials in the now Former 3A/B Impoundments in July 2020. Figure 2, Site Plan depicts the general configuration of the former and inactive CCR surface impoundments and site monitoring wells.

1.2 Geologic and Hydrogeologic Setting

As described in the *Groundwater Monitoring System Certification* (ERM, 2017), the Site is located in an area of glacial drift (consisting of fine to medium sand with occasional beds of gravel) which is underlain by Marshall Sandstone. The glacial drift is between 100 to 200 feet thick in the area.

The Former 3A/B Impoundments were engineered clay lined aboveground CCR units built over ash used as structural fill from Units 1 & 2. The unlined Units 1 & 2 impoundment were formed from sluicing ash to low lying areas on the Site in the 1960's and part of the 1970's. The site was also previously used as the city dump. Materials documented from the former dump consist of a layer of mixed debris which includes glass, wood, plastic, ceramic, concrete, hides, brick and metal within a matrix of dark-grey to black, fine grained sand. The extent of the historical trash dump is detailed in *Coal Ash Delineation Sampling Results, Grand Haven Board of Light & Power, Grand Haven, Michigan* (ERM, 2016).

Portions of Harbor Island were developed by creating land with the use of unconsolidated fill, solid waste, and beneficial use of historical ash fill. Specifically, borings consist of a mixture of unconsolidated fine sand fill with intervals of silt and sand, historical ash fill, and municipal solid waste within the first 20 feet below ground surface (bgs). The fine sand fill was underlain by silt and clay to the bottom of each boring. The silt and clay represent the confining unit beneath the CCR units.

Groundwater was encountered between 5 and 15 feet bgs within the unconsolidated fill material, which consists of fine sand, ash, and municipal solid waste, located above a silt and clay unit. As described in the *Groundwater Monitoring System Certification* (ERM, 2017), sand in the uppermost aquifer assumes an effective porosity of 30 percent (%) and consists of poorly-graded fine sand with an estimated hydraulic conductivity of 27 feet per day and well-graded fine sand with an estimated hydraulic conductivity of 53 feet per day. Golder conducted site aquifer performance testing in September of 2021. The results of the aquifer performance testing provide additional data for updating the hydraulic conductivity. The recently calculated hydraulic conductivity for the Site is an average range of 0.19 feet per day to 242 feet per day. This wide range of variability is the result of the varying fill materials that form Harbor Island. In addition, a calculated hydraulic conductivity for the piezometers located on the eastern side of the wetland is an average 8.34 feet per day. A field summary report including the aquifer performance testing will be submitted under separate cover and is forth coming.

1.3 Groundwater Monitoring Well Network

The original monitoring well network was developed in 2017 for the former 3A/B Impoundments, which consisted of 4 monitoring wells [1 upgradient (MW-01R) and 3 downgradient monitoring wells (MW-02, MW-03, and MW-04).

04)]. It was later determined that in accordance with the Federal CCR Rule, Inactive 1/2 Impoundment is subject to the groundwater monitoring and corrective action requirements and four additional monitoring wells were installed (MW-05 through MW-08). As a result, two groundwater monitoring networks are installed to monitor groundwater passing the CCR unit boundary of the inactive and former surface impoundments within the uppermost aquifer. The current groundwater monitoring well networks for the Inactive 1/2 Impoundment as well as the former 3A/B Impoundments are included on Table 1, Summary of Locations.

The current groundwater monitoring well network for the Inactive 1/2 Impoundment includes the following monitoring wells:

- Interim background well: MW-07
 - Statistical analyses presented in this report utilize data from MW-07 as the interim background data set for interwell comparisons until the groundwater flow is further refined and additional/alternate background monitoring wells are established.
 - An additional 22 site piezometers were installed at the site in August/September 2021 based on the workplan approved by EGLE and EPA on June 22, 2021. Additional piezometers are expected to provide sufficient data to establish a site wide flow direction that will allow for EGLE to approve an alternate detection monitoring well network.
- Detection Monitoring Wells: MW-01R, MW-05, MW-06, and MW-08
- Assessment Monitoring Wells: MW-02, MW-03, MW-4, MW-09, and MW-10
 - Additional assessment monitoring wells may be added to the corrective action monitoring program but cannot be established until a detection monitoring well network is defined and statistical analyses completed.

Figure 2 depicts the current monitoring well network for the Inactive 1/2 Impoundment as well as additional site piezometers and stilling wells.

2.0 GROUNDWATER MONITORING ACTIVITIES

In accordance with the Federal CCR Rule and PA 640 Part 115 amendment, the following describes the monitoring-related activities performed during the fourth quarter 2021 monitoring period and presents the status of the monitoring program. Samples were collected from each monitoring well in the current groundwater monitoring network for the Inactive 1/2 Impoundment.

As described in Part 115 Rule 907 (11), the data collected from each monitoring well must be submitted to EGLE within 30 days of the end of the calendar quarter in which sampling and analysis was conducted. As stated in the introduction, the statistical analysis provided in this report (as Appendix A – Statistical Summary) should be considered preliminary as the monitoring network in under evaluation.

2.1 Sample Methodology and Analysis

Groundwater analytical data, field sampling forms, and chain of custody records from this fourth quarter 2021 monitoring event are presented in Appendix B, Laboratory Reports and Field Forms. Although the laboratory reports included the analytical results for both the Inactive 1/2 Impoundment and the Former 3A/B Impoundments, the results for monitoring wells associated with the Inactive 1/2 Impoundment were statistically evaluated (MW-1R, MW-02, MW-03, MW-04, MW-05, MW-06, MW-07, MW-08, MW-09, and MW-10) as part of this Fourth Quarter 2021 Monitoring Report.

2.2 Groundwater Elevation Measurements

Prior to sampling, groundwater elevations were recorded October 25, 2021 from each monitoring well and select piezometers. Trace Laboratories, Inc. (Trace) misplaced the field forms for the water level measurements from PZ-11, PZ-21, PZ-21, PZ-29, and PZ-30, all staff gauges and all stilling wells. As a result, these elevations are notably absent from the groundwater contour map for October 25, 2021. Three additional gauging events were conducted during the fourth quarter monitoring period on October 1, 2021, November 23, 2021, and December 17, 2021.

During the three additional gauging events water levels were only collected from two or three of the six staff gauges. Lack of measurements from the staff gauges were due to damaged staff gauge (SG-03, SG-05, and SG-06) or water level below the staff gauge (SG-01). With the recent installation of piezometers and stilling wells, measurements from staff gauges were evaluated and deemed inappropriate for use in generating groundwater contour maps given the level of uncertainty in the data with recent documentation of influence from freeze and thaw conditions, damaged staff gauges, and water level fluctuation near the staff gauge.

Groundwater elevations for each of water level events for the fourth quarter 2021 monitoring period are summarized in Table 2, Groundwater Elevation Summary. The elevation data were used to develop potentiometric surface elevation contour maps (Figure 3, Groundwater Contour Map, October 1, 2021, Figure 4, Groundwater Contour Map, October 25, 2021(Fourth Quarter Monitoring Event), Figure 5, Groundwater Contour Map, November 23, 2021, and Figure 6, Groundwater Contour Map, December 17, 2021).

Groundwater flow across the island is influenced by the elevation of the Grand River and the south channel. Localized flow is radially inward when river levels are high and radially outward when river level are low. Localized flow direction and gradients across the Site property are also influenced by precipitation and surface infiltration, particularly in wetland areas. The fill material that has historically been placed on the island is variable across the site in both thickness and permeability resulting in variably infiltration rates from precipitation. As a result, the surface water feature within the boundary of the inactive 1/2 Impoundment will have a faster infiltration rate than other areas of the island causing a mounding effect. In the area surrounding the inactive 1/2 Impoundment, the groundwater flow direction shifts from a radial outward to radial inward depending on precipitation. Overall, the regional general direction of groundwater flow across the Harbor Island is west to southwest towards Lake Michigan.

2.3 Groundwater Gradient and Flow Velocity

Groundwater flow rates at the site have been calculated based on hydraulic gradients, hydraulic conductivity, and an estimated effective porosity of the screened horizon as provided in the *Groundwater Monitoring System Certification* (ERM, 2017). Based on the information provided by ERM, assumed hydraulic conductivity ranges from 27 to 53 feet per day with an assumed effective porosity of 30 percent. As described above, the recently calculated hydraulic conductivity for the Site is an average range of 0.19 feet per day to 242 feet per day and is highly dependent on the fill materials at each location. This wide range of variability is the result of the varying fill materials that form Harbor Island. In addition, a calculated hydraulic conductivity for the piezometers located on the eastern side of the wetland is an average 8.34 feet per day.

Horizontal flow velocity was calculated using the commonly-used derivative of Darcy's Law:

Specifically,

$$V = \frac{K * i}{n_e}$$

V = Groundwater flow velocity

K = Average Permeability of the aquifer

i = Horizontal hydraulic gradient

N_e = Effective porosity

Using this equation, groundwater flow velocities were calculated for the site from three well pairs (MW-01R/MW-03, MW-01R/PZ-13, and MW-01R/PZ-18). Groundwater flow velocity at the site ranges from 0.3 to 1,200 feet per year around the mounding observed around the substation. In addition, groundwater flow velocities were calculated from three well pairs (PZ-12/PZ-27, PZ-27/PZ-25, and PZ-27/PZ-26) on the eastside of the wetland. Groundwater flow velocity at the site ranges from 0.01 to 7 feet per year on the eastside of the wetland.

The calculated flow velocities are best estimates based on field data and default data for soils, and therefore, these velocities should not be taken as absolute values, but rather as estimated values that may vary with future data collected at the site. The field summary report will include the detailed aquifer performance testing. An updated Hydrogeologic Monitoring Plan (HMP) and Groundwater Monitoring System Certification will be submitted following the collection of background groundwater quality data from the proposed detection monitoring locations.

2.4 Groundwater Sampling

Groundwater samples were collected in accordance with the Federal CCR Rule and PA 640 Part 115 amendment. Monitoring wells were purged and sampled using a peristaltic pump following low-flow sampling procedures. A multi parameter meter was used to monitor field parameters, namely: pH, temperature, conductivity, dissolved oxygen (DO), and oxidation-reduction potential (ORP), during well purging to verify stabilization prior to sampling. Turbidity is also recorded during purging using a field meter to verify stabilization. Groundwater samples were collected when the following general stabilization criteria were met:

- 0.2 standard units for pH
- 5% for specific conductance
- 0.2 milligrams per liter (mg/L) or 10% for DO > 0.5 mg/L (whichever is greater)
- Turbidity measurements less than 5 Nephelometric Turbidity Units (NTU)

Any deviation from stabilization criteria, if applicable, is identified on field sampling forms. Following well stabilization, unfiltered samples were collected directly into appropriately preserved laboratory supplied sample containers, placed in iced coolers, and submitted to the laboratory following standard chain-of-custody protocol. Field information forms as well as chain-of-custody records are included in Appendix B.

2.5 Laboratory Analyses

Groundwater samples collected for each monitoring well included both detection and assessment monitoring constituents pursuant to the PA 640 Part 115 amendment. Laboratory analyses were performed by Trace in Muskegon, Michigan with the radium laboratory analysis subcontracted to Eurofins, Eaton Analytical (Eurofins) in South Bend, Indiana. Analytical methods used for groundwater sample analysis are listed on the analytical laboratory reports included in Appendix B.

3.0 ANALYTICAL RESULTS AND STATISTICAL ANALYSES

Statistical analysis of detection and assessment monitoring constituents was performed on samples collected from the current groundwater monitoring network pursuant to the Federal CCR Rule and following the appropriate certified statistical methodology.

As described in Part 115 Rule 908 (6), statistical analysis at each monitoring well must be completed and submitted to EGLE within 30 days of the end of the calendar quarter in which sampling and analysis was conducted. As stated in the Introduction, this statistical analysis is a preliminary evaluation since a revised detection monitoring well network is still being established. A separate field summary report with a list of proposed new detection monitoring locations as well as a proposed sampling frequency for background groundwater quality data collection is forth coming.

The statistical methodology used for the Site was developed in accordance with the Federal CCR Rule using methods presented in *Statistical Analysis of Groundwater Data at RCRA Facilities, Unified Guidance*, March 2009, EPA 530/R-09-007 (USEPA, 2009).

3.1 Statistical Methodology

The Sanitas[™] groundwater statistical software was used to perform the statistical analyses on detection and assessment monitoring constituents during the fourth quarter 2021 monitoring period. Sanitas[™] is a decision support software package that incorporates the statistical tests required of Subtitle C and D facilities by USEPA regulations.

The following table provides a summary of the statistical methodology used for the Inactive 1/2 Impoundment groundwater monitoring.

	STATISTICAL METH	ODOLOGY SUMMARY
Inactive 1/2	Background Wells	MW-07 (interim background location)
Impoundments Monitoring	Detection Monitoring Wells	MW-01R, MW-05, MW-06, and MW-08 (pending further evaluation)
Well Network	Assessment Monitoring Wells	MW-02, MW-03, MW-04, MW-09, and MW-10 (pending further evaluation)
	Detection Monitoring (PA 640 Sec. 11511a(3)(c))	Boron, Calcium, Chloride, Fluoride, Iron, pH, Sulfate, and TDS
CCR Monitoring Constituents	Assessment Monitoring (PA 640 Sec. 11519b(2) plus above listed Detection Monitoring)	Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Copper, combined Radium 226 + 228, Fluoride, Lead, Lithium, Nickel, Mercury, Molybdenum, Selenium, Silver, Thallium, Vanadium, Zinc, and the above listed detection monitoring constituents in accordance with the Part 115 Amendment
	Data Screening on Proposed Background	Evaluate outliers, trends, and seasonality when sufficient data are available
Statistical Methodology	Statistical Limits	Interwell statistical limits will be applied on a constituent basis, depending on the appropriateness of the method as determined by the Analysis of Variance
	Confidence Intervals	Used in Assessment and Corrective Action monitoring.

STATISTICAL METHODOLOGY SUMMARY									
	No Statistical Testing	Statistical testing is not required for constituents with 100% non-detects.							
Statistical Methodology - continued	Verification Resample Plan (Optional)	1-of-2 with minimum of 8 samples per well for interwell testing. Initial statistical exceedance warrants independent resampling within 90 days. If resample passes, well/constituents is not a confirmed SSI. If resample exceeds, well/constituents has a confirmed SSI. If no resample is collected, the original result is deem verified.							

3.1.1 Detection Monitoring

Groundwater quality data was evaluated through use of interwell prediction limits for detection monitoring constituents. The Interwell Prediction Limit Plots are presented in Appendix A-1, Interwell Prediction Limits and Tolerance Limit Plots. Using these methods, upgradient well data was pooled to establish a background statistical limit. Data are compared to the statistical limit to determine whether any concentrations exceed background levels. The selected statistical methodology uses an optional 1-of-2 verification resample plan. When an initial statistically significant increase (SSI) or questionable result occurs, a second sample may be collected to verify the initial result or determine if the result was an outlier.

If resampling is performed and the initial finding is not verified by resampling, the resampled value will replace the initial finding. When the resample confirms the initial finding, both values remain in the database and an SSI is declared.

The following guidance is also applicable to the statistical analysis methods:

- Statistical analyses are not performed on analytes containing 100% non-detects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain less than or equal to 15% non-detects in background, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the practical quantitation limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, a non-detect adjustment such as the Kaplan-Meier or Regression on Order Statistics (ROS) method for adjustment of the mean and standard deviation will be used prior to constructing a parametric prediction limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

3.1.2 Assessment Monitoring

Following the above statistical methodology, groundwater protection standards (GWPS) have been established for statistical comparison of assessment monitoring constituents. Parametric tolerance limits were used to calculate background limits from pooled upgradient well data (MW-07) for assessment monitoring constituents with a target of 95% confidence and 95% coverage to determine the site-specific background level. The interwell tolerance limit plots are presented in Appendix A-1. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. Since the closure evaluation is not

complete for the Inactive 1/2 Impoundments, these limits were used to identify the GWPS established under 40 CFR §257.95(h) and Rule 441(9).

As described in 40 CFR §257.95(h) and Rule 441, the GWPS is:

- The lower of the following
 - The maximum contaminant level (MCL) established under 40 CFR § 141.62 and § 141.66 of this title;
 - Where an MCL has not been established, background concentration for the constituent established in accordance with 40 CFR § 257.91; or a rule specified limit (RSL) identified for Cobalt, Lead, Lithium, or Molybdenum;
 - Michigan Part 201 Generic Cleanup Criteria and Screening Levels
 - Ground Surface Water Interface (GSI) criteria is applicable
 - Drinking Water Criteria (residential and non-residential criteria) may not be an applicable criterion. It is Golder's opinion that since drinking water wells will not be installed at the site nor on the Island since there is known impacts on Harbor Island that the DWC does not apply. Plus, the City of Grand Haven has a city ordinance preventing drinking water wells on properties with historical impacts. In addition, GHBLP is considering filing a restrictive covenant for the property to further prevent the installation of drinking water wells on the property.
 - Indoor Air Criteria, Ambient Air Criteria, Direct Contact Criteria, and Soil Saturation Concentration
 Screening Levels (Csat) is not applicable since GSI is more strict
- Background level for constituents where the background concentration is higher than the MCL, RSL, or applicable Michigan Part 201 screening levels.

Following the above rule requirements, GWPS have been established for statistical comparison of assessment monitoring constituents. Site-Specific GWPS summarizes the background limit established at each monitoring well and the GWPS used for statistical comparison.

Interim Site-Specific Groundwater Protection Standards											
Analyte	Units										
	[1]	RSL	RSL MCL Michigan Part Interim Site-Specific Background		Interim Site-Specific Background	Interim GWPS					
Part 115 Detection Monitoring Constituents (PA 640 Sec. 11511a(3)(c))											
Boron ^[3]	mg/L	N/R	N/R	7.2	16	16					
Calcium ^[3]	mg/L	N/R	N/R	N/R	200	200					
Chloride ^[3]	mg/L	N/R	N/R	150	15	150					
Fluoride ^[4]	mg/L	N/R	4	2.67	0.2254	2.67					
pH ^[3]	S.U.	N/R	N/R	6.5-9.0	5.9-8.6	6.5-9.0					
Iron ^[3]	mg/L	N/R	N/R	N/R	25.01	25.01					
Sulfate ^[3]	mg/L	N/R	N/R	370	82.4	370					
Total Dissolved Solids[3]	mg/L	N/R	N/R	500	867	867					
Part 115 Assessment Monitoring Constituents (PA 640 Sec. 11519b(2) plus Detection Monitoring Constituents)											
Antimony	mg/L	N/R	0.006	0.13	0.0016	0.006					
Arsenic	mg/L	N/R	0.01	0.01	0.0048	0.01					
Barium ^[4]	mg/L	N/R	2	1.2	0.52	1.2					

Interim Site-Specific Groundwater Protection Standards											
	Heite										
Analyte	Units [1]	RSL MCL		Michigan Part 201 GSI	Interim Site-Specific Background	Interim GWPS					
Beryllium	mg/L	N/R	0.004	0.031	0.002	0.004					
Cadmium ^[4]	mg/L	N/R	0.005	0.0025	0.0006	0.0025					
Chromium ^[4]	mg/L	N/R	0.1	0.12	0.0028	0.1					
Cobalt	mg/L	0.006	N/R	0.1	0.001	0.006					
Copper ^{[3][5]}	mg/L	N/R	1.3	0.020	0.0040	0.02					
Fluoride [4]	mg/L	N/R	4	2.67	0.2	2.67					
Lead	mg/L	0.015	N/R	0.014	0.0029	0.014					
Lithium	mg/L	0.04	N/R	0.44	0.059	0.059					
Mercury	mg/L	N/R	0.002	0.0000013	0.00014	0.00014					
Molybdenum	mg/L	0.1	N/R	3.2	0.007	0.1					
Nickel ^{[3][5]}	mg/L	N/R	N/R	0.11	0.0022	0.11					
Radium (226 + 228)	pCi/L	N/R	5	N/R	2.12	5					
Selenium [4]	mg/L	N/R	0.05	0.005	0.002	0.005					
Silver ^{[3][5]}	mg/L	N/R	N/R	0.00006	0.001	0.001					
Thallium	mg/L	N/R	0.002	0.0037	0.001	0.002					
Vanadium ^[3]	mg/L	N/R	N/R	0.027	0.00089	0.027					
Zinc ^{[3][5]}	mg/L	N/R	5.0	0.27	0.021	0.27					

Notes:

- [1] Units for each constituent: mg/L = milligram per liter, S.U. = standard units, pCi/L = picocuries per liter
- [2] N/R = no reported screening level.
- [3] State of Michigan only, not part of the Federal CCR Rule.
- [4] State of Michigan criteria is stricter than the applicable criteria for the Federal CCR Rule.
- [5] insufficient number of observations available for calculating site specific background using interwell tolerance limits, therefore interwell prediction limits is used.

Using the interim calculated GWPS as identified above, confidence intervals were then constructed on downgradient wells for each of the detection and assessment monitoring constituents. Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard and a statistically significant level (SSL) is declared.

3.2 Statistical Analysis Results

Analytical data from the fourth quarter 2021 monitoring event were statistically analyzed in accordance with the Statistical Analysis Plan (Golder, 2017). Verification resampling to confirm initial SSIs was not performed; therefore, the one (1) initial statistical exceedance from iron at monitoring well MW-08 is considered an SSI.

3.2.1 Data Screening

The initial step in the statistical evaluation is identifying potential outliers, trends, and seasonality with the analytical data. A summary of the analytical data is provided on Table 2, Analytical Results Summary. There were no outliers identified for the fourth quarter 2021 analytical data.

In addition, Mann-Kendall/Sen's Slope trend tests were performed for the downgradient monitoring wells. The significant trend plots for the constituents for the downgradient monitoring wells is presented in Appendix A-2, Trend Plots. Only statistically significant positive trends are considered potentially problematic; statistically significant negative trends generally are interpreted to indicate improving groundwater quality. Of the significant trends noted during the fourth quarter 2021 monitoring period, the majority were significant decreasing or negative trends while eight (8) were significant increasing or positive trends. A summary of the eight (8) significant positive trends for the monitoring wells is included below.

- Barium in MW-06, MW-08, and MW-10
- Calcium in MW-02
- Chromium in MW-03
- Combined Radium in MW-03 and MW-07
- Fluoride in MW-05

Based on review of the trend plots presented in Appendix A-2, the identified trends noted above are the result of geochemical variability in the subsurface likely influenced by historical ash and waste fill on the island coupled with varying groundwater elevations and flow directions influence by site recharge and elevations of the Grand River. Additionally, laboratory variability and changes to geochemical variability following the installation of the well can account for the some of the trends noted when including all of the monitoring well data to evaluate overall trends. Thus, no data correction is necessary at this time, and the data, as reported, are useable for further statistical evaluation.

3.2.2 Detection Monitoring Statistical Results

Analytical data from the fourth quarter 2021 monitoring event for the Inactive 1/2 Impoundment detection monitoring constituents have been statistically analyzed in accordance with the site's Statistical Analysis Plan.

The interwell prediction limit plots for detection monitoring constituents are presented in Appendix A-1. Review of the Sanitas[™] results indicates that the following SSIs were identified during the fourth quarter 2021 monitoring event:

Inter-Well Prediction Limit Statistically Significant Increase Summary									
Detection Monitoring Constituents	Inactive 1/2 Impoundment Network								
Boron	MW-01R								
Calcium	MW-01R and MW-05								
Chloride	MW-01R, MW-05, MW-06, and MW-08								
Fluoride	MW-01R								
Iron	MW-08								
рН	No SSIs observed								
Sulfate	MW-01R and MW-05								
Total Dissolved Solids	MW-01R, MW-05, and MW-06								

Based on the SSIs identified at the site, assessment monitoring was originally initiated on April 9, 2018.

3.2.3 Assessment Monitoring Statistical Results

Review of the statistical results for the fourth quarter 2021 monitoring event indicates that SSLs were identified for assessment monitoring constituents using confidence intervals (CI). The confidence intervals using the site specific GWPS are presented in Appendix A-3, Confidence Intervals.

A summary of the SSLs is provided below.

Confidence Interval Exceedance Summary										
Assessment Monitoring Constituents	Inactive 1/2 Impoundment Network									
Part 115 Detection	Part 115 Detection Monitoring Constituents (PA 640 Sec. 11511a(3)(c))									
Boron	MW-01R, MW-02, and MW-10									
Calcium	MW-03, MW-04, MW-05, and MW-09									
Chloride	MW-01R, MW-03, MW-04, and MW-10									
Sulfate	MW-01R, MW-03, and MW-04									
Total Dissolved Solids	MW-01R, MW-02, MW-03, MW-04, MW-05, MW-06, and MW-10									
Part 115 Assessi	ment Monitoring Constituents (PA 640 Sec. 11519b(2))									
Arsenic	MW-05									
Fluoride	MW-01R, MW-02, and MW-10									
Lithium	MW-01R, MW-02, MW-05, MW-06, MW-09, and MW-10									

In response to the SSLs identified for the Inactive 1/2 Impoundment, assessment of corrective measures (ACM) was initiated on February 8, 2019. The documentation of the assessment of corrective measures was halted pending EPA and EGLE concurrence regarding the delineation of the Inactive Unit 1/2 Impoundment and an alternate approved monitoring network. Following determination and concurrence of the detection monitoring well network, the ACM will be completed, and remedy selection alternatives identified. GHBLP will pursue groundwater corrective action following the provisions of 40 CFR 257.96.

4.0 CONCLUSIONS

The detection monitoring well network is currently being re-evaluated, alternate background monitoring wells are being considered, and statistical results are expected to change. As stated previously, a field summary report with revised detection monitoring locations is forthcoming. Following concurrence from EGLE, GHBLP will implement background groundwater quality data from the revised detection monitoring locations. An updated HMP and Groundwater Monitoring System Certification is expected following review of the background groundwater quality data. Therefore, the purpose of this report is to comply with Rule 907(11) and Rule 908(6) and monitoring well MW-07 was used as an interim background well until a better understanding of groundwater flow is determined.

The preliminary statistical evaluations, using the interim background well location, of the groundwater monitoring data for the Inactive 1/2 Impoundment identified SSIs of detection monitoring constituents above prediction limits and SSLs of assessment monitoring constituents above the GWPS.

The following SSLs were identified above the GWPS during the fourth quarter monitoring event.

- Arsenic (preliminary GWPS of 0.01 mg/L)
 - MW-05 (CI range 0.063-0.16 mg/L)
- Boron (preliminary GWPS of 16 mg/L)
 - MW-01R (CI range 140-190 mg/L)
 - MW-02 (CI range 99-138 mg/L)
 - MW-10 (CI range 39-50 mg/L)

- Calcium (preliminary GWPS of 200 mg/L)
 - MW-03 (CI range 540-620 mg/L)
 - MW-04 (CI range 421-463 mg/L)
 - MW-05 CI range 240-560 mg/L)
 - MW-09 (CI range 228-258 mg/L)

- Chloride (preliminary GWPS of 150 mg/L)
 - MW-01R (CI range 251-264 mg/L)
 - MW-03 (CI range 360-454 mg/L)
 - MW-04 (CI range 241-314 mg/L)
 - MW-010 (CI range 412-604 mg/L)
- Fluoride (preliminary GWPS of 2.67 mg/L)
 - MW-01R (CI range 20-26 mg/L)
 - MW-02 (CI range 10-13 mg/L)
 - MW-10 (CI range 10-12 mg/L)
- Lithium (preliminary GWPS of 0.059 mg/L)
 - MW-01R (CI range 2.4-3.1 mg/L)
 - MW-02 (CI range 1.2-1.5 mg/L)
 - MW-05 (CI range 0.07-0.13 mg/L)
 - MW-06 (CI range 0.17-0.23 mg/L)
 - MW-09 (CI range 0.16-0.26 mg/L)
 - MW-10 (CI range 0.98-1.5 mg/L)

- Sulfate (preliminary GWPS of 370 mg/L)
 - MW-01R (CI range 528-761 mg/L)
 - MW-03 (CI range 486-972 mg/L)
 - MW-04 (CI range 639-802 mg/L)
- TDS (preliminary GWPS of 867 mg/L)
 - MW-01R (Cl range 3,200-3,500 mg/L)
 - MW-02 (CI range 1,900-2,400 mg/L)
 - MW-03 (CI range 2,800-3,500 mg/L)
 - MW-04 (CI range 1,900-2,400 mg/L)
 - MW-05 (CI range 900-2,400 mg/L)
 - MW-06 (CI range 1,200-1,600 mg/L)
 - MW-10 (CI range 1,500-1,900 mg/L)

There is evidence of other potential sources for the groundwater impacts observed in groundwater monitoring wells in the Inactive 1/2 Impoundment groundwater monitoring network, including:

- Historical ash placed as beneficial fill outside the boundary of the Inactive 1/2 Impoundment
- Historical waste placement at the JB Sims site

These other potential sources currently exist on the JB Sims site and should be considered as likely influences on the groundwater quality at the site. The Site will remain in assessment monitoring and pursue remedial alternatives until the groundwater quality has returned to background conditions or is below GWPS at each of the detection monitoring wells.

GHBLP is working with USEPA and EGLE to further evaluate the groundwater monitoring well networks at JB Sims. A field summary report with revised detection monitoring locations is forthcoming. GHBLP anticipates submitting a proposed expanded groundwater monitoring network in 2022. GHBLP will continue to address the groundwater impacts at JB Sims following the requirements of the PA 640 Part 115 amendment.

5.0 REFERENCES

ERM, 2016. *Coal Ash Delineation Sampling Results* for the Grand Haven Board of Light and Power. Environmental Resources Management Michigan, Inc. February 8, 2016.

ERM, 2017. *Groundwater Monitoring System Certification* for the Grand Haven Board of Light and Power, Environmental Resources Management Michigan, Inc. November 2017.

Golder, 2017. Statistical Analysis Plan for the Grand Haven Board of Light and Power. Golder Associates Inc. October 17, 2017.

Golder, 2019. Notice of Initiating Assessment of Corrective Measures. Golder Associates Inc. February 8, 2019.

Golder, 2020a. JB Sims Generating Station Unit 3 Impoundments – CCR Removal Documentation Report. Golder Associates Inc. December 11, 2020.

Golder, 2020b. Alternate Source Demonstration for the JB Sims Generating Station – Unit 3 Impoundments, Golder Associates Inc. December 28, 2020.

- PA 451, 1995. State of Michigan enacted Natural Resources and Environmental Protection Act, Public Act No. 451 of 1994. State of Michigan. Effective March 30, 1995.
- PA 640, 2018. State of Michigan enacted Public Act No. 640 of 2018 (PA 640) to amend the Natural Resources and Environmental Protection Act, also known as Part 115 of PA 451 of 1994, as amended (Part 115 amendment). State of Michigan. December 28, 2018.
- Sanitas, 2014. Groundwater Statistical Software. Sanitas Technologies, Shawnee, KS. 2014.
- State Waste Management Board, 2016. State Solid Waste Management Regulations (9VAC20-81 *et seq.*). January 2016.
- USEPA, 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities. Unified Guidance. USEPA 530/R-09-007.
- USEPA, 2015. Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule/ [EPA-HQ-RCRA-2009-0640; FRL-9919-44-OSWER] (2015), Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System.
- USEPA, 2016. *Disposal of Coal Combustion Residuals from Electric Utilities*; Amendment, Federal Register. Volume 81. No. 151. Friday August 5, 2016.
- USEPA, 2018. *Disposal of Coal Combustion Residuals from Electric Utilities*; Amendment, Federal Register. Volume 83. No. 146. Monday July 30, 2018.

Signature Page

Golder Associates Inc.

Carolyn E. Powrozek, C.P.G.

Senior Geologist

Dawn L. Prell, C.P.G.

Senior Consultant

CEP/DLP

Golder and the G logo are trademarks of Golder Associates Corporation

 $https://golder associates. share point.com/sites/27317g/deliverables/200 \ reports/2021 \ annual \ report/4q2021/unit \ 1-2/final \ rp-ghblp-units \ 1-2 \ 4q2021 \ qmr. docx$

TABLES

Table 1 - Summary of Locations
Table 2 - Groundwater Elevation Summary
Table 3 - Analytical Results Summary

January 2022 **TABLE 1.** 21461064

SUMMARY OF LOCATIONS

JB Sims Generating Station

Fourth Quarter 2021 Monitoring Report

Location Identification		ndwater Monitoring etworks	Coordinates		Date	Ground Surface	Top of Casing (Staff	Total Well Depth (Total	Screen Interval	Comments		
	Inactive 1/2 Impoundment	Former 3 A/B Impoundments	Northing	Easting	Installed	Elevation (feet MSL)	Gauge) Elevation (feet MSL)	Boring Depth) (ft)	(ft)	Comments		
Monitoring Wells												
MW-01R	Detection	Detection	578101.30	12624432.00	5/1/2020	585.73	588.45	10.00	5-10			
MW-02	Assessment	Detection	578241.91	12624222.64	1/18/2017	592.67	595.64	23.37	15-20			
MW-03	Assessment	Detection	578125.03	12624180.40	1/18/2017	590.42	593.08	20.34	12-17			
MW-04	Assessment	Detection	578003.96	12624165.24	1/18/2017	588.66	591.49	18.00	10-15			
MW-05	Detection	Piezometer	577970.06	12624634.16	5/22/2018	585.31	587.67	11.50	4-9			
MW-06	Detection	Piezometer	578229.40	12624525.24	5/22/2018	588.22	590.40	16.55	9-14			
MW-07	Detection	Detection/Background	577585.75	12625513.56	5/22/2018	583.65	586.49	18.80	11-16			
MW-08	Detection	Piezometer	578261.14	12625341.26	5/22/2018	582.74	585.40	11.85	4-9			
MW-09	Assessment	Assessment	578241.35	12624185.62	8/12/2019	586.80	589.65	12.00	7-12			
MW-10	Assessment	Piezometer	578367.40	12624470.20	8/12/2019	583.71	586.73	10.00	5-10			
				Pie	zometers							
PZ-11	Site-wide	e Water Levels	578236.87	12624377.19	8/19/2021	592.46	595.27	15 (40)	10-15			
PZ-12	Site-wide	e Water Levels	577987.57	12624312.28	8/17/2021	584.94	588.03	8 (40)	3-8			
PZ-13	Site-wide	e Water Levels	577623.94	12624190.94	8/17/2021	583.23	586.08	9 (34)	4-9			
PZ-14	Site-wide	e Water Levels	577191.85	12624160.04	8/16/2021	583.46	586.39	8 (35)	3-8			
PZ-15	Site-wide	e Water Levels	577062.51	12624730.23	8/25/2021	589.32	592.38	20 (40)	15-20			
PZ-16	Site-wide	e Water Levels	577273.65	12625194.83	8/25/2021	582.18	584.87	8 (35)	3-8			
PZ-17	Site-wide	e Water Levels	577652.81	12624744.16	8/17/2021	584.03	587.02	8 (40)	3-8			
PZ-18	Site-wide	e Water Levels	577919.12	12624742.18	8/18/2021	584.12	587.22	8 (34)	3-8			
PZ-19	Site-wide	e Water Levels	577938.05	12624957.16	8/20/2021	583.06	585.86	8 (25)	3-8			
PZ-20	Site-wide	e Water Levels	577722.50	12625131.40	8/18/2021	582.43	585.74	8 (34)	3-8			
PZ-21	Site-wide	e Water Levels	577941.39	12625280.33	8/30/2021	NA	583.32	9 (30)	4-9	Located in standing water		
PZ-22	Site-wide	e Water Levels	578056.88	12625387.96	8/31/2021	NA	583.42	9 (22)	4-9	Located in standing water		

TABLE 1. SUMMARY OF LOCATIONS

JB Sims Generating Station

Fourth Quarter 2021 Monitoring Report

Location Identification		ndwater Monitoring etworks Former 3 A/B Impoundments	Coordinates Northing Easting		Date Installed	Ground Surface Elevation (feet MSL)	Top of Casing (Staff Gauge) Elevation	Total Well Depth (Total Boring Depth) (ft)	Screen Interval (ft)	Comments		
	mpoundment	impoundmente					(feet MSL)	. ,,,				
	Piezometers - continued											
PZ-23	Site-wide	e Water Levels	577627.71	12625841.35	8/25/2021	584.39	587.21	9 (25)	4-9			
PZ-24	Site-wide	e Water Levels	577884.70	12625979.33	8/24/2021	583.92	587.34	9 (30)	4-9			
PZ-25	Site-wide	e Water Levels	577703.65	12626240.18	8/24/2021	583.46	586.37	8 (30)	3-8			
PZ-26	Site-wide	e Water Levels	578114.39	12626145.22	8/23/2021	583.81	586.27	8 (30)	3-8			
PZ-27	Site-wide Water Levels		578303.89	12626551.81	8/23/2021	581.87	585.09	8 (40)	3-8			
PZ-28	Site-wide Water Levels		578314.93	12625722.71	8/23/2021	585.11	588.07	9 (29.5)	4-9			
PZ-29	Site-wide	e Water Levels	578138.08	12625241.56	8/30/2021	NA	583.49	9 (35)	4-9	Located in standing water		
PZ-30	Site-wide	e Water Levels	578196.17	12624990.23	8/19/2021	583.02	585.80	8 (34)	3-8			
PZ-31	Site-wide	e Water Levels	578307.16	12624752.70	9/1/2021	582.56	585.85	8 (27)	3-8			
PZ-32	Site-wide	e Water Levels	578348.32	12624980.14	8/30/2021	583.08	586.26	8 (40)	3-8			
				Sta	ff Gauges							
SG-01	Site-wide	e Water Levels	578234.49	12624159.06	8/12/2019	NA	585.10	NA	NA	Located in standing water		
SG-02	Site-wide	e Water Levels	578287.85	12624784.61	8/12/2019	NA	583.43	NA	NA	Located in standing water		
SG-03	Site-wide	e Water Levels	578201.99	12624858.11	8/12/2019	NA	584.37	NA	NA	Located in standing water		
SG-04R	Site-wide	e Water Levels	577966.13	12624647.67	6/9/2020	NA	585.04	NA	NA	Located in standing water		
SG-05	Site-wide	e Water Levels	577717.81	12624888.51	8/12/2019	NA	584.83	NA	NA	Damaged in 2021		
SG-06	Site-wide	e Water Levels	578227.56	12625365.56	8/12/2019	NA	584.88	NA	NA	Damaged in 2021		
				Stil	ling Wells							
STW-1	Site-wide	e Water Levels	578433.87	12625522.16	9/3/2021	NA	583.03	NA	NA	Located in standing water		
STW-2	Site-wide	e Water Levels	577340.30	12625423.18	9/2/2021	NA	583.47	NA	NA	Located in standing water		
STW-3	Site-wide	e Water Levels	577771.11	12624083.74	9/3/2021	NA	591.17	NA	NA	Located in standing water		
STW-2	Site-wide	e Water Levels	577340.30	12625423.18	9/2/2021	NA	583.47	NA	NA	Located in standin		

Notes:

MSL = mean sea level. NA = Not available

GROUNDWATER ELEVATION SUMMARY

JB Sims Generating StationFourth Quarter 2021 Monitoring Report

Page 1 of 2

Location	Top of Casing (Staff Gauge)		October 1, 20)21	October 25, 2021				
Identification	Elevation (feet MSL)	Date	Depth to Water (ft)	Groundwater Elevation	Date	Depth to Water (ft)	Groundwater Elevation		
Monitoring Well	s		<u> </u>			<u>'</u>			
MW-01R	588.45	10/1/2021	7.01	581.44	10/25/2021	6.23	582.22		
MW-02	595.64	10/1/2021	14.70	580.94	10/25/2021	14.71	580.93		
MW-03	593.08	10/1/2021	12.07	581.01	10/25/2021	11.90	581.18		
MW-04	591.49	10/1/2021	10.46	581.03	10/25/2021	10.22	581.27		
MW-05	587.67	10/1/2021	6.54	581.13	10/25/2021	5.90	581.77		
MW-06	590.40	10/1/2021	9.26	581.14	10/25/2021	8.50	581.90		
MW-07	586.49	10/1/2021	5.43	581.06	10/25/2021	5.25	581.24		
MW-08	585.40	10/1/2021	4.31	581.09	10/25/2021	4.04	581.36		
MW-09	589.65	10/1/2021	8.58	581.07	10/25/2021	8.49	581.16		
MW-10	586.73	10/1/2021	5.70	581.03	10/25/2021	5.32	581.41		
Piezometers									
PZ-11	595.27	10/1/2021	14.00	581.27	10/25/2021	NR	NM		
PZ-12	588.03	10/1/2021	6.83	581.20	10/25/2021	NR	NM		
PZ-13	586.08	10/1/2021	4.96	581.12	10/25/2021	4.60	581.48		
PZ-14	586.39	10/1/2021	5.32	581.07	10/25/2021	4.70	581.69		
PZ-15	592.38	10/1/2021	11.15	581.23	10/25/2021	10.84	581.54		
PZ-16	584.87	10/1/2021	3.86	581.01	10/25/2021	3.67	581.20		
PZ-17	587.02	10/1/2021	5.85	581.17	10/25/2021	5.42	581.60		
PZ-18	587.22	10/1/2021	6.15	581.07	10/25/2021	5.62	581.60		
PZ-19	585.86	10/1/2021	4.78	581.08	10/25/2021	4.53	581.33		
PZ-20	585.74	10/1/2021	4.78	580.96	10/25/2021	4.53	581.21		
PZ-21	583.32	10/1/2021	2.18	581.14	10/25/2021	NR	NM		
PZ-22	583.42	10/1/2021	2.35	581.07	10/25/2021	NR	NM		
PZ-23	587.21	10/1/2021	6.50	580.71	10/25/2021	5.76	581.45		
PZ-24	587.34	10/1/2021	6.61	580.73	10/25/2021	6.13	581.21		
PZ-25	586.37	10/1/2021	5.26	581.11	10/25/2021	5.00	581.37		
PZ-26	586.27	10/1/2021	5.52	580.75	10/25/2021	4.60	581.67		
PZ-27	585.09	10/1/2021	4.40	580.69	10/25/2021	3.24	581.85		
PZ-28	588.07	10/1/2021	6.95	581.12	10/25/2021	6.70	581.37		
PZ-29	583.49	10/1/2021	2.24	581.25	10/25/2021	NR	NM		
PZ-30	585.80	10/1/2021	5.02	580.78	10/25/2021	NR	NM		
PZ-31	585.85	10/1/2021	4.81	581.04	10/25/2021	4.10	581.75		
PZ-32	586.26	10/1/2021	5.25	581.01	10/25/2021	4.95	581.31		
Staff Gauges	333			33.131					
SG-01	585.10	10/1/2021	NM	NM	10/25/2021	NR	NM		
SG-02	583.43	10/1/2021	1.44	581.99	10/25/2021	NR	NM		
SG-02	584.37	10/1/2021	NM	NM	10/25/2021	NR	NM		
SG-04R	585.04	10/1/2021	3.38	581.66	10/25/2021	NR	NM		
SG-05	584.83	10/1/2021	NM	NM	10/25/2021	NR	NM		
SG-06	584.88	10/1/2021	NM	NM	10/25/2021	NR	NM		
Stilling Wells	30 1.00	. 5, 1/2521	1 11111	1 4141	. 5, 20, 202 1	1413	1 4147		
STW-1	583.03	10/1/2021	1.88	581.15	10/25/2021	NR	NM		
STW-2	583.47	10/1/2021	2.41	581.06	10/25/2021	NR	NM		
STW-2	591.17	10/1/2021	10.10	581.07	10/25/2021	NR	NM		

Notes: MSL = mean sea level.

NA = Not available

GROUNDWATER ELEVATION SUMMARY

JB Sims Generating StationFourth Quarter 2021 Monitoring Report

Page 2 of 2

Location	Top of Casing (Staff Gauge)	No	ovember 23, 20)21	December 17, 2021				
Identification	Elevation (feet MSL)	Date	Depth to Water (ft)	Groundwater Elevation	Date	Depth to Water (ft)	Groundwater Elevation		
Monitoring Well	ls					<u>'</u>			
MW-01R	588.45	11/23/2021	6.74	581.71	12/17/2021	6.36	582.09		
MW-02	595.64	11/23/2021	15.68	579.96	12/17/2021	15.88	579.76		
MW-03	593.08	11/23/2021	12.86	580.22	12/17/2021	12.61	580.47		
MW-04	591.49	11/23/2021	11.08	580.41	12/17/2021	10.82	580.67		
MW-05	587.67	11/23/2021	6.26	581.41	12/17/2021	6.28	581.39		
MW-06	590.40	11/23/2021	9.06	581.34	12/17/2021	8.86	581.54		
MW-07	586.49	11/23/2021	6.21	580.28	12/17/2021	6.02	580.47		
MW-08	585.40	11/23/2021	5.05	580.35	12/17/2021	4.94	580.46		
MW-09	589.65	11/23/2021	9.35	580.30	12/17/2021	9.09	580.56		
MW-10	586.73	11/23/2021	6.47	580.26	12/17/2021	6.21	580.52		
Piezometers									
PZ-11	595.27	11/23/2021	14.00	581.27	12/17/2021	13.75	581.52		
PZ-12	588.03	11/23/2021	6.85	581.18	12/17/2021	6.28	581.75		
PZ-13	586.08	11/23/2021	5.65	580.43	12/17/2021	5.45	580.63		
PZ-14	586.39	11/23/2021	5.64	580.75	12/17/2021	5.40	580.99		
PZ-15	592.38	11/23/2021	11.76	580.62	12/17/2021	11.58	580.80		
PZ-16	584.87	11/23/2021	4.64	580.23	12/17/2021	4.48	580.39		
PZ-17	587.02	11/23/2021	6.16	580.86	12/17/2021	6.00	581.02		
PZ-18	587.22	11/23/2021	6.51	580.71	12/17/2021	6.41	580.81		
PZ-19	585.86	11/23/2021	5.36	580.50	12/17/2021	5.23	580.63		
PZ-20	585.74	11/23/2021	5.30	580.44	12/17/2021	5.31	580.43		
PZ-21	583.32	11/23/2021	NM	NM	12/17/2021	2.85	580.47		
PZ-22	583.42	11/23/2021	NM	NM	12/17/2021	2.90	580.52		
PZ-23	587.21	11/23/2021	6.68	580.53	12/17/2021	6.48	580.73		
PZ-24	587.34	11/23/2021	6.64	580.70	12/17/2021	6.31	581.03		
PZ-25	586.37	11/23/2021	5.98	580.39	12/17/2021	5.90	580.47		
PZ-26	586.27	11/23/2021	5.47	580.80	12/17/2021	5.14	581.13		
PZ-27	585.09	11/23/2021	4.52	580.57	12/17/2021	3.99	581.10		
PZ-28	588.07	11/23/2021	7.78	580.29	12/17/2021	7.68	580.39		
PZ-29	583.49	11/23/2021	3.08	580.41	12/17/2021	2.83	580.66		
PZ-30	585.80	11/23/2021	5.28	580.52	12/17/2021	4.95	580.85		
PZ-31	585.85	11/23/2021	4.69	581.16	12/17/2021	4.66	581.19		
PZ-32	586.26	11/23/2021	5.59	580.67	12/17/2021	5.45	580.81		
Staff Gauges									
SG-01	585.10	11/23/2021	NM	NM	12/17/2021	NM	NM		
SG-02	583.43	11/23/2021	1.50	581.93	12/17/2021	1.68	581.75		
SG-03	584.37	11/23/2021	2.72	581.65	12/17/2021	2.80	581.57		
SG-04R	585.04	11/23/2021	3.48	581.56	12/17/2021	3.56	581.48		
SG-05	584.83	11/23/2021	NM	NM	12/17/2021	NM	NM		
SG-06	584.88	11/23/2021	NM	NM	12/17/2021	NM	NM		
Stilling Wells									
STW-1	583.03	11/23/2021	2.83	580.20	12/17/2021	2.50	580.53		
STW-2	583.47	11/23/2021	3.35	580.12	12/17/2021	3.30	580.17		
STW-3	591.17	11/23/2021	10.93	580.24	12/17/2021	10.88	580.29		

Notes:

MSL = mean sea level.

NA = Not available

TABLE 3. ANALYTICAL RESULTS SUMMARY JB Sims Generating Station

Fourth Quarter 2021

Analyte	Units	PQL	MDL	MW-01R	MW-02	MW-03	MW-04	MW-05	MW-06	MW-07	MW-08	MW-09	MW-10
Detection Monitoring													
BORON, TOTAL	mg/L	0.050	0.017	140	100	4.4	3.7	3.0	13	15	1.4	6.8	52
CALCIUM, TOTAL	mg/L	0.50	0.16	220	190	490	370	340	200	130	130	220	140
CHLORIDE, TOTAL	mg/L	0.75	0.60	230	140	330	170	22	200	14	30	13	520
FLUORIDE, TOTAL	mg/L	0.10	0.055	13	9.4	0.89	1.3	3.3	1.6	0.094 J	0.42	2.5	11
IRON, TOTAL	mg/L	0.20	0.13	1.7	22	4.5	5.2	2.5	13	16	29	19	10
pH	S.U.	NA	NA	7.8	6.48	6.91	6.74	7.43	7.6	7.01	6.74	7.31	7.42
SULFATE, TOTAL	mg/L	3.0	0.41	530	< 0.41	23	450	320	1.3 J	30	37	14	53
TOTAL DISSOLVED SOLIDS	mg/L	40	NA	3,600	2,000	2,500	1,900	1,300	1,300	630	630	880	2,000
Assessment Monitoring													
ANTIMONY, TOTAL	mg/L	<0.00030	<0.00030	0.00044	<0.00030	<0.00030	<0.00030	<0.00021	<0.00021	<0.00030	<0.00030	<0.00030	<0.00030
ARSENIC, TOTAL	mg/L	0.0010	0.00050	0.0046	0.012	0.0012	0.0019	0.04	0.0017	<0.0005	0.0067	0.0025	0.0011
BARIUM, TOTAL	mg/L	0.010	0.0013	0.20	0.50	0.47	0.12	0.087	1.6	0.36	1.0	5.0	1.5
BERYLLIUM, TOTAL	mg/L	0.0020	0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00070	<0.00070	<0.0010	<0.0010	<0.0010	<0.0010
CADMIUM, TOTAL	mg/L	0.0010	0.00060	<0.00060	<0.00060	<0.00060	<0.00060	< 0.00042	0.00053 J	<0.00060	<0.00060	<0.00060	<0.00060
CHROMIUM, TOTAL	mg/L	0.00090	0.00070	0.0022	0.040	0.0041	0.0033	0.0017	0.0029	0.0010	0.0012	0.0029	0.011
COBALT, TOTAL	mg/L	0.0016	0.00050	0.0022	0.0055	0.0014 J	0.00079 J	0.00069 J	0.00082 J	0.00088 J	< 0.00050	< 0.00050	0.0011 J
COPPER, TOTAL	mg/L	0.0040	0.0018	< 0.0018	0.0022 J	< 0.0018	< 0.0018	< 0.0013	< 0.0013	< 0.0018	< 0.0018	< 0.0018	0.0050
LEAD, TOTAL	mg/L	0.0020	0.00050	0.0024	0.0018 J	< 0.00050	< 0.00050	< 0.00035	0.0014	< 0.00050	< 0.00050	< 0.00050	0.0012 J
LITHIUM, TOTAL	mg/L	0.010	0.0067	2.8	1.2	0.053	0.061	0.089	0.23	< 0.0067	0.043	0.26	1.4
MERCURY, TOTAL	mg/L	0.0000005	0.00000016	0.0000019	0.0000028	0.00000079	<0.0000016	<0.0000016	0.00000094	<0.0000016	<0.0000016	0.00000062	0.0000008
MOLYBDENUM, TOTAL	mg/L	0.00040	0.000093	0.0016	0.0045	0.00012 J	0.0015	0.0023	0.00076	< 0.000093	0.0037	0.017	0.012
NICKEL, TOTAL	mg/L	0.0050	0.0022	0.0039 J	0.017	0.0027 J	0.011	0.0015 J	0.0022 J	< 0.0022	< 0.0022	< 0.0022	0.0027 J
RADIUM (226 + 228)	pCi/L	1.0	NA	0.41	2.27	1.01	1.87	0.34 J	0.06 J	1.33	0.86	2.56	2.03
SELENIUM, TOTAL	mg/L	0.0020	0.0090	0.00097 J	0.0017 J	< 0.00090	< 0.00090	< 0.00063	< 0.00063	< 0.00090	< 0.00090	< 0.00090	< 0.00090
SILVER, TOTAL	mg/L	0.0010	0.0003	<0.00030	<0.00030	<0.00030	<0.00030	<0.00021	<0.00021	<0.00030	<0.00030	<0.00030	<0.00030
THALLIUM, TOTAL	mg/L	0.0010	0.0003	<0.00030	<0.00030	<0.00030	<0.00030	<0.00021	0.00030 J	<0.00030	<0.00030	<0.00030	<0.00030
VANADIUM, TOTAL	mg/L	0.00080	0.00050	0.0017	0.0039	0.0014	0.0010	0.00089	0.00083	0.00067 J	< 0.00050	< 0.00050	0.0018
ZINC, TOTAL	mg/L	0.020	0.018	<0.018	<0.018	<0.018	<0.018	<0.012	<0.012	<0.018	<0.018	<0.018	<0.018

NOTES:

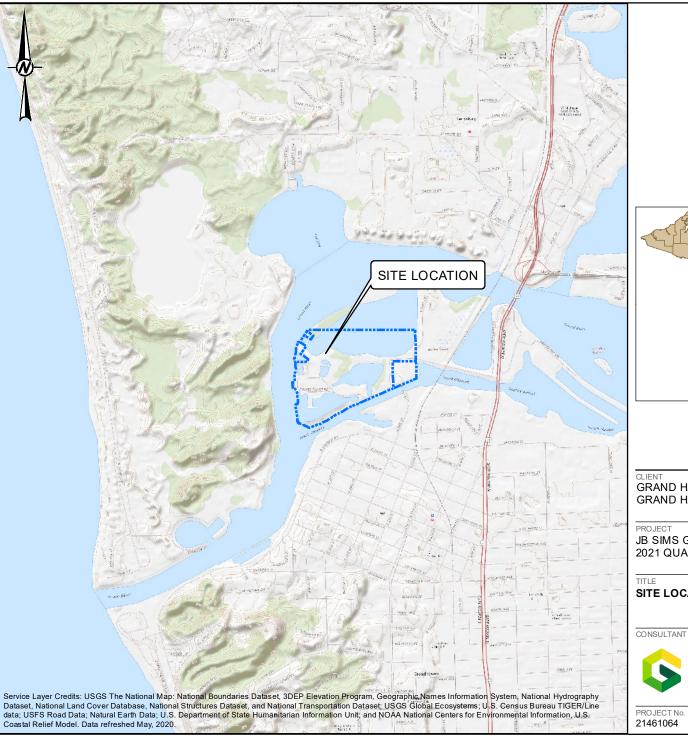
mg/L - Milligrams per Liter

S.U. - standard units

pCi/L - picocuries per Liter

NA - Not available

J - Result is an estimated value. The result is greater than or equal to the Method Detection Limit (MDL) and less than the Practical Quantitation Limit (PQL).


< - Constituent was analyzed, but was not detected above the MDL and is considered a non-detect.

FIGURES (Revised March 8, 2022)

Figure 1 - Site Location Map Figure 2 - Site Plan Figures 3 through 6 - Groundwater Contour Maps

GRAND HAVEN BOARD OF LIGHT AND POWER GRAND HAVEN, MICHIGAN

JB SIMS GENERATING STATION 2021 QUARTERLY GROUNDWATER MONITORING

SITE LOCATION MAP

GOLDER MEMBER OF WSP

YYYY-MM-DD	2021-04-05	
PREPARED	DJC	
DESIGN	CEP	
REVIEW	CEP	
APPROVED	DLP	

FIGURE PROJECT No. 21461064 20141048F000-GIS.mxd

NOTES

1. HORIZONTAL COORDINATE SYSTEM BASED ON MICHIGAN STATE PLANE SOUTH, INTERNATIONAL FEET. VERTICAL DATUM IS NAVD 1988.

2. MONITORING WELLS AND STAFF GAUGES WERE SURVEYED BY DRIESENGA & ASSOCIATES, INC. ON AUGUST 28, 2019. MW-1R AND SG-4R WERE SURVEYED BY DRIESENGA & ASSOCIATES, INC. ON JUNE 17, 2020. PIEZOMTER AND STILLING WELLS WERE SURVEYED BY GOLDER ASSOCIATES ON OCTOBER 1, 2021.

3. SG-05* HAS BEEN REMOVED

LEGEND

MONITORING WELL

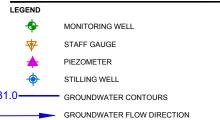
PIEZOMETER STILLING WELL GRAND HAVEN BOARD OF LIGHT AND POWER GRAND HAVEN, MICHIGAN

CONSULTANT

YYYY-MM-DD	2021-10-08	
DESIGNED	CEP	
PREPARED	DJC	
REVIEWED	CEP	
APPROVED	DLP	

JB SIMS GENERATING STATION 2021 QUARTERLY GROUNDWATER MONITORING

TITLE
SITE PLAN


-	PROJECT NO. 21464427	CONTROL 21464427A001.dwg	REV.	FIGUR
	21404421	2140442771001.dwg	0	

NOTES

- IN HORIZONTAL COORDINATE SYSTEM BASED ON MICHIGAN STATE PLANE SOUTH,
 INTERNATIONAL FEET. VERTICAL DATUM IS NAVD 1988.

 2. MONITORING WELLS AND STAFF GAUGES WERE SURVEYED BY DRIESENGA & ASSOCIATES,
 INC. ON AUGUST 28, 2019. MW-1R AND SG-4R WERE SURVEYED BY DRIESENGA &
 ASSOCIATES, INC. ON JUNE 17, 2020. PIEZOMTER AND STILLING WELLS WERE SURVEYED
 BY GOLDER ASSOCIATES ON OCTOBER 1, 2021.
- 3. STAFF GAUGES WERE NOT INCLUDED IN EVALUATION OF GROUNDWATER CONTOURS.

GRAND HAVEN BOARD OF LIGHT AND POWER GRAND HAVEN, MICHIGAN

CONSULTANT

YYYY-MM-DD	2021-10-08	
DESIGNED	CEP	
PREPARED	DJC	
REVIEWED	CEP	
APPROVED	DLP	

JB SIMS GENERATING STATION 2021 QUARTERLY GROUNDWATER MONITORING

TITLE
GROUNDWATER ELEVATION MAP

PROJECT NO.	CONTROL	REV.	FIGURE
21464427	21464427A002.dwg	0	3

NOTES

- 1. HORIZONTAL COORDINATE SYSTEM BASED ON MICHIGAN STATE PLANE SOUTH, INTERNATIONAL FEET. VERTICAL DATUM IS NAVD 1988.
 2. MONITORING WELLS AND STAFF GAUGES WERE SURVEYED BY DRIESENGA & ASSOCIATES, INC. ON AUGUST 28, 2019. MW-1R AND SG-4R WERE SURVEYED BY DRIESENGA & ASSOCIATES, INC. ON JUNE 17, 2020. PIEZOMTER AND STILLING WELLS WERE SURVEYED BY GOLDER ASSOCIATES ON OCTOBER 1, 2021.
 3. STAFF GAUGES WERE NOT INCLUDED IN EVALUATION OF GROUNDWATER CONTOURS.

GRAND HAVEN BOARD OF LIGHT AND POWER GRAND HAVEN, MICHIGAN

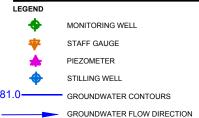
CONSULTANT

	YYYY-MM-DD	2022-01-07
	DESIGNED	CEP
)	PREPARED	DJC
	REVIEWED	CEP
	APPROVED	DLP

JB SIMS GENERATING STATION 2021 QUARTERLY GROUNDWATER MONITORING

GROUNDWATER ELEVATION MAP
OCTOBER 25, 2021

PROJECT NO. 21464427 FIGURE 4 CONTROL 21464427A003.dwg REV.


REFERENCE

AERIAL PHOTOGRAPH COURTESY OF GOOGLE EARTH PRO; IMAGE DATE: 2021-03-18.

NOTES

- IN HORIZONTAL COORDINATE SYSTEM BASED ON MICHIGAN STATE PLANE SOUTH,
 INTERNATIONAL FEET. VERTICAL DATUM IS NAVD 1988.

 2. MONITORING WELLS AND STAFF GAUGES WERE SURVEYED BY DRIESENGA & ASSOCIATES,
 INC. ON AUGUST 28, 2019. MW-1R AND SG-4R WERE SURVEYED BY DRIESENGA &
 ASSOCIATES, INC. ON JUNE 17, 2020. PIEZOMTER AND STILLING WELLS WERE SURVEYED
 BY GOLDER ASSOCIATES ON OCTOBER 1, 2021.
- 3. STAFF GAUGES WERE NOT INCLUDED IN EVALUATION OF GROUNDWATER CONTOURS.

GRAND HAVEN BOARD OF LIGHT AND POWER GRAND HAVEN, MICHIGAN

CONSULTANT

YYYY-MM-DD	2021-12-10	1
DESIGNED	CEP	(
PREPARED	DJC	
REVIEWED	CEP	
APPROVED	DLP	

JB SIMS GENERATING STATION 2021 QUARTERLY GROUNDWATER MONITORING

GROUNDWATER ELEVATION MAP

PROJECT NO.	CONTROL	REV.	FIGURE
21464427	21464427A004.dwg	0	5

NOTES

- IN HORIZONTAL COORDINATE SYSTEM BASED ON MICHIGAN STATE PLANE SOUTH,
 INTERNATIONAL FEET. VERTICAL DATUM IS NAVD 1988.

 2. MONITORING WELLS AND STAFF GAUGES WERE SURVEYED BY DRIESENGA & ASSOCIATES,
 INC. ON AUGUST 28, 2019. MW-1R AND SG-4R WERE SURVEYED BY DRIESENGA &
 ASSOCIATES, INC. ON JUNE 17, 2020. PIEZOMTER AND STILLING WELLS WERE SURVEYED
 BY GOLDER ASSOCIATES ON OCTOBER 1, 2021.
- 3. STAFF GAUGES WERE NOT INCLUDED IN EVALUATION OF GROUNDWATER CONTOURS.

GRAND HAVEN BOARD OF LIGHT AND POWER GRAND HAVEN, MICHIGAN

CONSULTANT

GOLDER MEMBER OF WSP

YYYY-MM-DD	2022-01-07	
DESIGNED	CEP	
PREPARED	DJC	
REVIEWED	CEP	
APPROVED	DLP	

JB SIMS GENERATING STATION 2021 QUARTERLY GROUNDWATER MONITORING

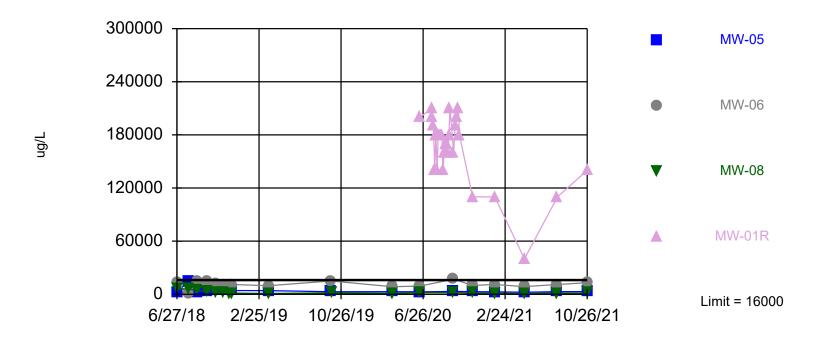
GROUNDWATER ELEVATION MAP

DECEMBER 17, 2021

	21464427A005.dwg	REV.	FIGURE 6
DBO IECT NO	CONTROL	DEV/	EIGLIDI

APPENDIX A

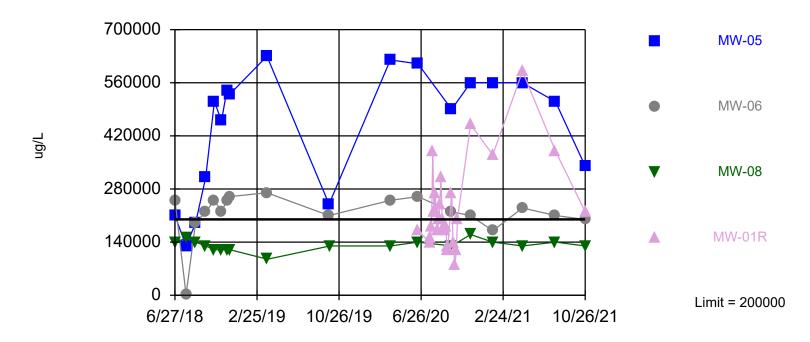
Statistical Summary


A-1 Interwell Prediction Limit and Tolerance Limit Plots
A-2 Trend Plots and Summary
A-3 Confidence Intervals

Exceeds Limit: MW-01R

Prediction Limit

Interwell Non-parametric

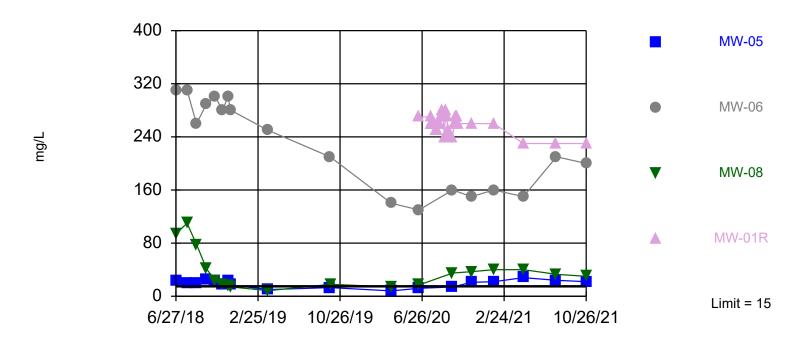

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 18 background values. Report alpha = 0.1818. Individual comparison alpha = 0.04893. Most recent point for each compliance well compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Boron Analysis Run 1/3/2022 1:12 PM View: Appendix III

Exceeds Limit: MW-05, MW-01R

Prediction Limit

Interwell Non-parametric

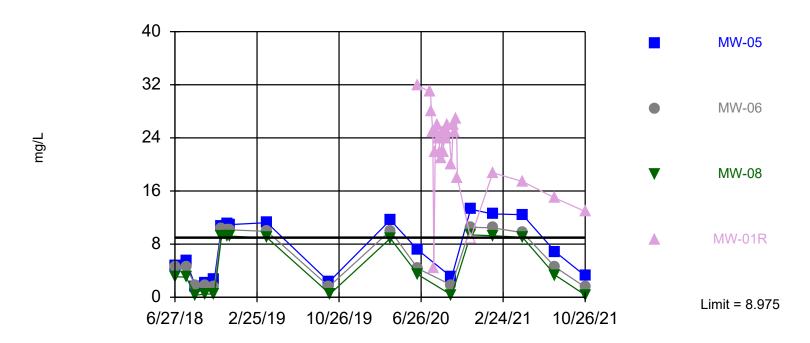

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 18 background values. Report alpha = 0.1818. Individual comparison alpha = 0.04893. Most recent point for each compliance well compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Calcium Analysis Run 1/3/2022 1:12 PM View: Appendix III

Exceeds Limit: MW-05, MW-06, MW-08, MW-01R

Prediction Limit

Interwell Non-parametric

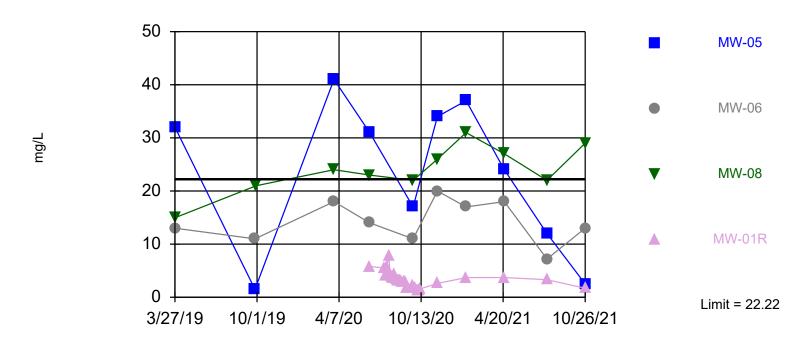


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 18 background values. Report alpha = 0.1818. Individual comparison alpha = 0.04893. Most recent point for each compliance well compared to limit. Seasonality was not detected with 95% confidence.

Exceeds Limit: MW-01R

Prediction Limit

Interwell Non-parametric

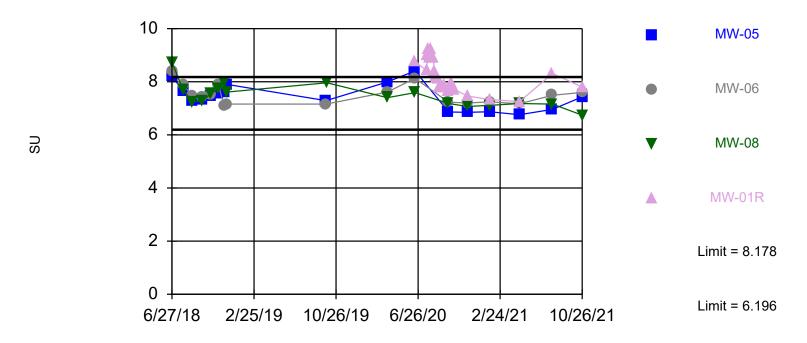

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 18 background values. 16.67% NDs. Report alpha = 0.1818. Individual comparison alpha = 0.04893. Most recent point for each compliance well compared to limit. Data were deseasonalized.

Constituent: Fluoride Analysis Run 1/3/2022 1:12 PM View: Appendix III

Exceeds Limit: MW-08

Prediction Limit

Interwell Parametric

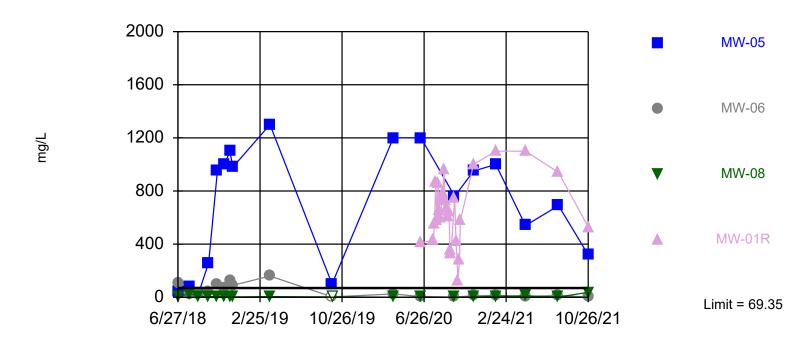

Background Data Summary: Mean=17.6, Std. Dev.=2.319, n=10. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.942, critical = 0.842. Report alpha = 0.1682. Individual comparison alpha = 0.045. Most recent point for each compliance well compared to limit.

Constituent: Iron Analysis Run 1/3/2022 1:12 PM View: Appendix III

Within Limits

Prediction Limit

Interwell Parametric


Background Data Summary: Mean=7.187, Std. Dev.=0.4429, n=17. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9662, critical = 0.892. Report alpha = 0.1682. Individual comparison alpha = 0.0225. Most recent point for each compliance well compared to limit.

Constituent: pH Analysis Run 1/3/2022 1:12 PM View: Appendix III

Exceeds Limit: MW-05, MW-01R

Prediction Limit

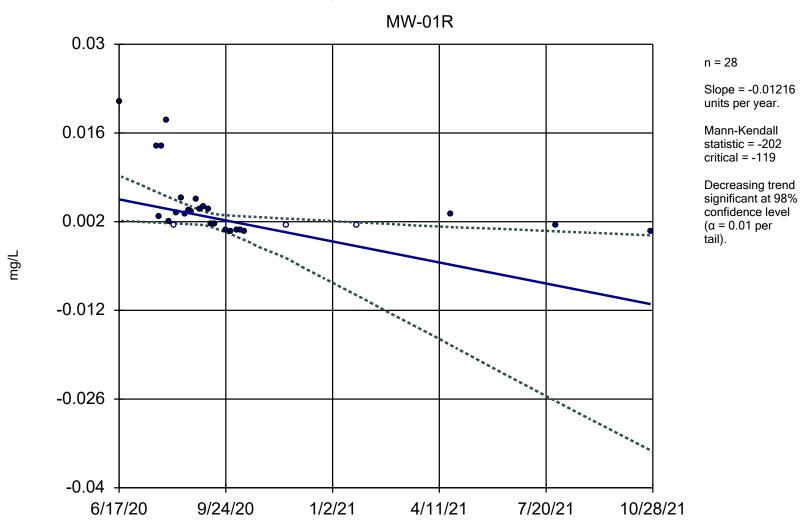
Interwell Parametric

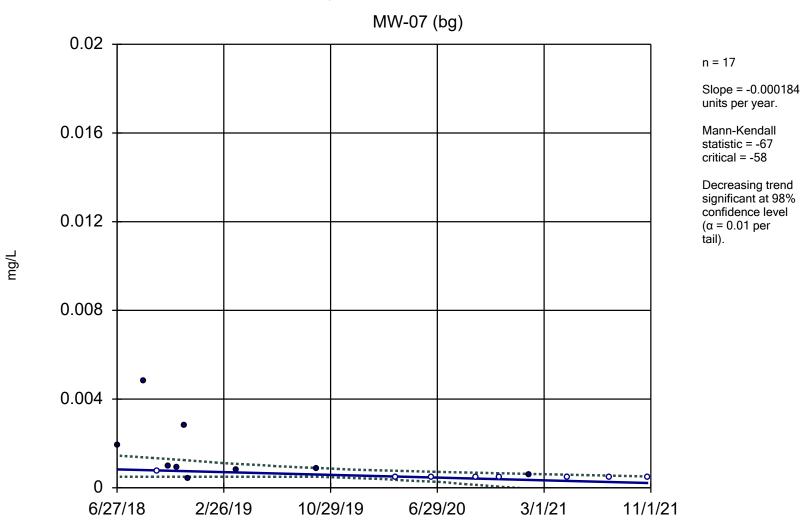
Background Data Summary: Mean=36.17, Std. Dev.=17.96, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9066, critical = 0.897. Report alpha = 0.1682. Individual comparison alpha = 0.045. Most recent point for each compliance well compared to limit.

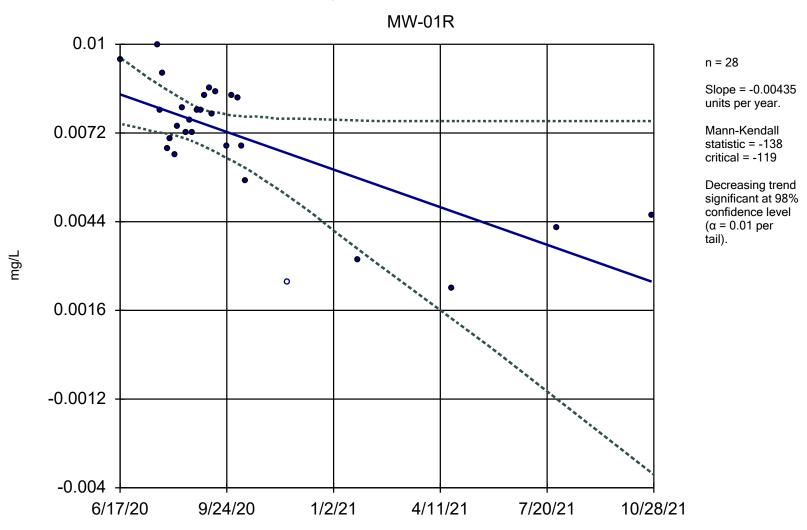
Exceeds Limit: MW-05, MW-06, MW-01R

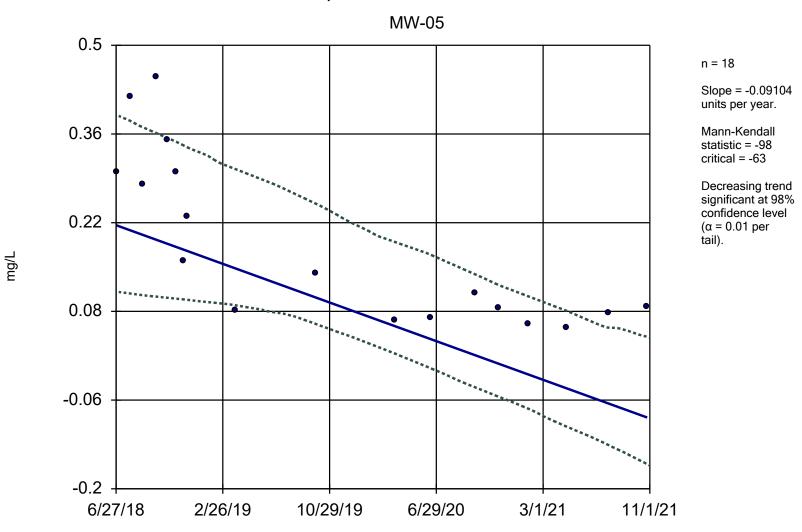
Prediction Limit

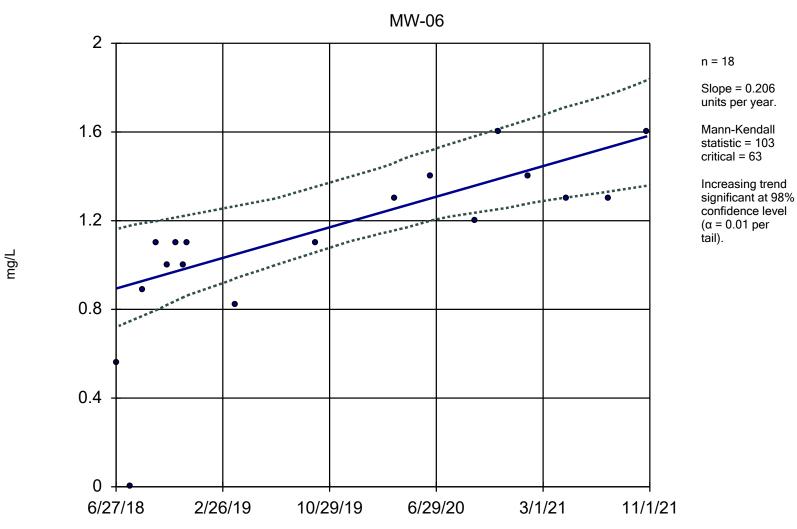
Interwell Parametric

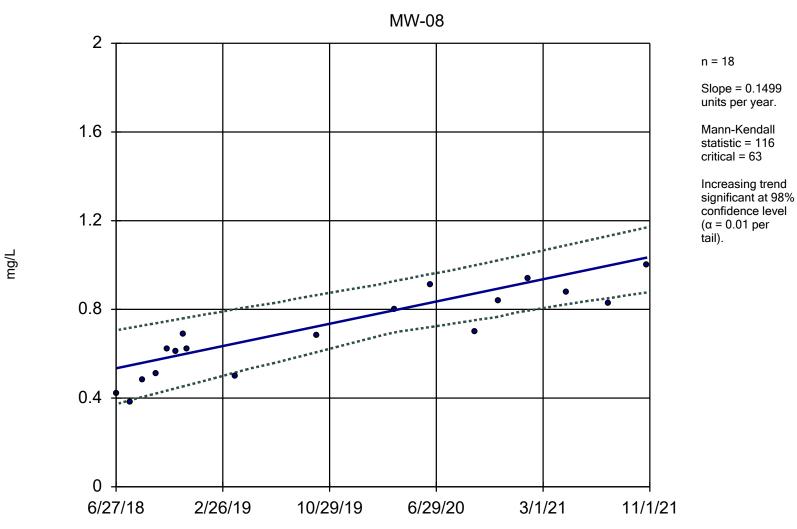

Background Data Summary: Mean=666.1, Std. Dev.=78, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9596, critical = 0.897. Report alpha = 0.1682. Individual comparison alpha = 0.045. Most recent point for each compliance well compared to limit.

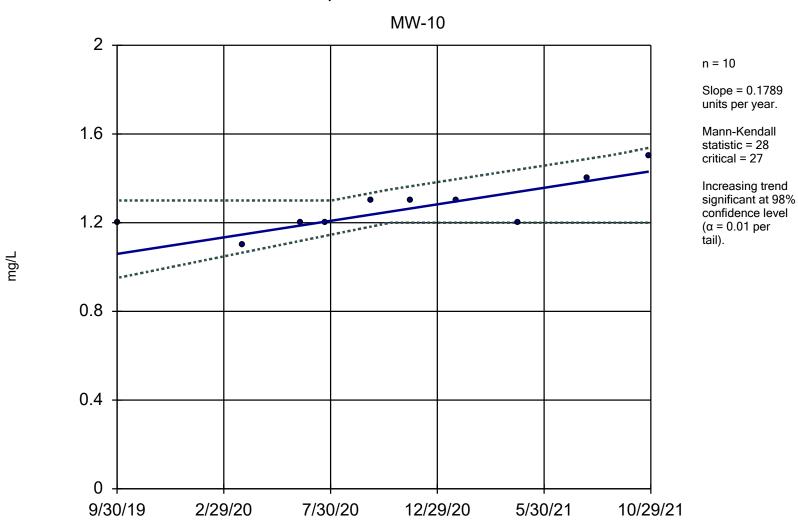

Constituent: Total Dissolved Solids Analysis Run 1/3/2022 1:12 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

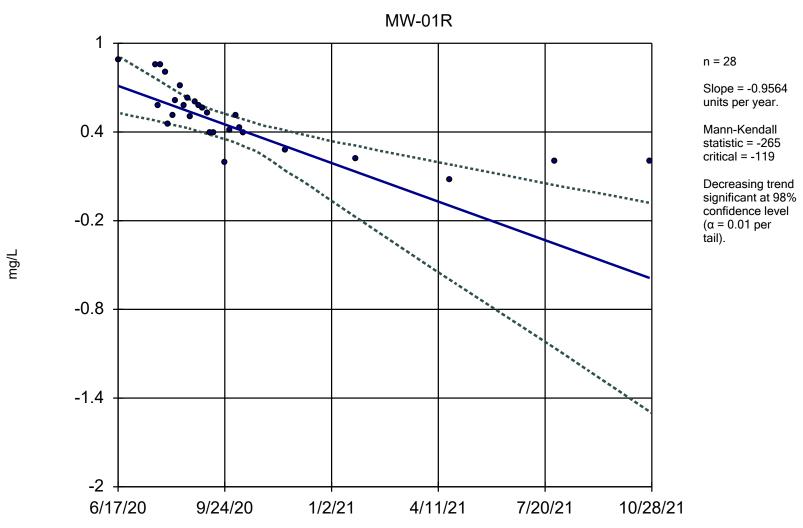

Interwell Prediction Limit

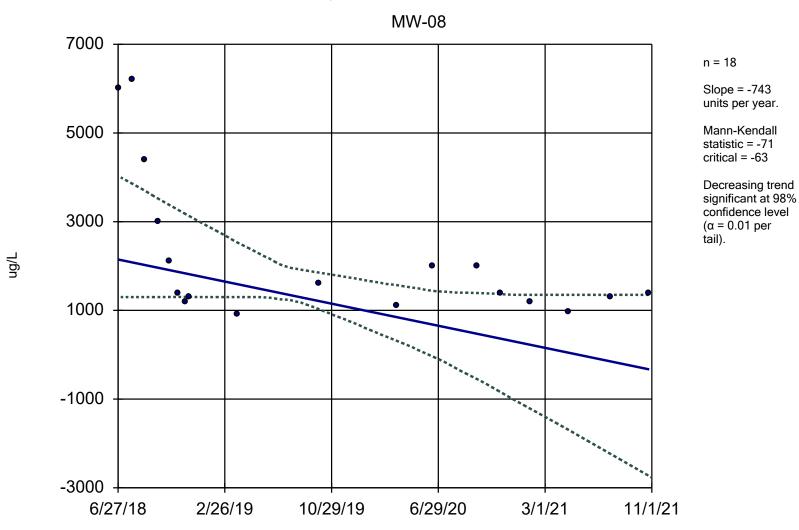

Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP Printed 1/3/2022, 1:13 PM

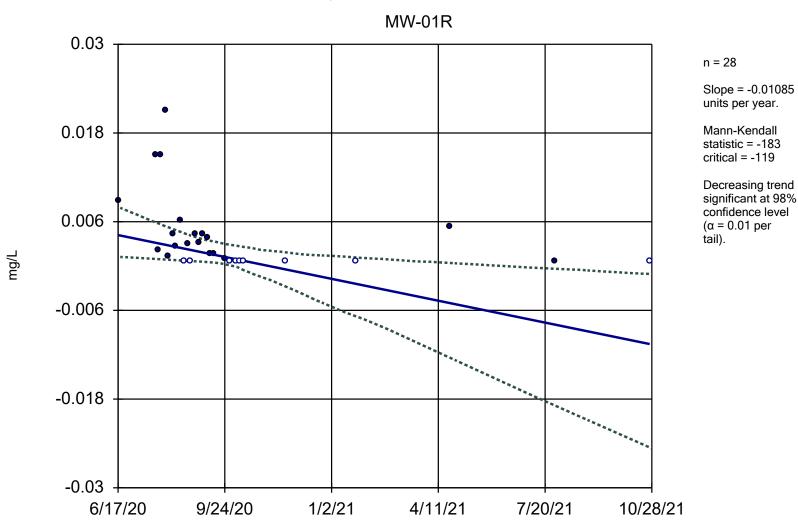

Constituent	<u>Well</u>	Upper Lin	n. Lower Lim	ı. <u>Date</u> <u>Ot</u>	serv.Bg N	Bg Wells	Bg Mean	Std. Dev.	%NDs	ND Adj	Transform	<u>Alpha</u>	Method
Boron (ug/L)	MW-05	16000	n/a	10/26/202130	00 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Boron (ug/L)	MW-06	16000	n/a	10/26/202113	000 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Boron (ug/L)	80-WM	16000	n/a	10/26/202114	00 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Boron (ug/L)	MW-01R	16000	n/a	10/26/202114	000018	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Calcium (ug/L)	MW-05	200000	n/a	10/26/202134	000018	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Calcium (ug/L)	MW-06	200000	n/a	10/26/2021 20	000018	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Calcium (ug/L)	80-WM	200000	n/a	10/26/2021 13	000018	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Calcium (ug/L)	MW-01R	200000	n/a	10/26/2021 22	000018	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Chloride (mg/L)	MW-05	15	n/a	10/26/202122	18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Chloride (mg/L)	MW-06	15	n/a	10/26/202120	0 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Chloride (mg/L)	MW-08	15	n/a	10/26/202130	18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Chloride (mg/L)	MW-01R	15	n/a	10/26/202123	0 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Fluoride (mg/L)	MW-05	8.975	n/a	10/26/20213.2	216 18	MW-07	n/a	n/a	16.67	n/a	n/a	0.04893	NP (normality) Deseas
Fluoride (mg/L)	MW-06	8.975	n/a	10/26/20211.	516 18	MW-07	n/a	n/a	16.67	n/a	n/a	0.04893	NP (normality) Deseas
Fluoride (mg/L)	MW-08	8.975	n/a	10/26/20210.3	336 18	MW-07	n/a	n/a	16.67	n/a	n/a	0.04893	NP (normality) Deseas
Fluoride (mg/L)	MW-01R	8.975	n/a	10/26/202112	.92 18	MW-07	n/a	n/a	16.67	n/a	n/a	0.04893	NP (normality) Deseas
Iron (mg/L)	MW-05	22.22	n/a	10/26/20212.	5 10	MW-07	17.6	2.319	0	None	No	0.045	Param
Iron (mg/L)	MW-06	22.22	n/a	10/26/202113	10	MW-07	17.6	2.319	0	None	No	0.045	Param
Iron (mg/L)	MW-08	22.22	n/a	10/26/2021 29	10	MW-07	17.6	2.319	0	None	No	0.045	Param
Iron (mg/L)	MW-01R	22.22	n/a	10/26/20211.	7 10	MW-07	17.6	2.319	0	None	No	0.045	Param
pH (SU)	MW-05	8.178	6.196	10/26/20217.4	13 17	MW-07	7.187	0.4429	0	None	No	0.0225	Param
pH (SU)	MW-06	8.178	6.196	10/26/20217.6	5 17	MW-07	7.187	0.4429	0	None	No	0.0225	Param
pH (SU)	MW-08	8.178	6.196	10/26/20216.	74 17	MW-07	7.187	0.4429	0	None	No	0.0225	Param
pH (SU)	MW-01R	8.178	6.196	10/26/20217.8	3 17	MW-07	7.187	0.4429	0	None	No	0.0225	Param
Sulfate (mg/L)	MW-05	69.35	n/a	10/26/2021 32	0 18	MW-07	36.17	17.96	0	None	No	0.045	Param
Sulfate (mg/L)	MW-06	69.35	n/a	10/26/20211.3	3J 18	MW-07	36.17	17.96	0	None	No	0.045	Param
Sulfate (mg/L)	MW-08	69.35	n/a	10/26/202137	18	MW-07	36.17	17.96	0	None	No	0.045	Param
Sulfate (mg/L)	MW-01R	69.35	n/a	10/26/2021 53	0 18	MW-07	36.17	17.96	0	None	No	0.045	Param
Total Dissolved Solids (mg/L)	MW-05	810.2	n/a	10/26/202113	00 18	MW-07	666.1	78	0	None	No	0.045	Param
Total Dissolved Solids (mg/L)	MW-06	810.2	n/a	10/26/202113	00 18	MW-07	666.1	78	0	None	No	0.045	Param
Total Dissolved Solids (mg/L)	MW-08	810.2	n/a	10/26/202163	0 18	MW-07	666.1	78	0	None	No	0.045	Param
Total Dissolved Solids (mg/L)	MW-01R	810.2	n/a	10/26/202136	00 18	MW-07	666.1	78	0	None	No	0.045	Param

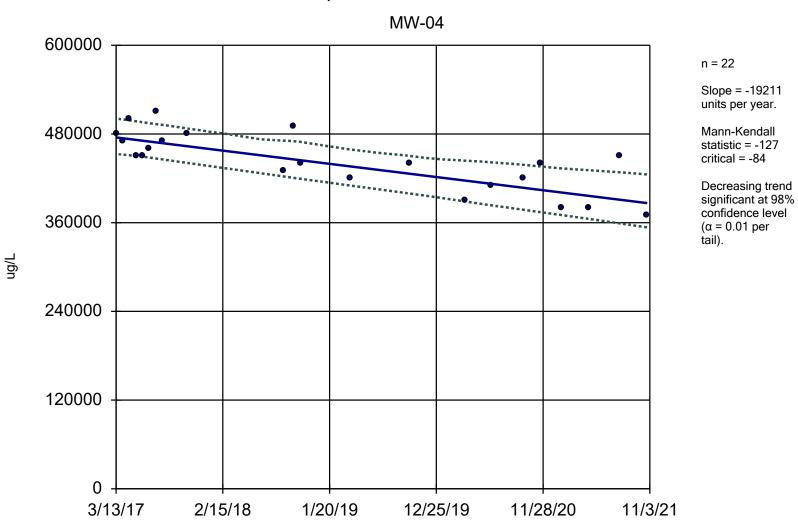


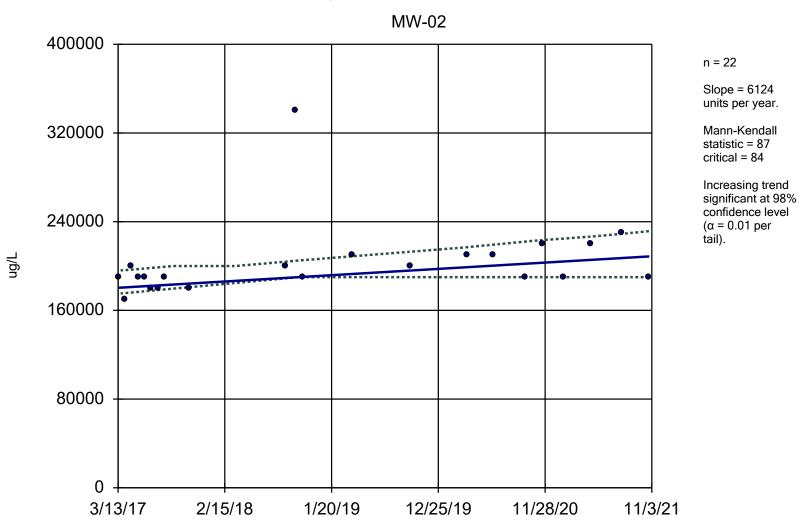


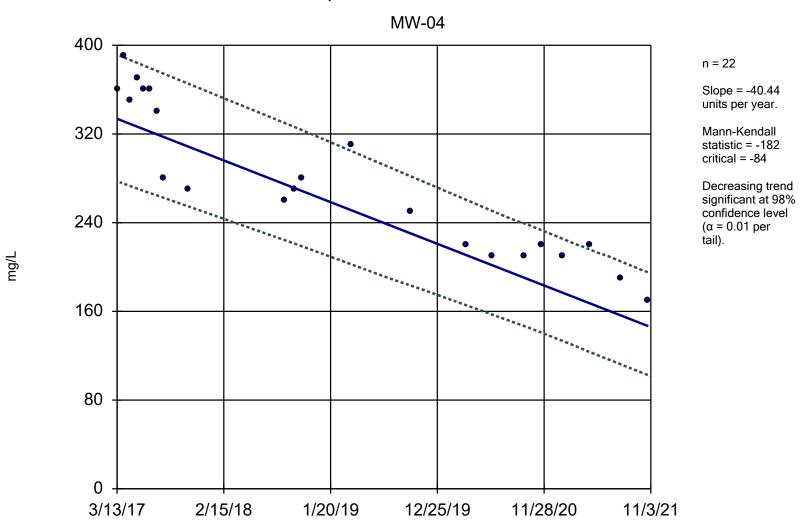


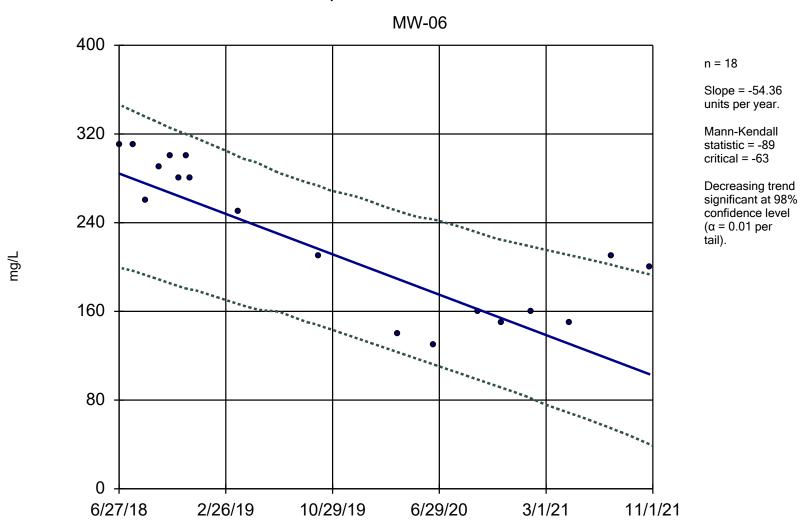


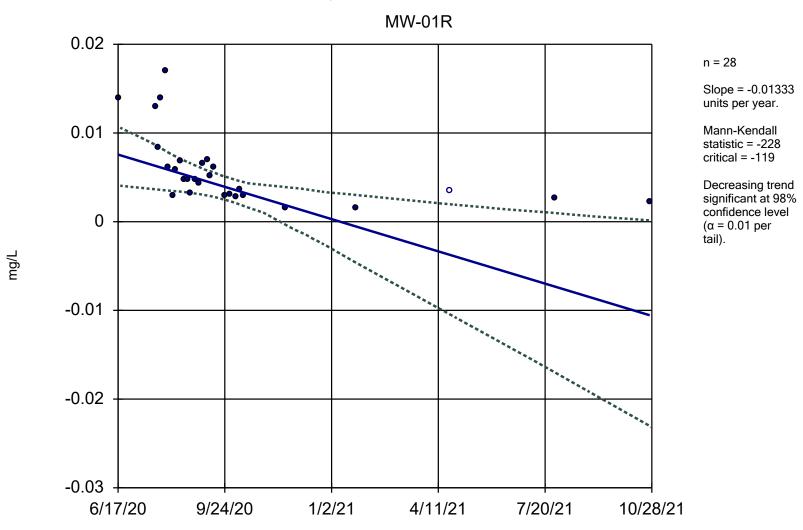


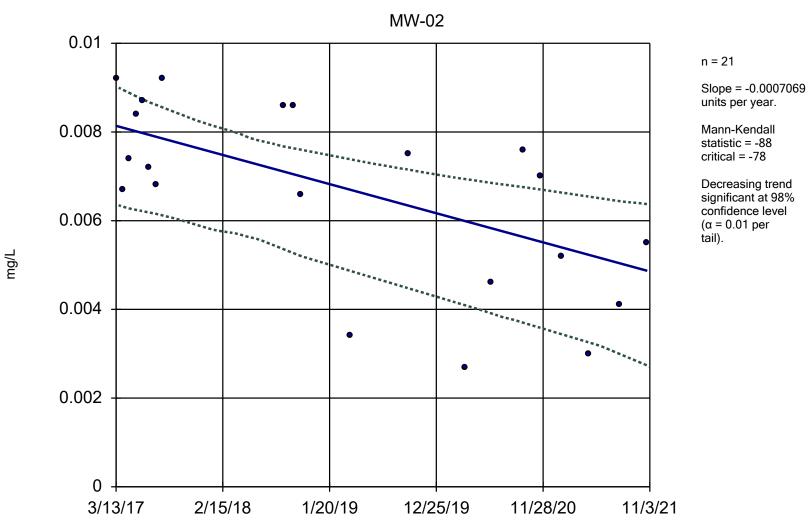


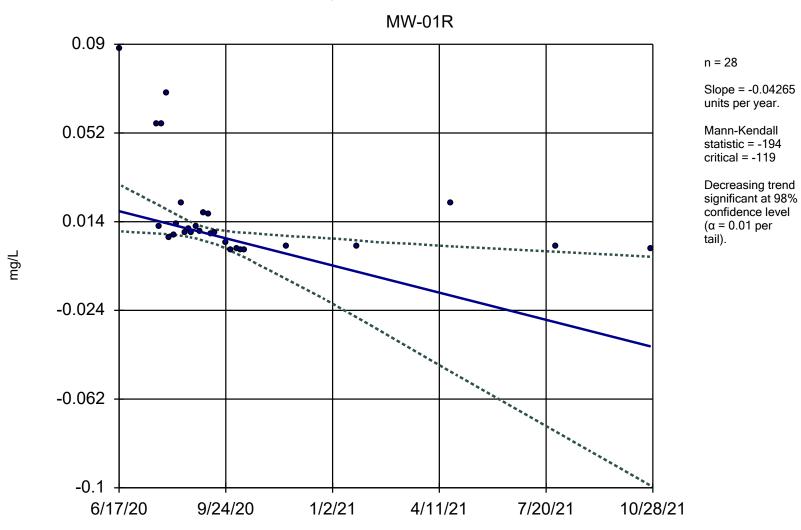


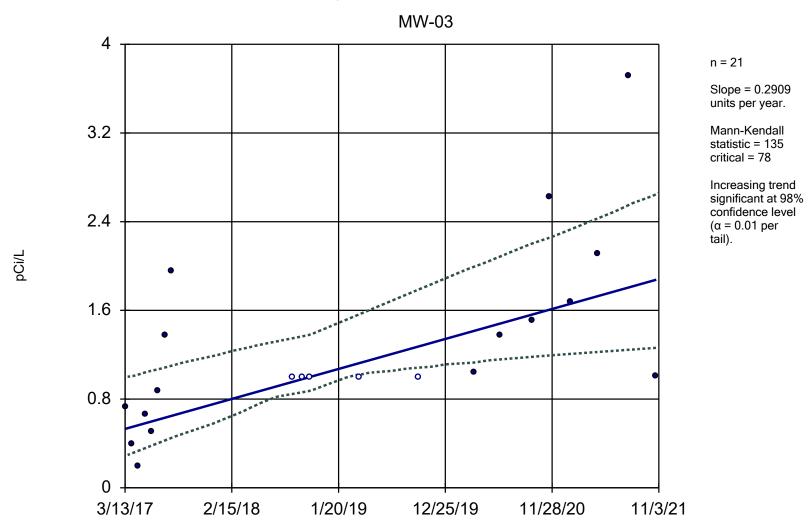


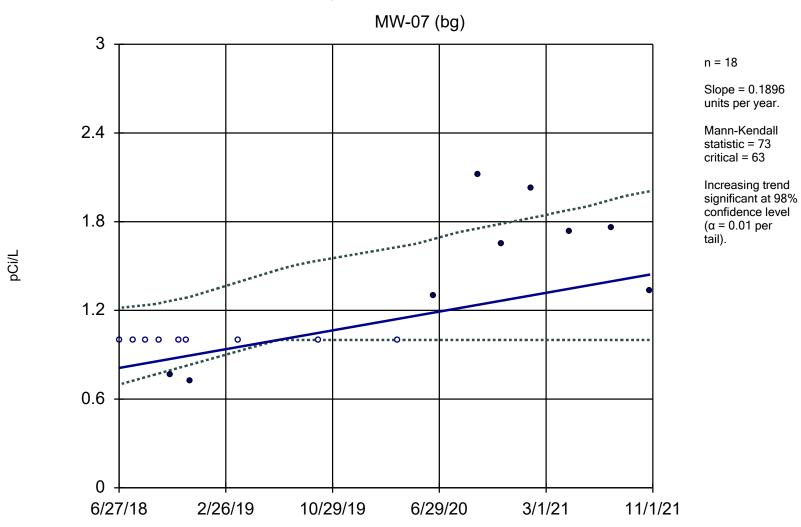


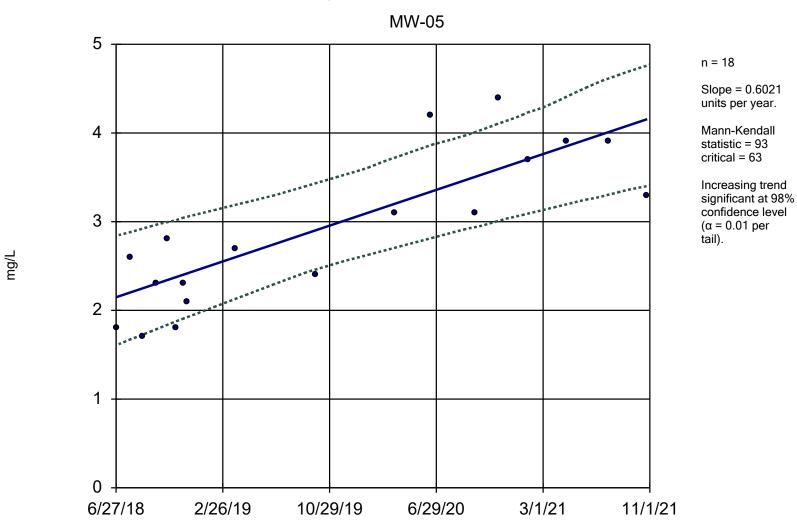


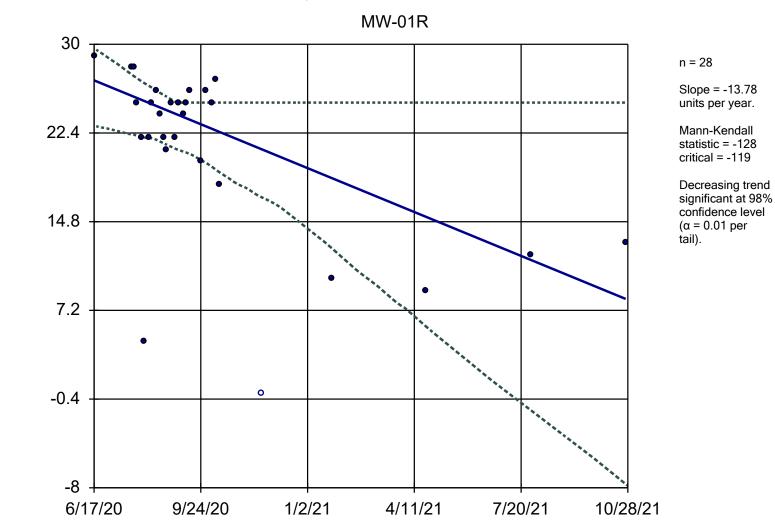


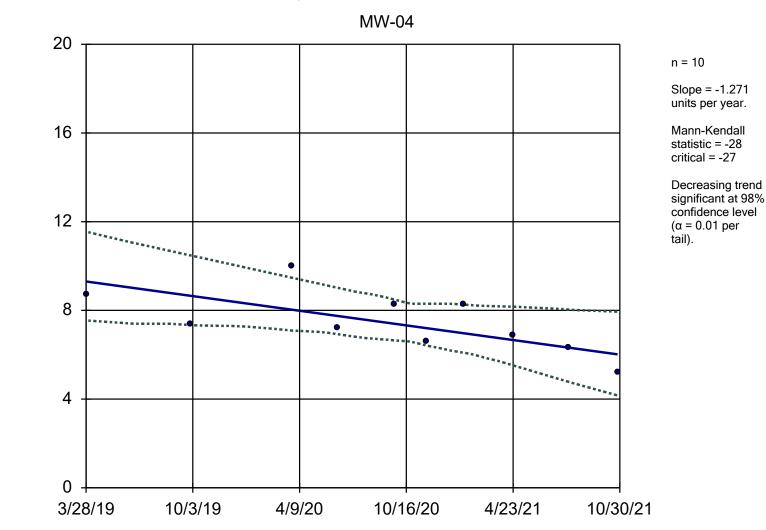


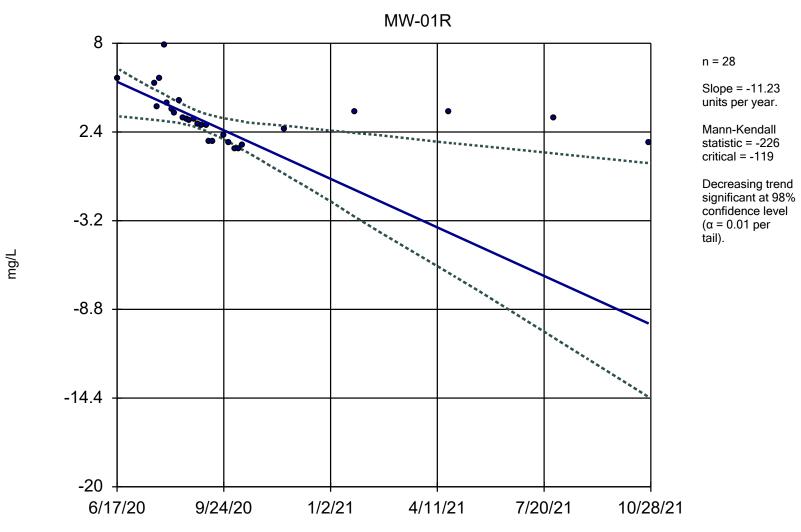


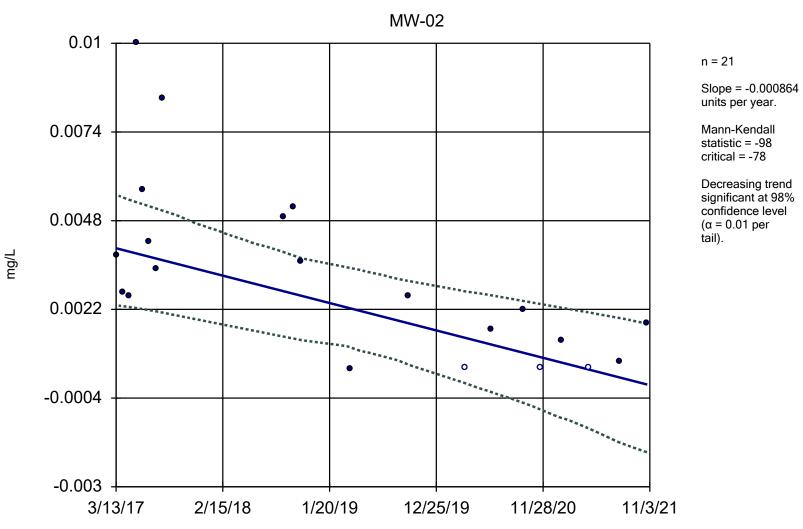


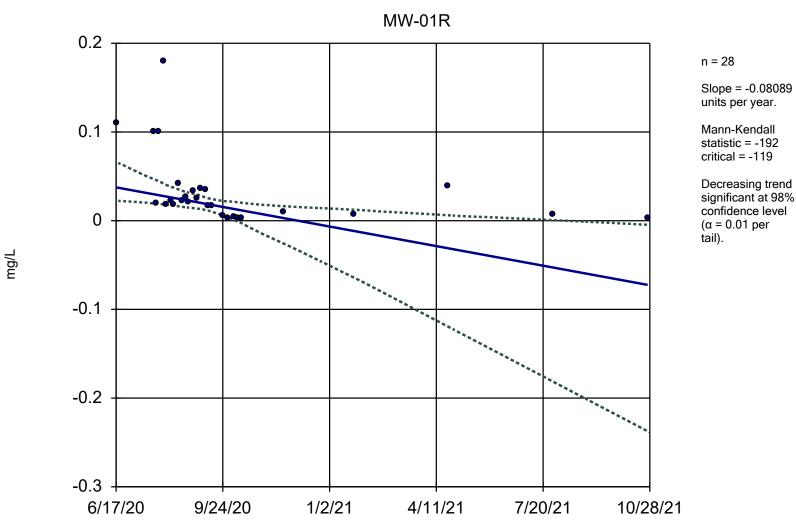


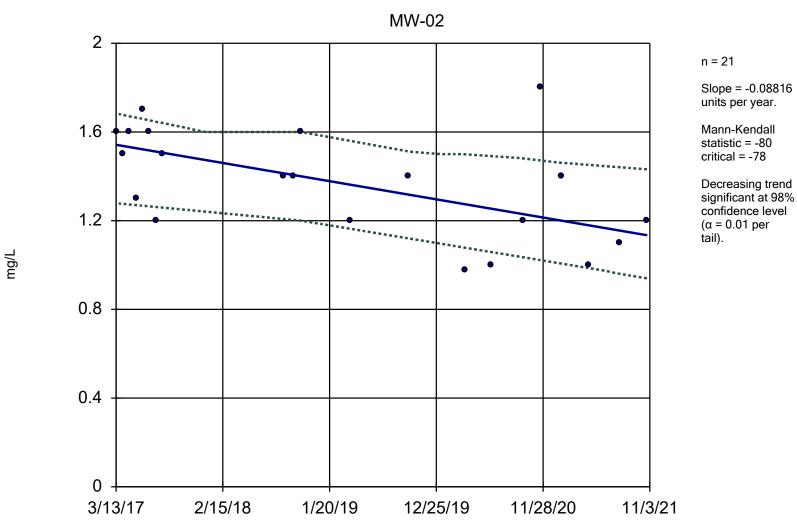


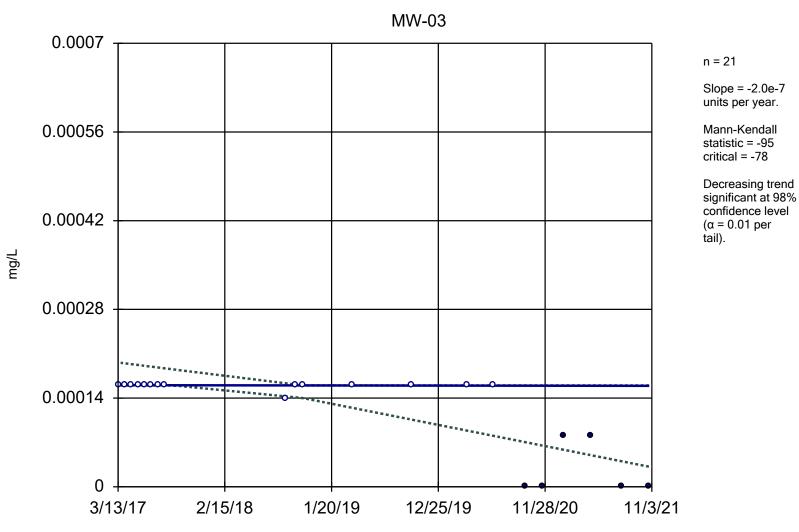

mg/L

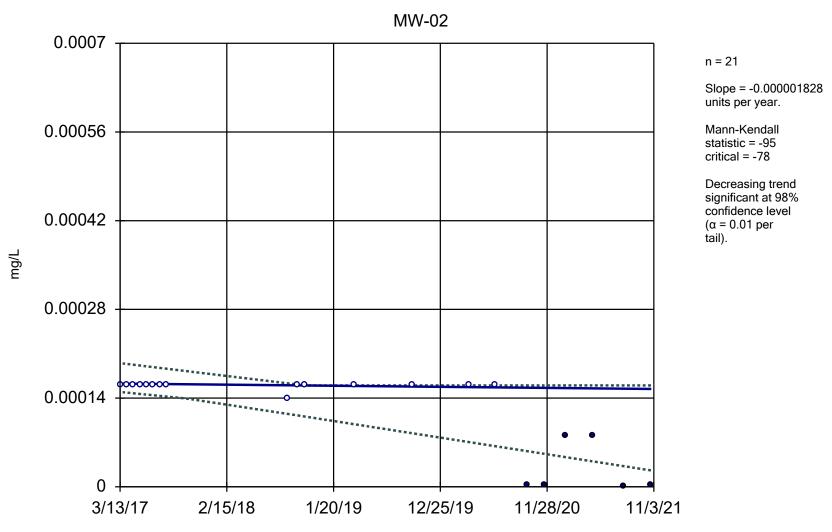

Sen's Slope and 95% Confidence Band

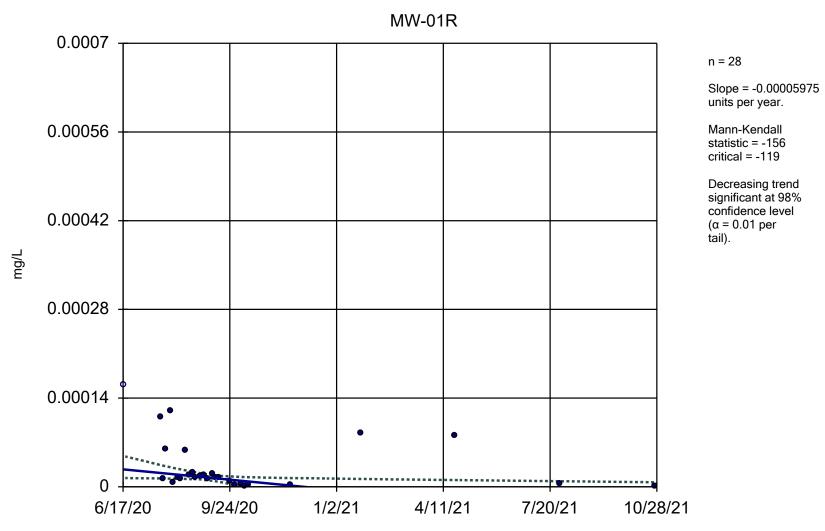


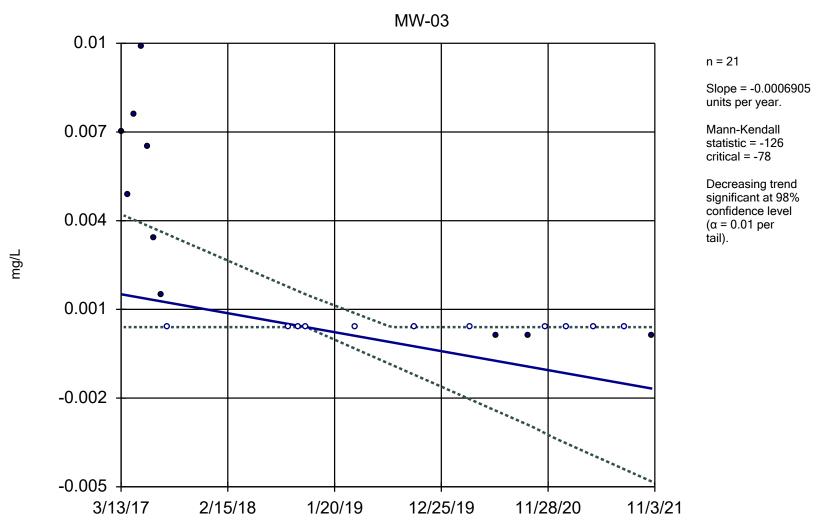

mg/L

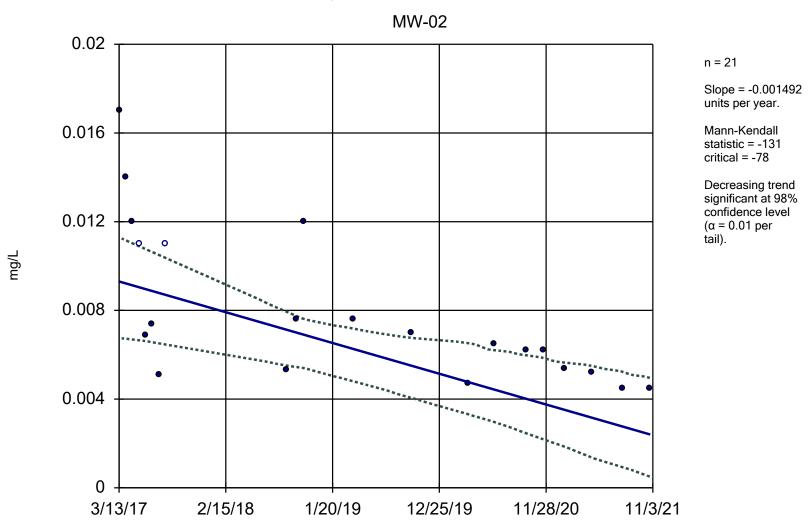

Sen's Slope and 95% Confidence Band

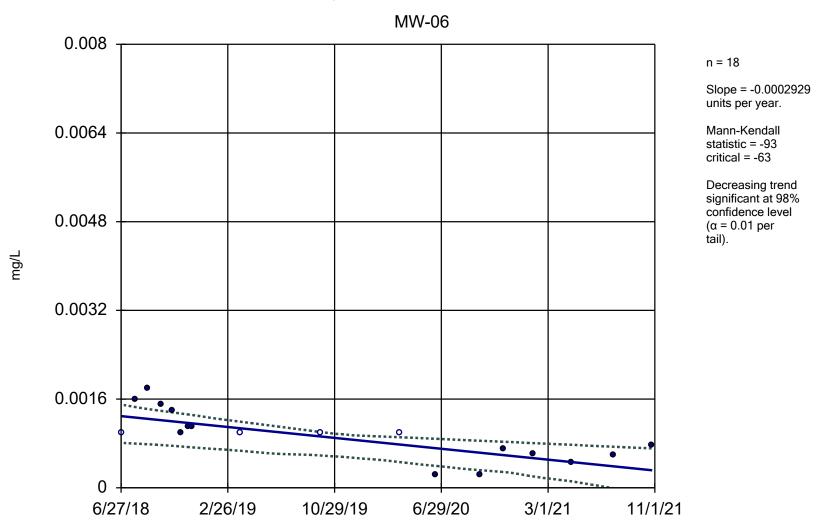


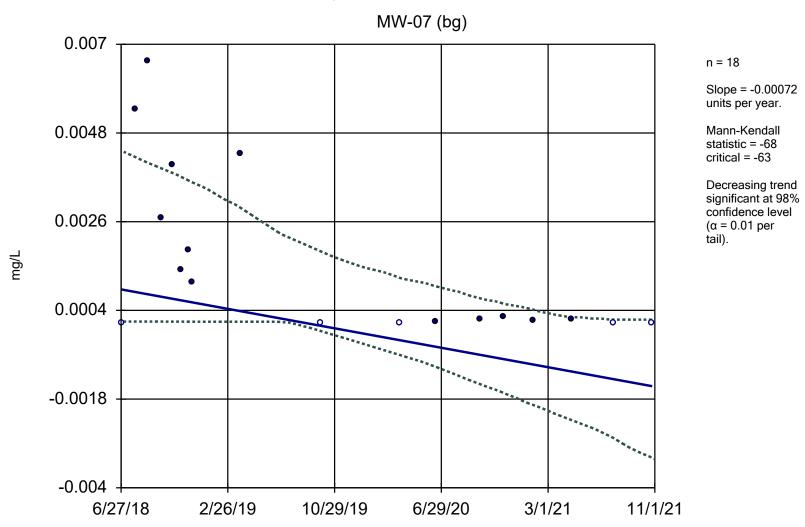


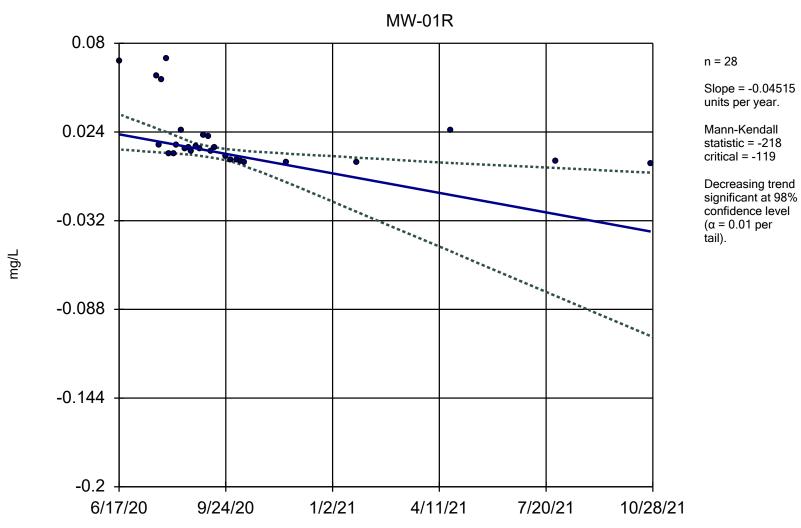


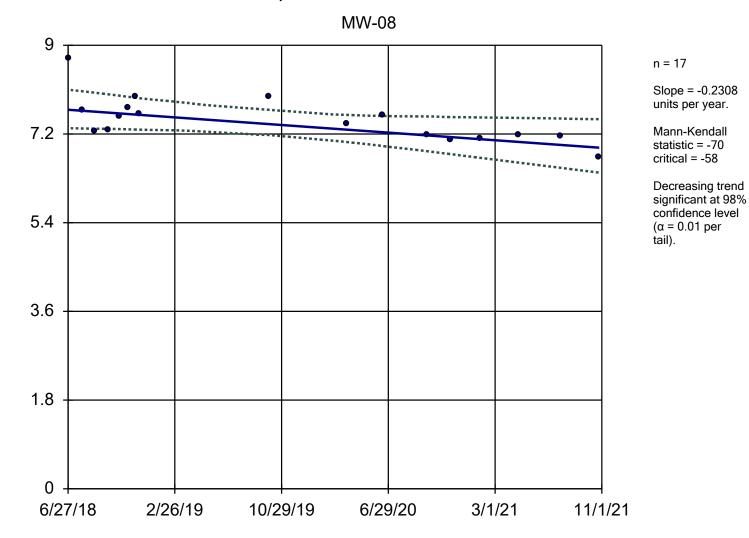






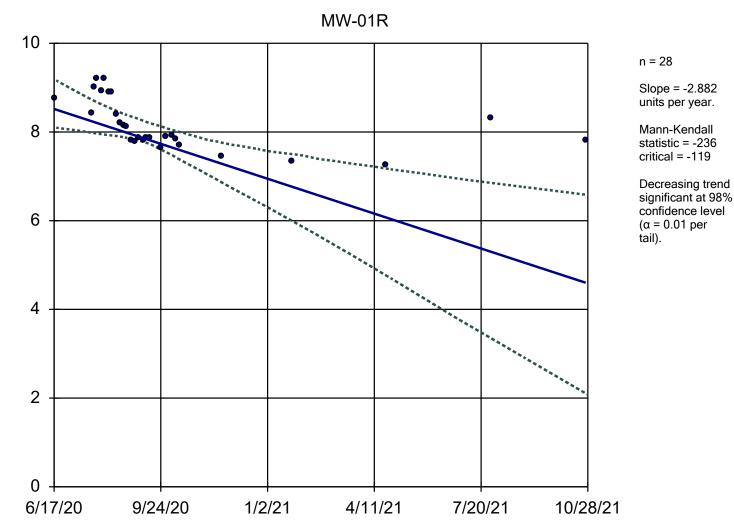


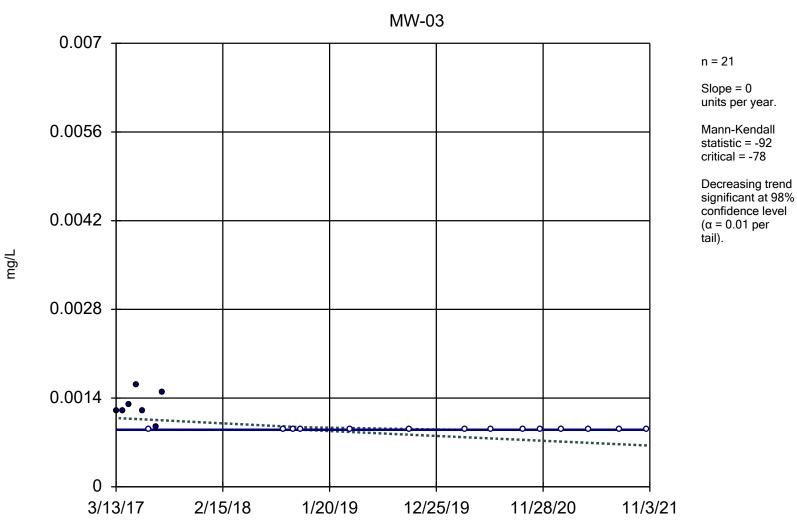


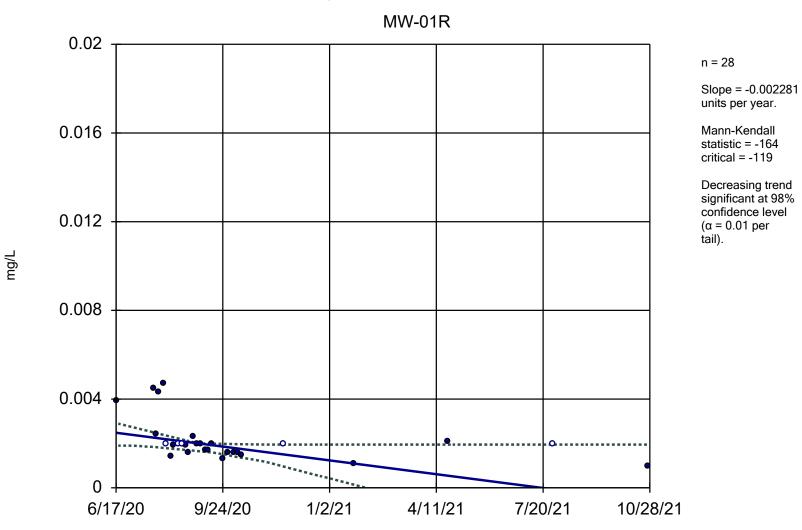


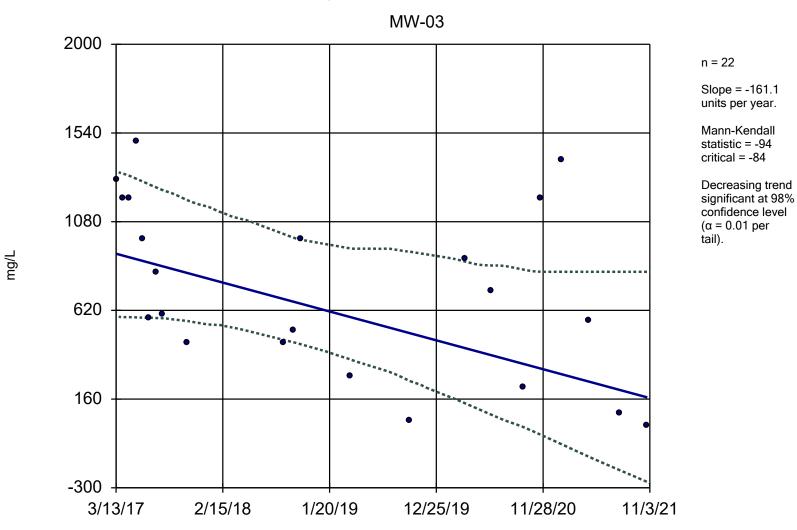
SU

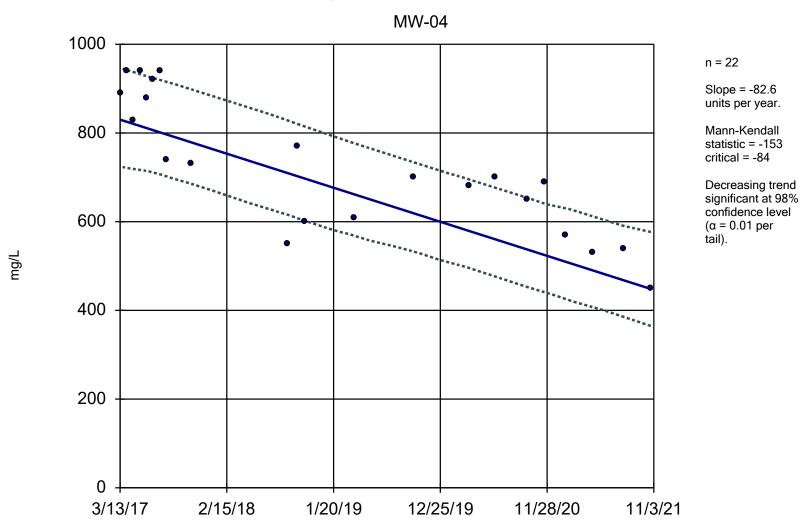
Sen's Slope and 95% Confidence Band

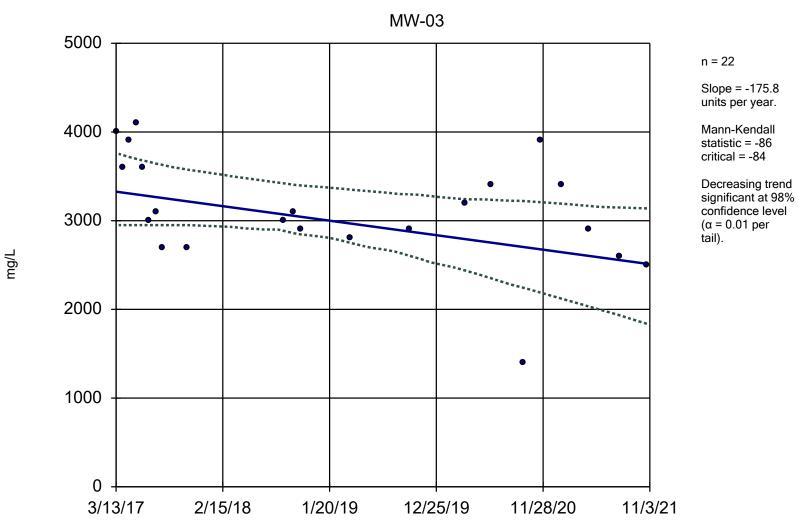


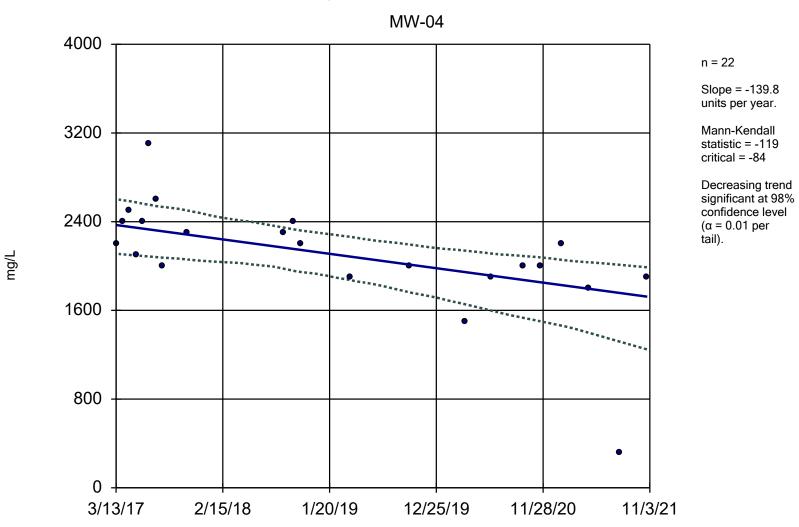

Constituent: pH Analysis Run 1/3/2022 12:58 PM View: Appendix III


Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

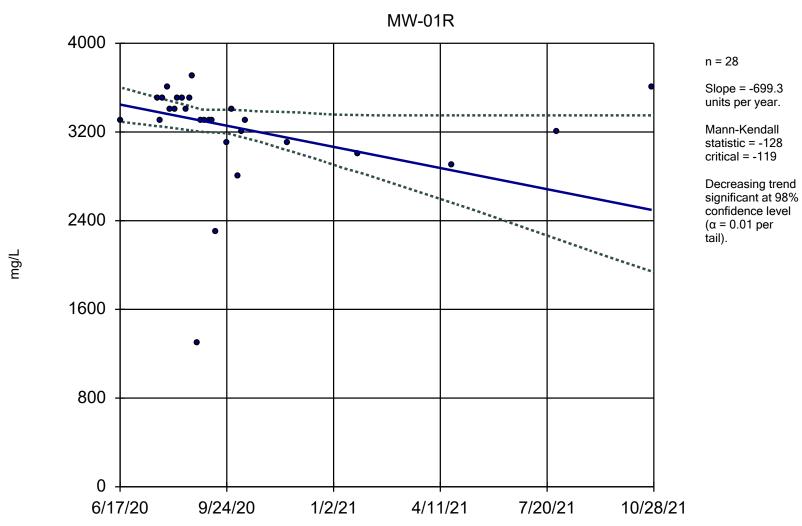

SU

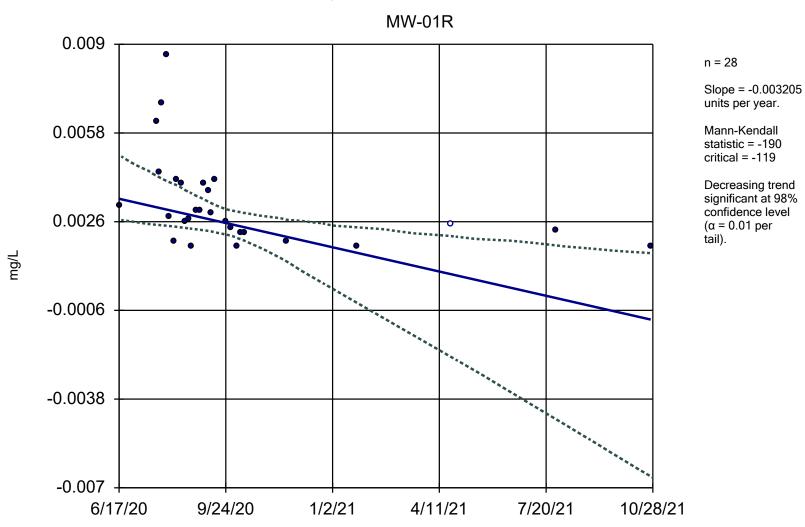

Sen's Slope and 95% Confidence Band

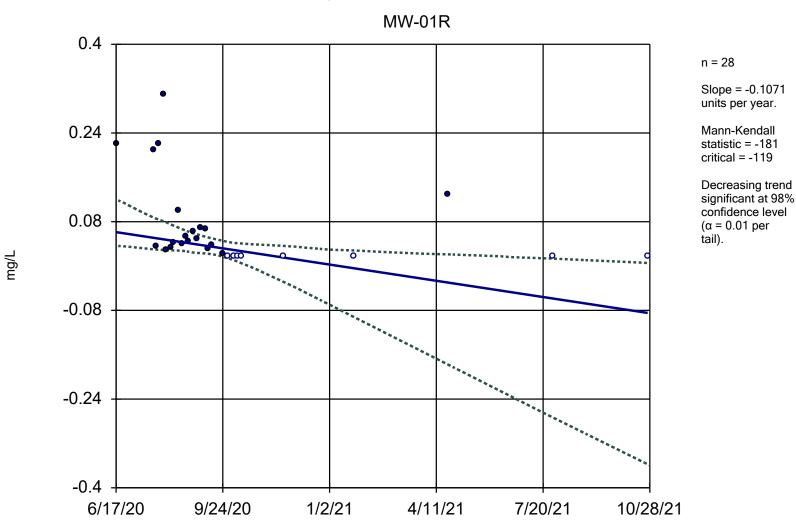












Constituent: Total Dissolved Solids Analysis Run 1/3/2022 12:58 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Trend Test

	Grand Haven BLP	Client: Golder Associates		Data: DT-Grand Haven BLP			nted 1/3/202	2, 1:03 PM			
Constituent	<u>Well</u>	Slope	Calc.	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	MW-03	0	-16	-78	No	21	95.24	n/a	n/a	0.02	NP
Antimony (mg/L)	MW-04	0	0	78	No	21	95.24	n/a	n/a	0.02	NP
Antimony (mg/L)	MW-02	0	-50	-78	No	21	66.67	n/a	n/a	0.02	NP
Antimony (mg/L)	MW-05	0	-28	-63	No	18	100	n/a	n/a	0.02	NP
Antimony (mg/L)	MW-06	0	-24	-63	No	18	77.78	n/a	n/a	0.02	NP
Antimony (mg/L)	MW-07 (bg)	0	-9	-63	No	18	88.89	n/a	n/a	0.02	NP
Antimony (mg/L)	MW-08	0	7	63	No	18	88.89	n/a	n/a	0.02	NP
Antimony (mg/L)	MW-10	0	1	27	No	10	80	n/a	n/a	0.02	NP
Antimony (mg/L)	MW-09	0	0	27	No	10	100	n/a	n/a	0.02	NP
Antimony (mg/L)	MW-01R	-0.01216	-202	-119	Yes	28	10.71	n/a	n/a	0.02	NP
Arsenic (mg/L)	MW-03	-0.00	-62	-78	No	21	9.524	n/a	n/a	0.02	NP
Arsenic (mg/L)	MW-04	0	-4	-78	No	21	4.762	n/a	n/a	0.02	NP
Arsenic (mg/L)	MW-02	0.000	66	78	No	21	4.762	n/a	n/a	0.02	NP
Arsenic (mg/L)	MW-05	-0.02243	-29	-63	No	18	0	n/a	n/a	0.02	NP
Arsenic (mg/L)	MW-06	-0.00	-5	-63	No	18	5.556	n/a	n/a	0.02	NP
Arsenic (mg/L)	MW-07 (bg)	-0.00	-67	-58	Yes	17	47.06	n/a	n/a	0.02	NP
Arsenic (mg/L)	MW-08	-0.00	-22	-63	No	18	0	n/a	n/a	0.02	NP
Arsenic (mg/L)	MW-10	-0.00	-13	-27	No	10	0	n/a	n/a	0.02	NP
Arsenic (mg/L)	MW-09	0.000	8	27	No	10	0	n/a	n/a	0.02	NP
Arsenic (mg/L)	MW-01R	-0.00435	-138	-119	Yes	28	3.571	n/a	n/a	0.02	NP
Barium (mg/L)	MW-03	0.02875	71	78	No	21	0	n/a	n/a	0.02	NP
Barium (mg/L)	MW-04	-0.00	-74	-78	No	21	0	n/a	n/a	0.02	NP
Barium (mg/L)	MW-02	0.004597	34	78	No	21	0	n/a	n/a	0.02	NP
Barium (mg/L)	MW-05	-0.09104	-98	-63	Yes	18	0	n/a	n/a	0.02	NP
Barium (mg/L)	MW-06	0.206	103	63	Yes	18	0	n/a	n/a	0.02	NP
Barium (mg/L)	MW-07 (bg)	-0.03042	-43	-63	No	18	0	n/a	n/a	0.02	NP
Barium (mg/L)	MW-08	0.1499	116	63	Yes	18	0	n/a	n/a	0.02	NP
Barium (mg/L)	MW-10	0.1789	28	27	Yes	10	0	n/a	n/a	0.02	NP
Barium (mg/L)	MW-09	0.8295	9	27	No	10	0	n/a	n/a	0.02	NP
Barium (mg/L)	MW-01R	-0.9564	-265	-119	Yes	28	0	n/a	n/a	0.02	NP
Beryllium (mg/L)	MW-03	0	0	78	No	21	100	n/a	n/a	0.02	NP
Beryllium (mg/L)	MW-04	0	0	78	No	21	100	n/a	n/a	0.02	NP
Beryllium (mg/L)	MW-02	0	5	78	No	21	85.71	n/a	n/a	0.02	NP
Beryllium (mg/L)	MW-05	0	0	63	No	18	100	n/a	n/a	0.02	NP
Beryllium (mg/L)	MW-06	0	-11	-63	No	18	100	n/a	n/a	0.02	NP
Beryllium (mg/L)	MW-07 (bg)	0	0	63	No	18	100	n/a	n/a	0.02	NP
Beryllium (mg/L)	MW-08	0	1	63	No	18	94.44	n/a	n/a	0.02	NP
Beryllium (mg/L)	MW-10	0	0	27	No	10	100	n/a	n/a	0.02	NP
Beryllium (mg/L)	MW-09	0	0	27	No	10	100	n/a	n/a	0.02	NP
Beryllium (mg/L)	MW-01R	0	0	119	No	28	100	n/a	n/a	0.02	NP
Boron (ug/L)	MW-03	-130.2	-74	-78	No	21	0	n/a	n/a	0.02	NP
Boron (ug/L)	MW-04	0	-3	-78	No	21	0	n/a	n/a	0.02	NP
Boron (ug/L)	MW-02	-2177	-29	-78	No	21	0	n/a	n/a	0.02	NP
Boron (ug/L)	MW-05	-428.4	-40	-63	No	18	0	n/a	n/a	0.02	NP
Boron (ug/L)	MW-06	-360.7	-17	-63	No	18	0	n/a	n/a	0.02	NP
Boron (ug/L)	MW-07 (bg)	-300. <i>1</i> 534.4	43	63	No	18	0	n/a n/a	n/a	0.02	NP
Boron (ug/L)	MW-08	- 743	-71	- 63	Yes	18	0	n/a n/a		0.02 0.02	NP
Boron (ug/L)	MW-10	-7 43 6518	-71 19	- 63 27	No	10	0	n/a n/a	n/a n/a	0.02	NP NP
Boron (ug/L)	MW-09	445.1	7	27 27	No	10	0	n/a n/a	n/a n/a	0.02	NP NP
Boron (ug/L)	MW-01R	-70940	-113	-119	No	28	0	n/a	n/a	0.02	NP

	Grand Haven BLP	Client: Golder A	ssociates	Data: DT-Grand	d Haven Bl	LP Prir	ited 1/3/202	2, 1:03 PM			
Constituent	<u>Well</u>	Slope	Calc.	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Cadmium (mg/L)	MW-03	0	17	78	No	21	95.24	n/a	n/a	0.02	NP
Cadmium (mg/L)	MW-04	0	-3	-78	No	21	90.48	n/a	n/a	0.02	NP
Cadmium (mg/L)	MW-02	0	11	78	No	21	66.67	n/a	n/a	0.02	NP
Cadmium (mg/L)	MW-05	0	26	63	No	18	83.33	n/a	n/a	0.02	NP
Cadmium (mg/L)	MW-06	0	40	63	No	18	61.11	n/a	n/a	0.02	NP
Cadmium (mg/L)	MW-07 (bg)	0	31	63	No	18	94.44	n/a	n/a	0.02	NP
Cadmium (mg/L)	MW-08	0	34	63	No	18	88.89	n/a	n/a	0.02	NP
Cadmium (mg/L)	MW-10	0	1	27	No	10	80	n/a	n/a	0.02	NP
Cadmium (mg/L)	MW-09	0	0	27	No	10	100	n/a	n/a	0.02	NP
Cadmium (mg/L)	MW-01R	-0.01085	-183	-119	Yes	28	32.14	n/a	n/a	0.02	NP
Calcium (ug/L)	MW-03	-5163	-26	-84	No	22	0	n/a	n/a	0.02	NP
Calcium (ug/L)	MW-04	-19211	-127	-84	Yes	22	0	n/a	n/a	0.02	NP
Calcium (ug/L)	MW-02	6124	87	84	Yes	22	0	n/a	n/a	0.02	NP
Calcium (ug/L)	MW-05	60430	53	63	No	18	0	n/a	n/a	0.02	NP
Calcium (ug/L)	MW-06	-3516	-14	-63	No	18	0	n/a	n/a	0.02	NP
Calcium (ug/L)	MW-07 (bg)	0	-45	-63	No	18	0	n/a	n/a	0.02	NP
Calcium (ug/L)	MW-08	0	10	63	No	18	0	n/a	n/a	0.02	NP
Calcium (ug/L)	MW-10	0	7	27	No	10	0	n/a	n/a	0.02	NP
Calcium (ug/L)	MW-09	-19624	-24	-27	No	10	0	n/a	n/a	0.02	NP
Calcium (ug/L)	MW-01R	68915	44	119	No	28	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-03	-23.75	-79	-84	No	22	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-04	-40.44	-182	-84	Yes	22	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-02	0	-45	-84	No	22	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-05	0	-4	-63	No	18	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-06	-54.36	-89	-63	Yes	18	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-07 (bg)	-0.3434	-55	-63	No	18	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-08	-3.626	-24	-63	No	18	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-10	61.66	6	27	No	10	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-09	1.177	13	27	No	10	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-01R	-16.35	-92	-119	No	28	0	n/a	n/a	0.02	NP
Chromium (mg/L)	MW-03	0.000	110	78	Yes	21	0	n/a	n/a	0.02	NP
Chromium (mg/L)	MW-04	0.000	57	78	No	21	4.762	n/a	n/a	0.02	NP
Chromium (mg/L)	MW-02	-0.00	-56	-78	No	21	0	n/a	n/a	0.02	NP
Chromium (mg/L)	MW-05	0	56	63	No	18	77.78	n/a	n/a	0.02	NP
Chromium (mg/L)	MW-06	0.000	15	63	No	18	0	n/a	n/a	0.02	NP
Chromium (mg/L)	MW-07 (bg)	0	27	63	No	18	66.67	n/a	n/a	0.02	NP
Chromium (mg/L)	MW-08	0.000	8	63	No	18	27.78	n/a	n/a	0.02	NP
Chromium (mg/L)	MW-10	0	-2	-27	No	10	0	n/a	n/a	0.02	NP
Chromium (mg/L)	MW-09	0.000	10	27	No	10	0	n/a	n/a	0.02	NP
Chromium (mg/L)	MW-01R	-0.01333	-228	-119	Yes	28	3.571	n/a	n/a	0.02	NP
Cobalt (mg/L)	MW-03	-0.00	-67	-78	No	21	23.81	n/a	n/a	0.02	NP
Cobalt (mg/L)	MW-04	0.000	78	78	No	21	38.1	n/a	n/a	0.02	NP
Cobalt (mg/L)	MW-02	-0.00	-88	-78	Yes	21	0	n/a	n/a	0.02	NP
Cobalt (mg/L)	MW-05	0	-4	-63	No	18	33.33	n/a	n/a	0.02	NP
Cobalt (mg/L)	MW-06	0	25	63	No	18	50	n/a	n/a	0.02	NP
Cobalt (mg/L)	MW-07 (bg)	-0.00	-7	-63	No	18	16.67	n/a	n/a	0.02	NP
Cobalt (mg/L)	MW-08	0	-11	-63	No	18	50	n/a	n/a	0.02	NP
Cobalt (mg/L)	MW-10	0	0	27	No	10	0	n/a	n/a	0.02	NP
Cobalt (mg/L)	MW-09	-0.00	-13	-27	No	10	30	n/a	n/a	0.02	NP
Cobalt (mg/L)	MW-01R	-0.04265	-194	-119	Yes	28	0	n/a	n/a	0.02	NP

Trend Test Page 3

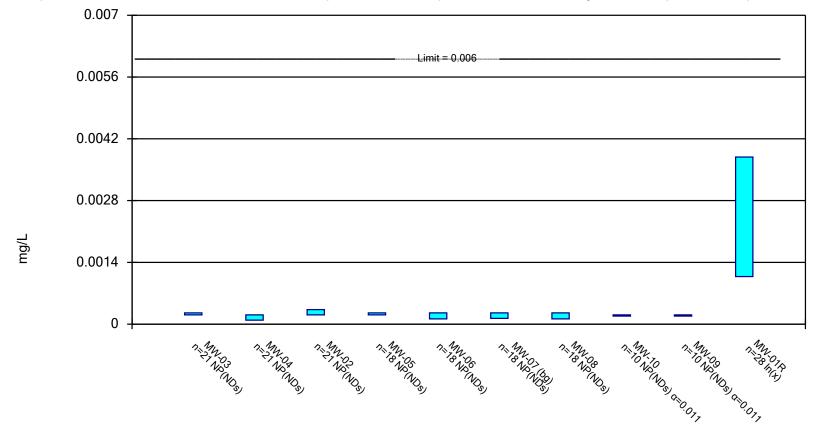
	Grand Haven BLP	Client: Golder A	ssociates	Data: DT-Grand	d Haven B	LP Prir	nted 1/3/202	2, 1:03 PM			
Constituent	<u>Well</u>	Slope	Calc.	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Combined Radium 226 + 228 (pCi/L)	 MW-03	0.2909	135	78	Yes	_ 21	23.81	n/a	n/a	0.02	NP
Combined Radium 226 + 228 (pCi/L)	MW-04	0.07155	48	78	No	21	38.1	n/a	n/a	0.02	NP
Combined Radium 226 + 228 (pCi/L)	MW-02	0.1297	44	78	No	21	28.57	n/a	n/a	0.02	NP
Combined Radium 226 + 228 (pCi/L)	MW-05	0	15	63	No	18	50	n/a	n/a	0.02	NP
Combined Radium 226 + 228 (pCi/L)	MW-06	0.1616	25	63	No	18	33.33	n/a	n/a	0.02	NP
Combined Radium 226 + 228 (pCi/L)	MW-07 (bg)	0.1896	73	63	Yes	18	50	n/a	n/a	0.02	NP
Combined Radium 226 + 228 (pCi/L)	MW-08	0.4752	52	63	No	18	33.33	n/a	n/a	0.02	NP
Combined Radium 226 + 228 (pCi/L)	MW-10	0.5352	19	23	No	9	22.22	n/a	n/a	0.02	NP
Combined Radium 226 + 228 (pCi/L)	MW-09	0.3911	25	27	No	10	10	n/a	n/a	0.02	NP
Combined Radium 226 + 228 (pCi/L)	MW-01R	-0.5062	-10	-17	No	7	42.86	n/a	n/a	0.02	NP
Copper (mg/L)	MW-03	0	17	27	No	10	80	n/a	n/a	0.02	NP
Copper (mg/L)	MW-04	0	18	27	No	10	70	n/a	n/a	0.02	NP
Copper (mg/L)	MW-02	0	8	27	No	10	70	n/a	n/a	0.02	NP
Copper (mg/L)	MW-05	0	-1	-27	No	10	80	n/a	n/a	0.02	NP
Copper (mg/L)	MW-06	0	2	27	No	10	70	n/a	n/a	0.02	NP
Copper (mg/L)	MW-07 (bg)	0	15	27	No	10	80	n/a	n/a	0.02	NP
Copper (mg/L)	MW-08	0	15	27	No	10	80	n/a	n/a	0.02	NP
Copper (mg/L)	MW-10	0	17	27	No	10	80	n/a	n/a	0.02	NP
Copper (mg/L)	MW-09	0	9	27	No	10	90	n/a	n/a	0.02	NP
Copper (mg/L)	MW-01R	0	-97	-119	No	28	64.29	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-03	-0.03296	-12	-78	No	21	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-04	0	22	78	No	21	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-02	-0.6591	-68	-78	No	21	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-05	0.6021	93	63	Yes	18	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-06	-0.0333	-27	-63	No	18	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-07 (bg)	-0.0018	-17	-63	No	18	16.67	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-08	0.02808	37	63	No	18	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-10	0.7359	13	27	No	10	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-09	0.05456	8	27	No	10	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-01R	-13.78	-128	-119	Yes	28	3.571	n/a	n/a	0.02	NP
Iron (mg/L)	MW-03	-4.925	-17	-27	No	10	0	n/a	n/a	0.02	NP
Iron (mg/L)	MW-04	-1.271	-28	-27	Yes	10	0	n/a	n/a	0.02	NP
Iron (mg/L)	MW-02	0	5	27	No	10	0	n/a	n/a	0.02	NP
Iron (mg/L)	MW-05	-8.528	-11	-27	No	10	0	n/a	n/a	0.02	NP
Iron (mg/L)	MW-06	0	0	27	No	10	0	n/a	n/a	0.02	NP
Iron (mg/L)	MW-07 (bg)	-2.235	-25	-27	No	10	0	n/a	n/a	0.02	NP
Iron (mg/L)	MW-08	3.925	24	27	No	10	0	n/a	n/a	0.02	NP
Iron (mg/L)	MW-10	1.201	18	27	No	10	0	n/a	n/a	0.02	NP
Iron (mg/L)	MW-09	1.472	5	27	No	10	0	n/a	n/a	0.02	NP
Iron (mg/L)	MW-01R	-11.23	-226	-119	Yes	28	0	n/a	n/a	0.02	NP
Lead (mg/L)	MW-03	0	25	78	No	21	66.67	n/a	n/a	0.02	NP
Lead (mg/L)	MW-04	0	45	78	No	21	66.67	n/a	n/a	0.02	NP
Lead (mg/L)	MW-02	-0.00	-98	-78	Yes	21	14.29	n/a	n/a	0.02	NP
Lead (mg/L)	MW-05	0	-26	-63	No	18	55.56	n/a	n/a	0.02	NP
Lead (mg/L)	MW-06	0	-5	-63	No	18	22.22	n/a	n/a	0.02	NP
Lead (mg/L)	MW-07 (bg)	0	-7	-63	No	18	72.22	n/a	n/a	0.02	NP
Lead (mg/L)	MW-08	-0.00	-35	-63	No	18	50	n/a	n/a	0.02	NP
Lead (mg/L)	MW-10	-0.00	-2	-27	No	10	20	n/a	n/a	0.02	NP
Lead (mg/L)	MW-09	0	-18	-27	No	10	70	n/a	n/a	0.02	NP
Lead (mg/L)	MW-01R	-0.08089	-192	-119	Yes	28	0	n/a	n/a	0.02	NP

Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP Printed 1/3/2022, 1:03 PM

Trend Test Page 4

Constituent	<u>Well</u>	Slope	Calc.	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Lithium (mg/L)	MW-03	-0.00	-61	-78	No	21	4.762	n/a	n/a	0.02	NP
Lithium (mg/L)	MW-04	0.00157	33	78	No	21	4.762	n/a	n/a	0.02	NP
Lithium (mg/L)	MW-02	-0.08816	-80	-78	Yes	21	0	n/a	n/a	0.02	NP
Lithium (mg/L)	MW-05	0.01316	32	63	No	18	11.11	n/a	n/a	0.02	NP
Lithium (mg/L)	MW-06	0	-11	-63	No	18	5.556	n/a	n/a	0.02	NP
Lithium (mg/L)	MW-07 (bg)	-0.00	-17	-63	No	18	44.44	n/a	n/a	0.02	NP
Lithium (mg/L)	MW-08	0.003044	33	63	No	18	5.556	n/a	n/a	0.02	NP
Lithium (mg/L)	MW-10	0.1862	15	27	No	10	0	n/a	n/a	0.02	NP
Lithium (mg/L)	MW-09	0.01738	14	27	No	10	0	n/a	n/a	0.02	NP
Lithium (mg/L)	MW-01R	0	7	119	No	28	0	n/a	n/a	0.02	NP
Mercury (mg/L)	MW-03	-2.0e-7	-95	-78	Yes	21	71.43	n/a	n/a	0.02	NP
Mercury (mg/L)	MW-04	0	11	78	No	21	95.24	n/a	n/a	0.02	NP
Mercury (mg/L)	MW-02	-0.00	-95	-78	Yes	21	71.43	n/a	n/a	0.02	NP
Mercury (mg/L)	MW-05	0	-15	-63	No	18	94.44	n/a	n/a	0.02	NP
Mercury (mg/L)	MW-06	-0.00	-60	-63	No	18	55.56	n/a	n/a	0.02	NP
Mercury (mg/L)	MW-07 (bg)	0	-30	-63	No	18	77.78	n/a	n/a	0.02	NP
Mercury (mg/L)	MW-08	0	22	63	No	18	66.67	n/a	n/a	0.02	NP
Mercury (mg/L)	MW-10	4.5e-7	23	27	No	10	40	n/a	n/a	0.02	NP
Mercury (mg/L)	MW-09	0	8	27	No	10	60	n/a	n/a	0.02	NP
Mercury (mg/L)	MW-01R	-0.00	-156	-119	Yes	28	3.571	n/a	n/a	0.02	NP
Molybdenum (mg/L)	MW-03	-0.00	-126	-78	Yes	21	52.38	n/a	n/a	0.02	NP
Molybdenum (mg/L)	MW-04	-0.00	-41	-78	No	21	19.05	n/a	n/a	0.02	NP
Molybdenum (mg/L)	MW-02	-0.00	-131	-78	Yes	21	9.524	n/a	n/a	0.02	NP
Molybdenum (mg/L)	MW-05	-0.00	-21	-63	No	18	11.11	n/a	n/a	0.02	NP
Molybdenum (mg/L)	MW-06	-0.00	-93	-63	Yes	18	22.22	n/a	n/a	0.02	NP
Molybdenum (mg/L)	MW-07 (bg)	-0.00072	-68	-63	Yes	18	27.78	n/a	n/a	0.02	NP
Molybdenum (mg/L)	MW-08	-0.00	-22	-63	No	18	11.11	n/a	n/a	0.02	NP
Molybdenum (mg/L)	MW-10	0.000	1	27	No	10	0	n/a	n/a	0.02	NP
Molybdenum (mg/L)	MW-09	0.004345	12	27	No	10	0	n/a	n/a	0.02	NP
Molybdenum (mg/L)	MW-01R	-0.00	-22	-119	No	28	0	n/a	n/a	0.02	NP
Nickel (mg/L)	MW-03	-0.00	-9	-27	No	10	20	n/a	n/a	0.02	NP
Nickel (mg/L)	MW-04	-0.00	-21	-27	No	10	0	n/a	n/a	0.02	NP
Nickel (mg/L)	MW-02	-0.00	-10	-27	No	10	0	n/a /-	n/a	0.02	NP
Nickel (mg/L)	MW-05	0	-5 0	-27	No	10	40	n/a /-	n/a	0.02	NP
Nickel (mg/L)	MW-06	0	8	27 27	No	10	70	n/a	n/a	0.02	NP NP
Nickel (mg/L)	MW-07 (bg) MW-08	0 0	17 17	27 27	No	10	80	n/a	n/a	0.02 0.02	NP NP
Nickel (mg/L) Nickel (mg/L)	MW-10	0.000	17	27	No No	10 10	80 50	n/a	n/a	0.02	NP NP
, - ,	MW-09	0.000	20	27 27	No	10	60	n/a n/a	n/a n/a	0.02	NP NP
Nickel (mg/L)							0				NP NP
Nickel (mg/L) pH (SU)	MW-01R MW-03	-0.04515 -0.04752	-218 -40	-119 -73	Yes No	28 20	0	n/a n/a	n/a n/a	0.02 0.02	NP NP
pH (SU)	MW-04	-0.04732	-40 -48	-73 -73	No	20	0	n/a	n/a	0.02	NP
pH (SU)	MW-02	-0.1217	-49	-73	No	20	0	n/a	n/a	0.02	NP
pH (SU)	MW-05	-0.1217	-49	-58	No	17	0	n/a	n/a	0.02	NP
pH (SU)	MW-06	-0.1001	-22	-58	No	17	0	n/a	n/a	0.02	NP
pH (SU)	MW-07 (bg)	-0.1825	-22 -41	-58	No	17	0	n/a	n/a	0.02	NP
pH (SU)	MW-08	-0.1023 -0.2308	-70	-58	Yes	17	0	n/a	n/a	0.02	NP
pH (SU)	MW-10	-0.2886	-7 0 -25	-38 -27	No	10	0	n/a	n/a	0.02	NP NP
pH (SU)	MW-09	-0.2728	-23 -17	-27	No	10	0	n/a	n/a	0.02	NP
pH (SU)	MW-01R	-2.882	-236	-119	Yes	28	0	n/a	n/a	0.02	NP
F //					. 00		•			V.V.	

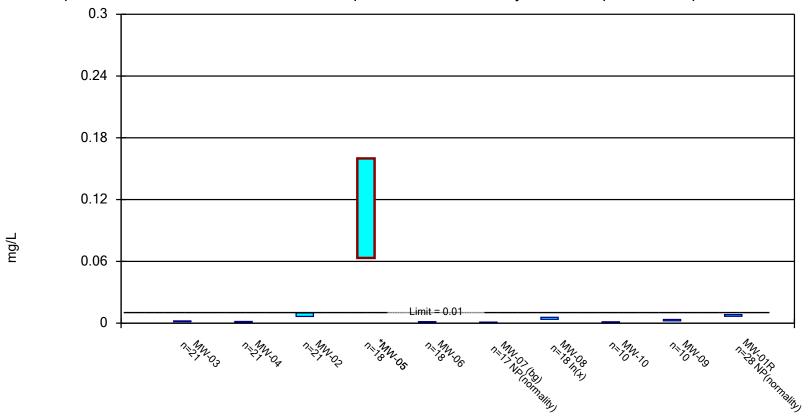
	Grand Haven BLP	Client: Golder A	ssociates	Data: DT-Grand	d Haven Bl	P Printed 1/3/2022, 1:03 PM					
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Selenium (mg/L)	MW-03	0	-92	-78	Yes	21	66.67	n/a	n/a	0.02	NP
Selenium (mg/L)	MW-04	0	29	78	No	21	85.71	n/a	n/a	0.02	NP
Selenium (mg/L)	MW-02	-0.00	-54	-78	No	21	19.05	n/a	n/a	0.02	NP
Selenium (mg/L)	MW-05	0	0	63	No	18	100	n/a	n/a	0.02	NP
Selenium (mg/L)	MW-06	0	0	63	No	18	100	n/a	n/a	0.02	NP
Selenium (mg/L)	MW-07 (bg)	0	0	63	No	18	100	n/a	n/a	0.02	NP
Selenium (mg/L)	MW-08	0	0	63	No	18	100	n/a	n/a	0.02	NP
Selenium (mg/L)	MW-10	0	0	27	No	10	100	n/a	n/a	0.02	NP
Selenium (mg/L)	MW-09	0	0	27	No	10	100	n/a	n/a	0.02	NP
Selenium (mg/L)	MW-01R	-0.00	-164	-119	Yes	28	17.86	n/a	n/a	0.02	NP
Silver (mg/L)	MW-03	0	7	27	No	10	90	n/a	n/a	0.02	NP
Silver (mg/L)	MW-04	0	15	27	No	10	80	n/a	n/a	0.02	NP
Silver (mg/L)	MW-02	0	7	27	No	10	90	n/a	n/a	0.02	NP
Silver (mg/L)	MW-05	0	7	27	No	10	90	n/a	n/a	0.02	NP
Silver (mg/L)	MW-06	0	7	27	No	10	90	n/a	n/a	0.02	NP
Silver (mg/L)	MW-07 (bg)	0	15	27	No	10	80	n/a	n/a	0.02	NP
Silver (mg/L)	MW-08	0	9	27	No	10	90	n/a	n/a	0.02	NP
Silver (mg/L)	MW-10	0	0	27	No	10	100	n/a	n/a	0.02	NP
Silver (mg/L)	MW-09	0	0	27	No	10	100	n/a	n/a	0.02	NP
Silver (mg/L)	MW-01R	0	0	119	No	28	100	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-03	-161.1	-94	-84	Yes	22	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-04	-82.6	-153	-84	Yes	22	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-02	0	33	84	No	22	54.55	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-05	108.7	28	63	No	18	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-06	-14.75	-61	-63	No	18	5.556	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-07 (bg)	-10.9	-59	-63	No	18	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-08	-0.6646	-27	-63	No	18	5.556	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-10	2.252	14	27	No	10	30	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-09	-4.609	-3	-27	No	10	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-01R	226.6	44	119	No	28	0	n/a	n/a	0.02	NP
Thallium (mg/L)	MW-03	0	0	78	No	21	100	n/a	n/a	0.02	NP
Thallium (mg/L)	MW-04	0	0	78	No	21	100	n/a	n/a	0.02	NP
Thallium (mg/L)	MW-02	0	0	78	No	21	100	n/a	n/a	0.02	NP
Thallium (mg/L)	MW-05	0	0	63	No	18	100	n/a	n/a	0.02	NP
Thallium (mg/L)	MW-06	0	-15	-63	No	18	88.89	n/a	n/a	0.02	NP
Thallium (mg/L)	MW-07 (bg)	0	0	63	No	18	100	n/a	n/a	0.02	NP
Thallium (mg/L)	MW-08	0	0	63	No	18	100	n/a	n/a	0.02	NP
Thallium (mg/L)	MW-10	0	0	27	No	10	100	n/a	n/a	0.02	NP
Thallium (mg/L)	MW-09	0	-3	-27	No	10	90	n/a	n/a	0.02	NP
Thallium (mg/L)	MW-01R	0	-15	-119	No	28	96.43	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-03	-175.8	-86	-84	Yes	22	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-04	-139.8	-119	-84	Yes	22	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-02	-60.43	-46	-84	No	22	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-05	148	27	63	No	18	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-06	-122.6	-74	-63	Yes	18	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-07 (bg)	-36.5	-60	-63	No	18	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-08	-12.01	-14	-63	No	18	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-10	117.7	10	27	No	10	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-09	-115.9	-18	-27	No	10	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-01R	-699.3	-128	-119	Yes	28	0	n/a	n/a	0.02	NP


Trend Test

Grand Haven BLP	Client: Golder A	Associates	Data: DT-Gran	d Haven B	LP Prir	nted 1/3/202	2, 1:03 PM			
<u>Well</u>	Slope	<u>Calc.</u>	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
MW-03	-0.00	-1	-27	No	10	10	n/a	n/a	0.02	NP
MW-04	0.000	9	27	No	10	10	n/a	n/a	0.02	NP
MW-02	-0.00	-3	-27	No	10	10	n/a	n/a	0.02	NP
MW-05	-0.00	-16	-27	No	10	40	n/a	n/a	0.02	NP
MW-06	0.000	26	27	No	10	60	n/a	n/a	0.02	NP
MW-07 (bg)	0.000	11	27	No	10	0	n/a	n/a	0.02	NP
MW-08	0	17	27	No	10	80	n/a	n/a	0.02	NP
MW-10	-0.00	-6	-27	No	10	0	n/a	n/a	0.02	NP
MW-09	0	-11	-27	No	10	80	n/a	n/a	0.02	NP
MW-01R	-0.00	-190	-119	Yes	28	3.571	n/a	n/a	0.02	NP
MW-03	0	7	27	No	10	90	n/a	n/a	0.02	NP
MW-04	0	7	27	No	10	90	n/a	n/a	0.02	NP
MW-02	0	7	27	No	10	90	n/a	n/a	0.02	NP
MW-05	0	-1	-27	No	10	80	n/a	n/a	0.02	NP
MW-06	0	7	27	No	10	90	n/a	n/a	0.02	NP
MW-07 (bg)	0	7	27	No	10	80	n/a	n/a	0.02	NP
MW-08	0	7	27	No	10	90	n/a	n/a	0.02	NP
MW-10	0	1	27	No	10	80	n/a	n/a	0.02	NP
MW-09	0	9	27	No	10	90	n/a	n/a	0.02	NP
MW-01R	-0.1071	-181	-119	Yes	28	28.57	n/a	n/a	0.02	NP

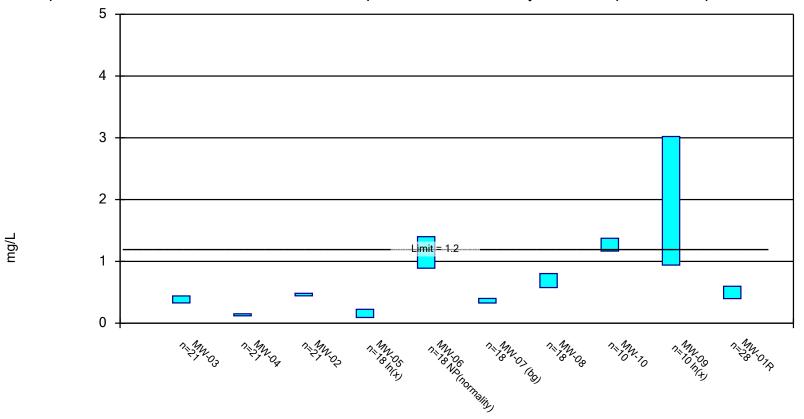
Constituent Vanadium (mg/L) Zinc (mg/L)

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Antimony Analysis Run 1/3/2022 1:23 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

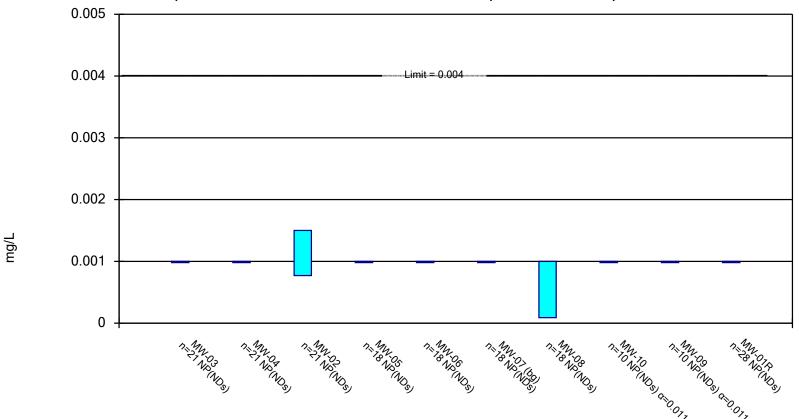
Parametric and Non-Parametric (NP) Confidence Interval


Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Arsenic Analysis Run 1/3/2022 1:23 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

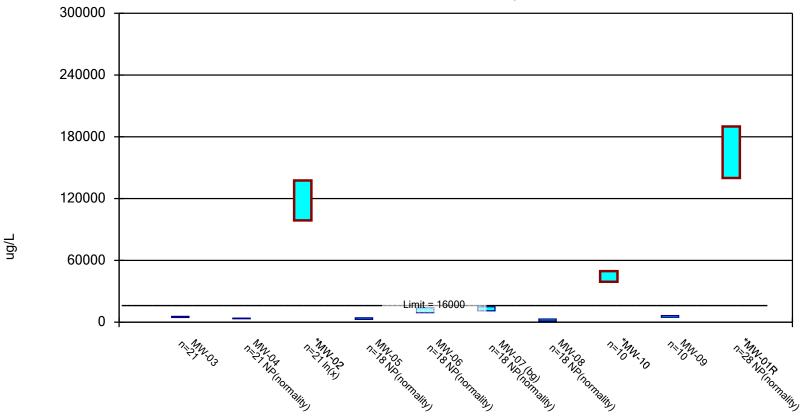
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Barium Analysis Run 1/3/2022 1:23 PM View: MI GWPS

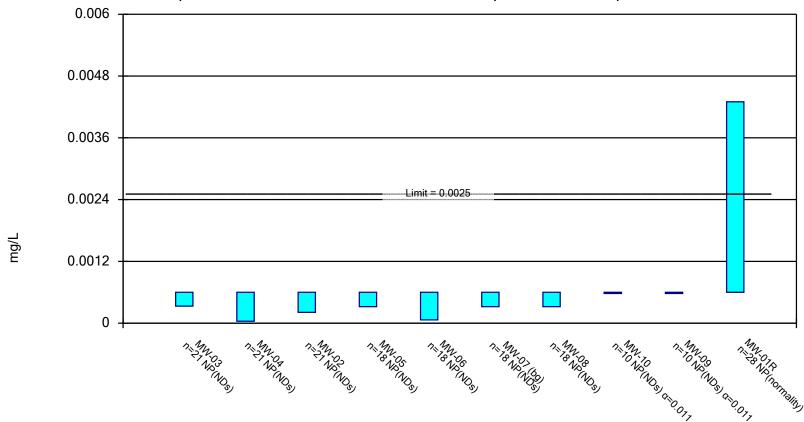
Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

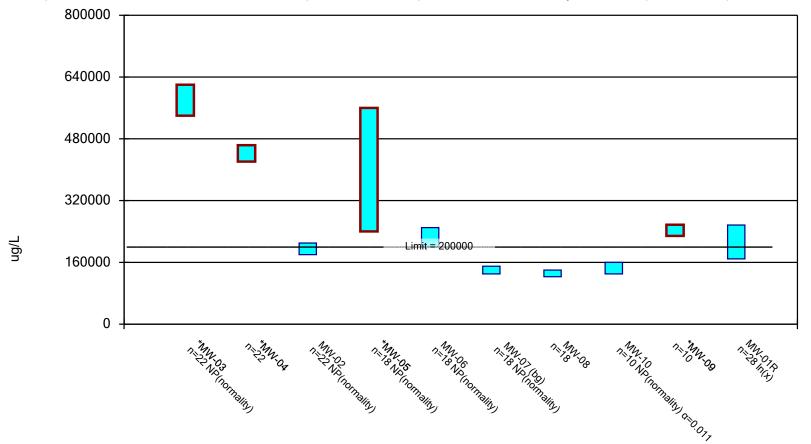
Constituent: Beryllium Analysis Run 1/3/2022 1:23 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

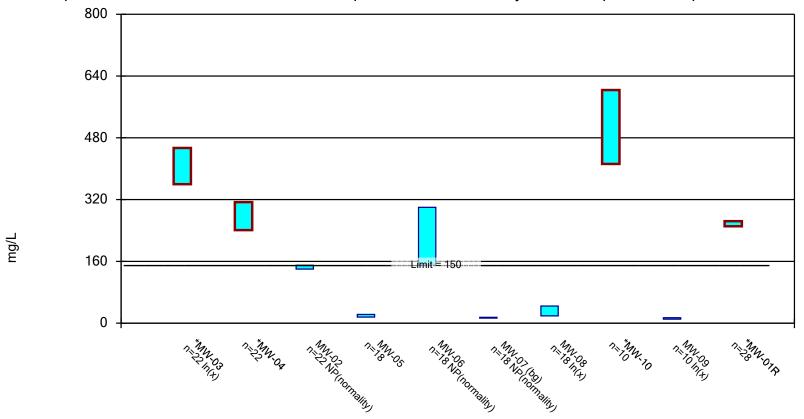


Constituent: Boron Analysis Run 1/3/2022 1:23 PM View: MI GWPS

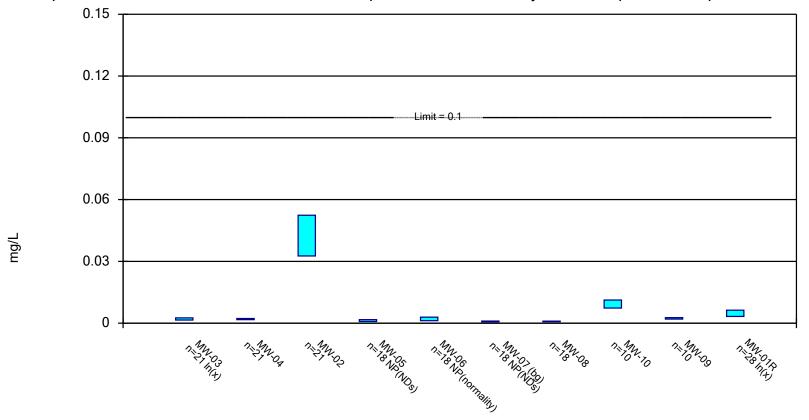
Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Non-Parametric Confidence Interval

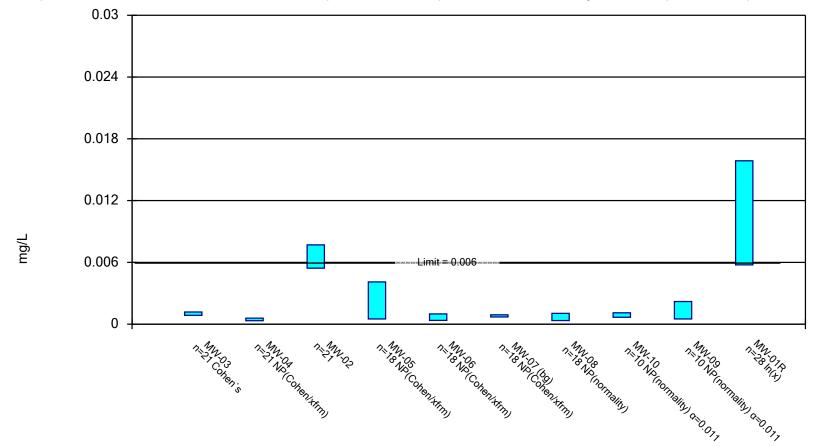
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.


Constituent: Cadmium Analysis Run 1/3/2022 1:23 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

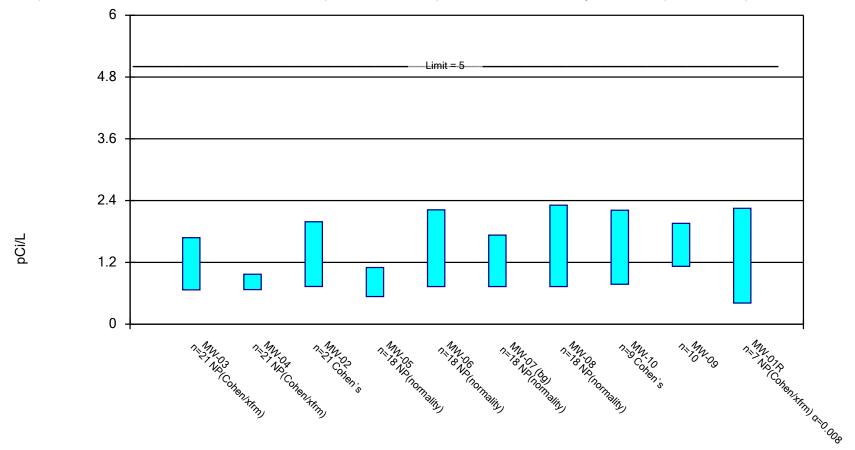

Constituent: Calcium Analysis Run 1/3/2022 1:23 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Chloride Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

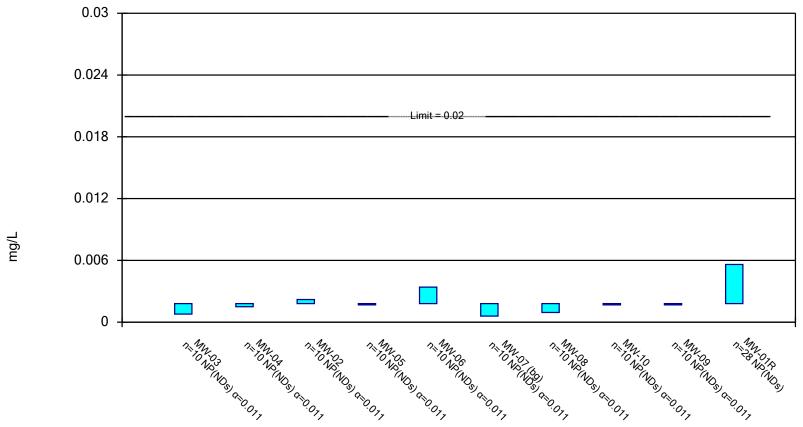
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Chromium Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

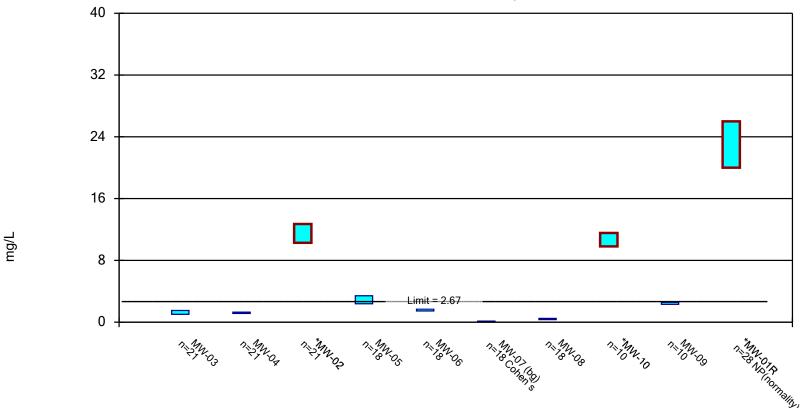

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Cobalt Analysis Run 1/3/2022 1:24 PM View: MI GWPS

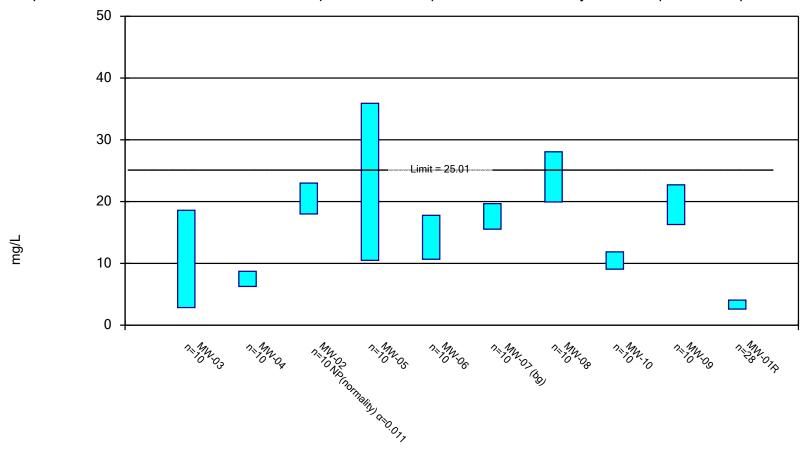
Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Combined Radium 226 + 228 Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

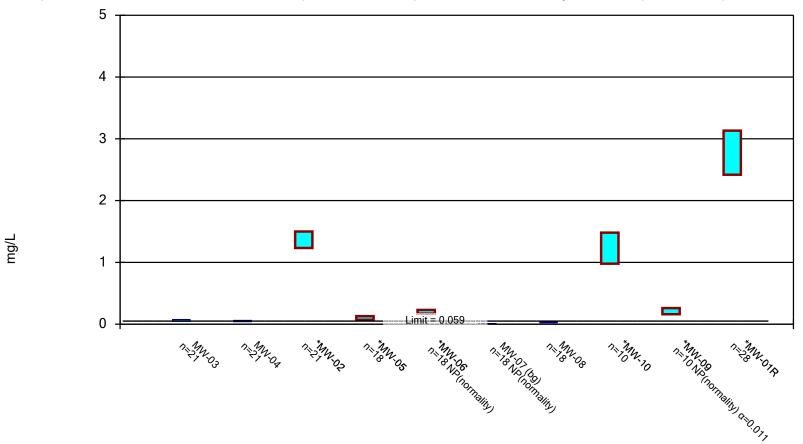

Constituent: Copper Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

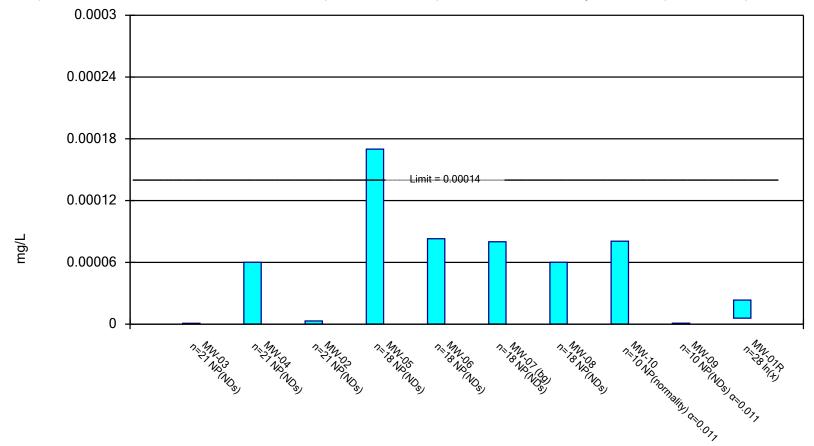
Constituent: Fluoride Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

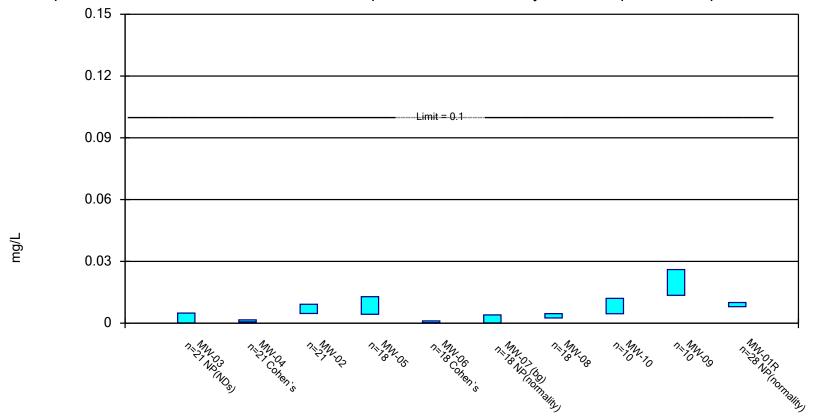
Constituent: Iron Analysis Run 1/3/2022 1:24 PM View: MI GWPS


Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

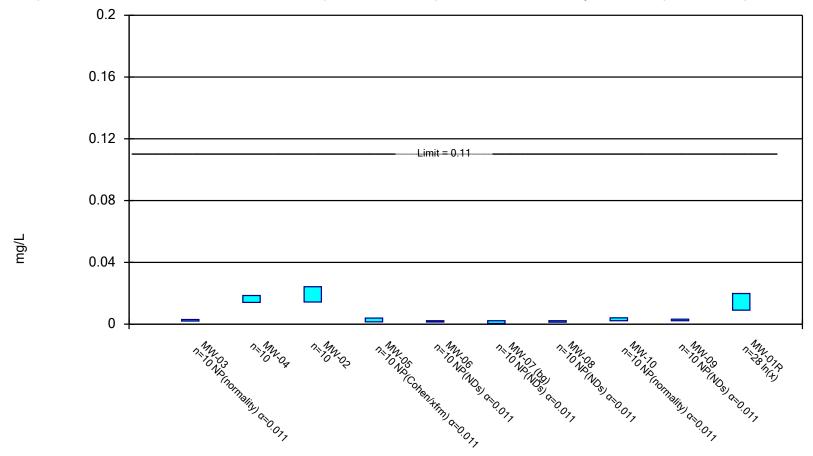
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Lead Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Lithium Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

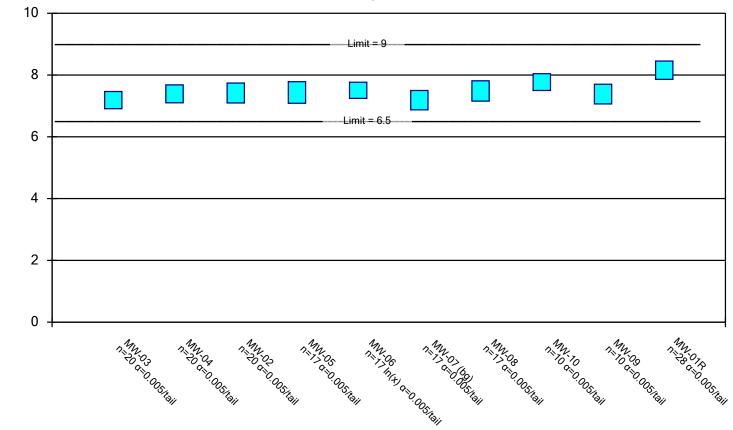
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Mercury Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Molybdenum Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

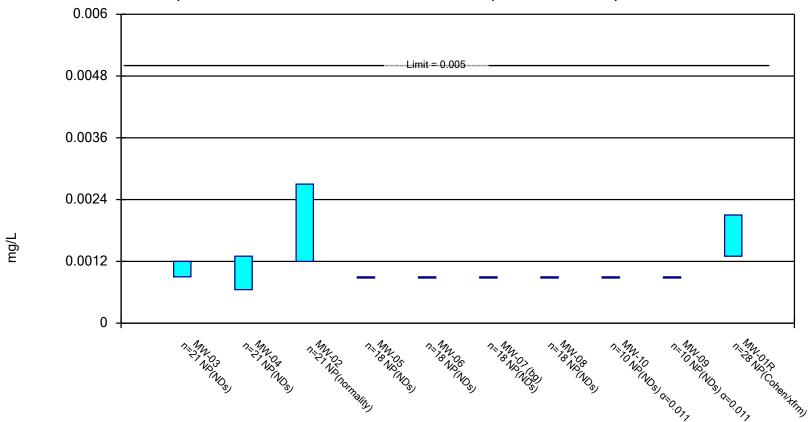

Constituent: Nickel Analysis Run 1/3/2022 1:24 PM View: MI GWPS

Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

SU

Parametric Confidence Interval

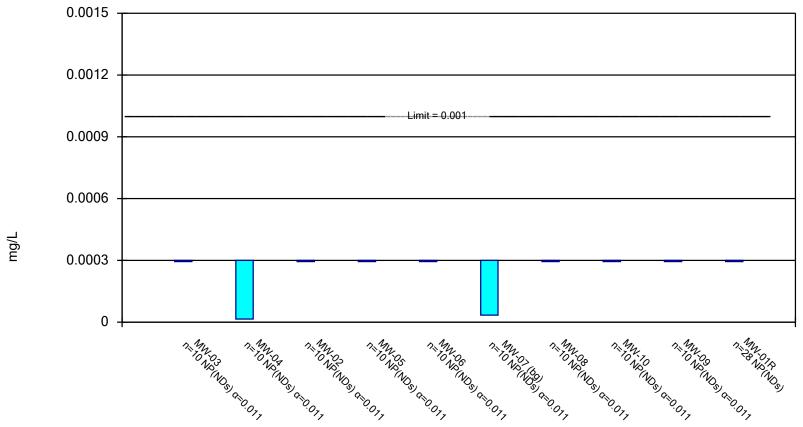
Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: pH Analysis Run 1/3/2022 1:24 PM View: MI GWPS

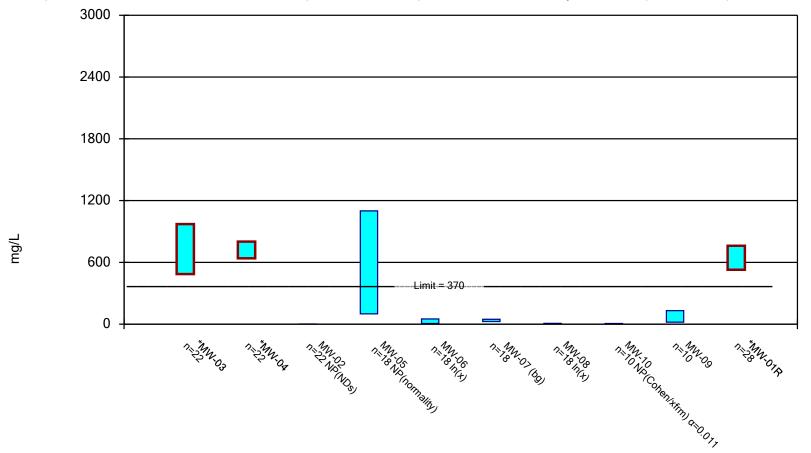
Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Non-Parametric Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

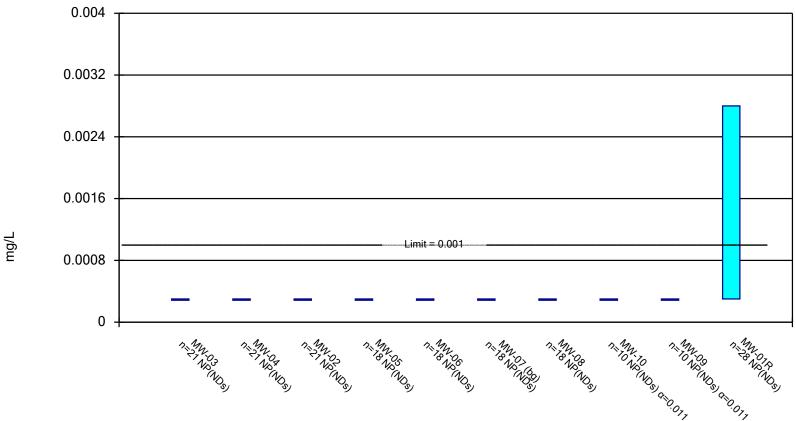
Constituent: Selenium Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Non-Parametric Confidence Interval

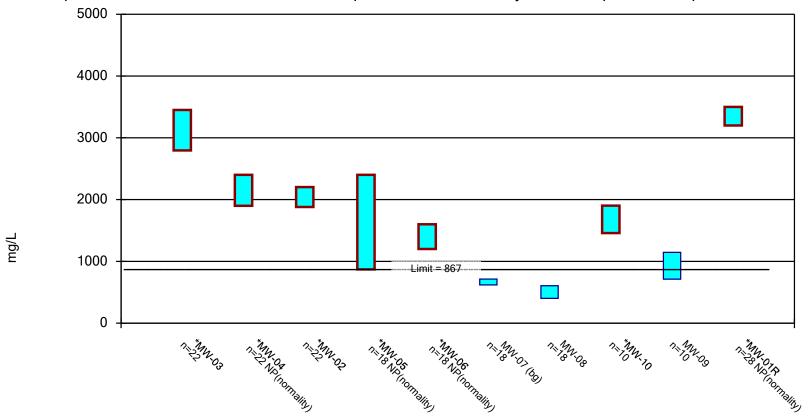

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

Constituent: Silver Analysis Run 1/3/2022 1:24 PM View: MI GWPS

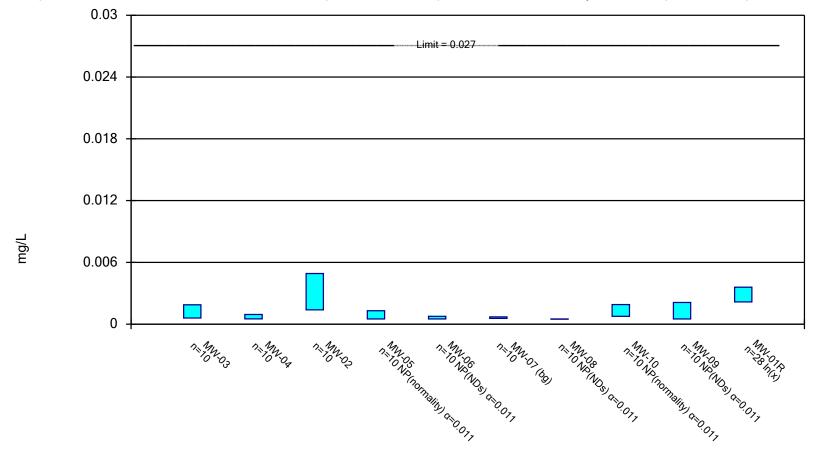
Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Sulfate Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

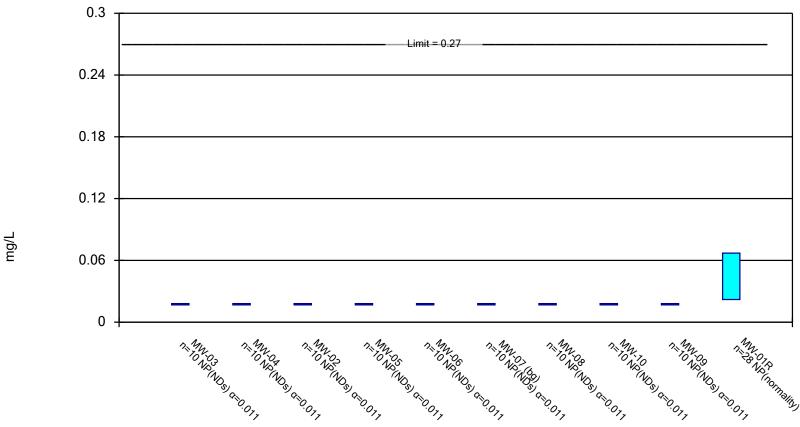

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.


Constituent: Thallium Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Total Dissolved Solids Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Vanadium Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

Constituent: Zinc Analysis Run 1/3/2022 1:24 PM View: MI GWPS

Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

	Grand Hav	en BLP Clie	ent: Golder As	sociates	Data:	DT-Gr	and Haven BL	P Printed 1	/3/2022,	1:31 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliand	eSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	MW-03	0.000255	0.00021	0.006	No	21	0.0002217	0.00004425	95.24	No	0.01	NP (NDs)
Antimony (mg/L)	MW-04	0.00021	0.000091	0.006	No	21	0.0002043	0.00002597	95.24	No	0.01	NP (NDs)
Antimony (mg/L)	MW-02	0.00033	0.00021	0.006	No	21	0.0002814	0.0001471	66.67	No	0.01	NP (NDs)
Antimony (mg/L)	MW-05	0.000255	0.00021	0.006	No	18	0.000215	0.00001455	100	No	0.01	NP (NDs)
Antimony (mg/L)	MW-06	0.000255	0.00012	0.006	No	18	0.0002194	0.0000607	77.78	No	0.01	NP (NDs)
Antimony (mg/L)	MW-07 (bg)	0.000255	0.00013	0.006	No	18	0.0002853	0.0003289	88.89	No	0.01	NP (NDs)
Antimony (mg/L)	MW-08	0.000255	0.00012	0.006	No	18	0.0002156	0.00003564	88.89	No	0.01	NP (NDs)
Antimony (mg/L)	MW-10	0.00021	0.00021	0.006	No	10	0.000576	0.001168	80	No	0.011	NP (NDs)
Antimony (mg/L)	MW-09	0.00021	0.00021	0.006	No	10	0.00021	0	100	No	0.011	NP (NDs)
Antimony (mg/L)	MW-01R	0.003786	0.001079	0.006	No	28	0.004314	0.005538	10.71	ln(x)	0.01	Param.
Arsenic (mg/L)	MW-03	0.002118	0.001453	0.01	No	21	0.001786	0.0006027	9.524	No	0.01	Param.
Arsenic (mg/L)	MW-04	0.001611	0.001217	0.01	No	21	0.001414	0.0003568	4.762	No	0.01	Param.
Arsenic (mg/L)	MW-02	0.009952	0.006543	0.01	No	21	0.008248	0.00309	4.762	No	0.01	Param.
Arsenic (mg/L)	MW-05	0.16	0.06333	0.01	Yes	18	0.1116	0.07986	0	No	0.01	Param.
Arsenic (mg/L)	MW-06	0.00149	0.0009801	0.01	No	18	0.001235	0.0004214	5.556	No	0.01	Param.
Arsenic (mg/L)	MW-07 (bg)	0.001	0.0005	0.01	No	17	0.001078	0.00114	47.06	No	0.01	NP (normality)
Arsenic (mg/L)	MW-08	0.005661	0.003736	0.01	No	18	0.004878	0.001844	0	In(x)	0.01	Param.
Arsenic (mg/L)	MW-10	0.001296	0.0008498	0.01	No	10	0.001073	0.0002502	0	No	0.01	Param.
Arsenic (mg/L)	MW-09	0.003558	0.002242	0.01	No	10	0.0029	0.0007379	0	No	0.01	Param.
Arsenic (mg/L)	MW-01R	0.0083	0.0067	0.01	No	28	0.006929	0.002187	3.571	No	0.01	NP (normality)
Barium (mg/L)	MW-03	0.4399	0.3268	1.2	No	21	0.3833	0.1025	0	No	0.01	Param.
Barium (mg/L)	MW-04	0.1514	0.1188	1.2	No	21	0.1351	0.02947	0	No	0.01	Param.
Barium (mg/L)	MW-02	0.4828	0.4429	1.2	No	21	0.4629	0.03621	0	No	0.01	Param.
Barium (mg/L)	MW-05	0.2237	0.09223	1.2	No	18	0.1846	0.1329	0	In(x)	0.01	Param.
Barium (mg/L)	MW-06	1.4	0.89	1.2	No	18	1.099	0.379	0	No	0.01	NP (normality)
Barium (mg/L)	MW-07 (bg)	0.4002	0.3264	1.2	No	18	0.3633	0.06097	0	No	0.01	Param.
Barium (mg/L)	MW-08	0.8027	0.5762	1.2	No	18	0.6894	0.1871	0	No	0.01	Param.
Barium (mg/L)	MW-10	1.373	1.167	1.2	No	10	1.27	0.116	0	No	0.01	Param.
Barium (mg/L)	MW-09	3.021	0.9393	1.2	No	10	2.082	1.567	0	In(x)	0.01	Param.
Barium (mg/L)	MW-01R	0.5967	0.3973	1.2	No	28	0.497	0.2134	0	No	0.01	Param.
Beryllium (mg/L)	MW-03	0.001	0.001	0.004	No	21	0.001	0	100	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-04	0.001	0.001	0.004	No	21	0.001	0	100	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-02	0.0015	0.00077	0.004	No	21	0.0009681	0.0002412	85.71	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-05	0.001	0.001	0.004	No	18	0.001	0	100	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-06	0.001	0.001	0.004	No	18	0.001	0	100	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-07 (bg)	0.001	0.001	0.004	No	18	0.001	0	100	No	0.01	NP (NDs)

	Grand Hav	en BLP Clie	ent: Golder As	sociates	Data:	DT-Gr	and Haven BL	P Printed 1	/3/2022,	1:31 PM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliano	eSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	Transform	<u>Alpha</u>	Method
Beryllium (mg/L)	MW-08	0.001	0.000089	0.004	No	18	0.0009494	0.0002147	94.44	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-10	0.001	0.001	0.004	No	10	0.001	0	100	No	0.011	NP (NDs)
Beryllium (mg/L)	MW-09	0.001	0.001	0.004	No	10	0.001	0	100	No	0.011	NP (NDs)
Beryllium (mg/L)	MW-01R	0.001	0.001	0.004	No	28	0.001	0	100	No	0.01	NP (NDs)
Boron (ug/L)	MW-03	5563	4580	16000	No	21	5071	890.6	0	No	0.01	Param.
Boron (ug/L)	MW-04	3900	3300	16000	No	21	3724	574.4	0	No	0.01	NP (normality)
Boron (ug/L)	MW-02	137592	98805	16000	Yes	21	122000	41539	0	In(x)	0.01	Param.
Boron (ug/L)	MW-05	4200	2700	16000	No	18	3906	2641	0	No	0.01	NP (normality)
Boron (ug/L)	MW-06	14000	9200	16000	No	18	11067	3542	0	No	0.01	NP (normality)
Boron (ug/L)	MW-07 (bg)	15000	11000	16000	No	18	12978	3368	0	No	0.01	NP (normality)
Boron (ug/L)	MW-08	3000	1200	16000	No	18	2192	1651	0	No	0.01	NP (normality)
Boron (ug/L)	MW-10	49555	39245	16000	Yes	10	44400	5777	0	No	0.01	Param.
Boron (ug/L)	MW-09	6385	4695	16000	No	10	5540	946.6	0	No	0.01	Param.
Boron (ug/L)	MW-01R	190000	140000	16000	Yes	28	165000	38442	0	No	0.01	NP (normality)
Cadmium (mg/L)	MW-03	0.0006	0.00033	0.0025	No	21	0.0005738	0.00008273	95.24	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-04	0.0006	0.000037	0.0025	No	21	0.0005463	0.0001696	90.48	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-02	0.0006	0.00021	0.0025	No	21	0.0004928	0.0002549	66.67	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-05	0.0006	0.00032	0.0025	No	18	0.0004888	0.0002229	83.33	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-06	0.0006	0.000063	0.0025	No	18	0.0003986	0.0002596	61.11	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-07 (bg)	0.0006	0.00032	0.0025	No	18	0.0005537	0.0001426	94.44	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-08	0.0006	0.00032	0.0025	No	18	0.000525	0.0001799	88.89	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-10	0.0006	0.0006	0.0025	No	10	0.000593	0.0002526	80	No	0.011	NP (NDs)
Cadmium (mg/L)	MW-09	0.0006	0.0006	0.0025	No	10	0.0006	0	100	No	0.011	NP (NDs)
Cadmium (mg/L)	MW-01R	0.0043	0.0006	0.0025	No	28	0.003946	0.005132	32.14	No	0.01	NP (normality)
Calcium (ug/L)	MW-03	620000	540000	200000	Yes	22	589545	86050	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-04	463546	420999	200000	Yes	22	442273	39633	0	No	0.01	Param.
Calcium (ug/L)	MW-02	210000	180000	200000	No	22	203182	34001	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-05	560000	240000	200000	Yes	18	444444	162597	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-06	250000	200000	200000	No	18	215072	59849	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-07 (bg)	150000	130000	200000	No	18	145000	15435	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-08	139933	122845	200000	No	18	131389	14122	0	No	0.01	Param.
Calcium (ug/L)	MW-10	160000	130000	200000	No	10	141000	11972	0	No	0.011	NP (normality)
Calcium (ug/L)	MW-09	257600	228400	200000	Yes	10	243000	16364	0	No	0.01	Param.
Calcium (ug/L)	MW-01R	256657	169040	200000	No	28	230393	114277	0	In(x)	0.01	Param.
Chloride (mg/L)	MW-03	453.6	359.9	150	Yes	22	413.6	97.57	0	In(x)	0.01	Param.
Chloride (mg/L)	MW-04	313.5	241	150	Yes	22	277.3	67.55	0	No	0.01	Param.

	Grand Hav	en BLP Cli	ent: Golder As	ssociates	Data:	DT-G	rand Haven Bl	LP Printed	1/3/2022,	1:31 PM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Complian	ceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Chloride (mg/L)	MW-02	150	140	150	No	22	145	8.018	0	No	0.01	NP (normality)
Chloride (mg/L)	MW-05	22.5	15.62	150	No	18	19.06	5.681	0	No	0.01	Param.
Chloride (mg/L)	MW-06	300	150	150	No	18	227.2	66.32	0	No	0.01	NP (normality)
Chloride (mg/L)	MW-07 (bg)	15	13	150	No	18	14.11	0.8324	0	No	0.01	NP (normality)
Chloride (mg/L)	MW-08	44.32	18.9	150	No	18	36.92	28.77	0	ln(x)	0.01	Param.
Chloride (mg/L)	MW-10	603.7	412.3	150	Yes	10	508	107.3	0	No	0.01	Param.
Chloride (mg/L)	MW-09	13.95	10.29	150	No	10	12.15	2.31	0	In(x)	0.01	Param.
Chloride (mg/L)	MW-01R	264.2	250.8	150	Yes	28	257.5	14.3	0	No	0.01	Param.
Chromium (mg/L)	MW-03	0.00256	0.001525	0.1	No	21	0.002202	0.001094	0	In(x)	0.01	Param.
Chromium (mg/L)	MW-04	0.002257	0.001705	0.1	No	21	0.001981	0.0004996	4.762	No	0.01	Param.
Chromium (mg/L)	MW-02	0.05239	0.03262	0.1	No	21	0.0425	0.01791	0	No	0.01	Param.
Chromium (mg/L)	MW-05	0.0017	0.0008	0.1	No	18	0.0009139	0.0002103	77.78	No	0.01	NP (NDs)
Chromium (mg/L)	MW-06	0.0029	0.0012	0.1	No	18	0.001765	0.001003	0	No	0.01	NP (normality)
Chromium (mg/L)	MW-07 (bg)	0.001	0.00068	0.1	No	18	0.000925	0.0005008	66.67	No	0.01	NP (NDs)
Chromium (mg/L)	MW-08	0.0009586	0.0007158	0.1	No	18	0.0008372	0.0002006	27.78	No	0.01	Param.
Chromium (mg/L)	MW-10	0.01121	0.007332	0.1	No	10	0.00927	0.002172	0	No	0.01	Param.
Chromium (mg/L)	MW-09	0.002689	0.001971	0.1	No	10	0.00233	0.0004029	0	No	0.01	Param.
Chromium (mg/L)	MW-01R	0.006266	0.003249	0.1	No	28	0.005689	0.004133	3.571	ln(x)	0.01	Param.
Cobalt (mg/L)	MW-03	0.001178	0.0008524	0.006	No	21	0.0008833	0.0002917	23.81	No	0.01	Param.
Cobalt (mg/L)	MW-04	0.00058	0.00033	0.006	No	21	0.00051	0.0002227	38.1	No	0.01	NP (Cohens/xfrm)
Cobalt (mg/L)	MW-02	0.007702	0.005441	0.006	No	21	0.006571	0.002049	0	No	0.01	Param.
Cobalt (mg/L)	MW-05	0.0041	0.0005	0.006	No	18	0.002205	0.001998	33.33	No	0.01	NP (Cohens/xfrm)
Cobalt (mg/L)	MW-06	0.00099	0.00036	0.006	No	18	0.0006289	0.0002498	50	No	0.01	NP (Cohens/xfrm)
Cobalt (mg/L)	MW-07 (bg)	0.00091	0.0007	0.006	No	18	0.0008239	0.0001295	16.67	No	0.01	NP (Cohens/xfrm)
Cobalt (mg/L)	MW-08	0.00105	0.00035	0.006	No	18	0.00071	0.0005735	50	No	0.01	NP (normality)
Cobalt (mg/L)	MW-10	0.0011	0.00067	0.006	No	10	0.001027	0.0005839	0	No	0.011	NP (normality)
Cobalt (mg/L)	MW-09	0.0022	0.0005	0.006	No	10	0.000981	0.0007477	30	No	0.011	NP (normality)
Cobalt (mg/L)	MW-01R	0.01587	0.005758	0.006	No	28	0.01732	0.0221	0	In(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-03	1.68	0.666	5	No	21	1.21	0.8396	23.81	No	0.01	NP (Cohens/xfrm)
Combined Radium 226 + 228 (pCi/L)	MW-04	0.97	0.671	5	No	21	0.8382	0.4338	38.1	No	0.01	NP (Cohens/xfrm)
Combined Radium 226 + 228 (pCi/L)	MW-02	1.988	0.7317	5	No	21	1.565	0.8717	28.57	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-05	1.1	0.536	5	No	18	0.8472	0.3989	50	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-06	2.22	0.73	5	No	18	1.29	0.8637	33.33	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-07 (bg)	1.73	0.73	5	No	18	1.11	0.5214	50	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-08	2.31	0.73	5	No	18	1.607	1.125	33.33	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-10	2.213	0.7756	5	No	9	1.581	0.6146	22.22	No	0.01	Param.

	Grand Hav	ven BLP Cli	ent: Golder A	ssociates	Data	: DT-G	rand Haven B	LP Printed 1	1/3/2022,	1:31 PM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Complian	ceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Combined Radium 226 + 228 (pCi/L)	MW-09	1.957	1.123	5	No	10	1.54	0.4674	10	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-01R	2.25	0.41	5	No	7	0.9557	0.5965	42.86	No	0.008	NP (Cohens/xfrm)
Copper (mg/L)	MW-03	0.0018	0.00078	0.02	No	10	0.001563	0.0005057	80	No	0.011	NP (NDs)
Copper (mg/L)	MW-04	0.0018	0.0015	0.02	No	10	0.001695	0.0003201	70	No	0.011	NP (NDs)
Copper (mg/L)	MW-02	0.0022	0.0018	0.02	No	10	0.00193	0.0005376	70	No	0.011	NP (NDs)
Copper (mg/L)	MW-05	0.0018	0.0018	0.02	No	10	0.001738	0.0005852	80	No	0.011	NP (NDs)
Copper (mg/L)	MW-06	0.0034	0.0018	0.02	No	10	0.00223	0.001153	70	No	0.011	NP (NDs)
Copper (mg/L)	MW-07 (bg)	0.0018	0.00059	0.02	No	10	0.001545	0.0005385	80	No	0.011	NP (NDs)
Copper (mg/L)	MW-08	0.0018	0.00094	0.02	No	10	0.001618	0.0003844	80	No	0.011	NP (NDs)
Copper (mg/L)	MW-10	0.0018	0.0018	0.02	No	10	0.002027	0.001085	80	No	0.011	NP (NDs)
Copper (mg/L)	MW-09	0.0018	0.0018	0.02	No	10	0.00175	0.0001581	90	No	0.011	NP (NDs)
Copper (mg/L)	MW-01R	0.0056	0.0018	0.02	No	28	0.006071	0.008081	64.29	No	0.01	NP (NDs)
Fluoride (mg/L)	MW-03	1.51	1.017	2.67	No	21	1.263	0.447	0	No	0.01	Param.
Fluoride (mg/L)	MW-04	1.292	1.131	2.67	No	21	1.211	0.1461	0	No	0.01	Param.
Fluoride (mg/L)	MW-02	12.71	10.28	2.67	Yes	21	11.5	2.209	0	No	0.01	Param.
Fluoride (mg/L)	MW-05	3.412	2.377	2.67	No	18	2.894	0.8551	0	No	0.01	Param.
Fluoride (mg/L)	MW-06	1.693	1.452	2.67	No	18	1.572	0.1994	0	No	0.01	Param.
Fluoride (mg/L)	MW-07 (bg)	0.1335	0.07364	2.67	No	18	0.1079	0.04269	16.67	No	0.01	Param.
Fluoride (mg/L)	MW-08	0.4826	0.3318	2.67	No	18	0.4072	0.1246	0	No	0.01	Param.
Fluoride (mg/L)	MW-10	11.55	9.808	2.67	Yes	10	10.68	0.9773	0	No	0.01	Param.
Fluoride (mg/L)	MW-09	2.568	2.312	2.67	No	10	2.44	0.143	0	No	0.01	Param.
Fluoride (mg/L)	MW-01R	26	20	2.67	Yes	28	20.83	7.517	3.571	No	0.01	NP (normality)
Iron (mg/L)	MW-03	18.6	2.843	25.01	No	10	10.72	8.83	0	No	0.01	Param.
Iron (mg/L)	MW-04	8.715	6.265	25.01	No	10	7.49	1.373	0	No	0.01	Param.
Iron (mg/L)	MW-02	23	18	25.01	No	10	19.77	4.869	0	No	0.011	NP (normality)
Iron (mg/L)	MW-05	35.91	10.49	25.01	No	10	23.2	14.24	0	No	0.01	Param.
Iron (mg/L)	MW-06	17.77	10.67	25.01	No	10	14.22	3.983	0	No	0.01	Param.
Iron (mg/L)	MW-07 (bg)	19.67	15.53	25.01	No	10	17.6	2.319	0	No	0.01	Param.
Iron (mg/L)	MW-08	28.06	19.94	25.01	No	10	24	4.546	0	No	0.01	Param.
Iron (mg/L)	MW-10	11.86	9.06	25.01	No	10	10.46	1.569	0	No	0.01	Param.
Iron (mg/L)	MW-09	22.71	16.29	25.01	No	10	19.5	3.598	0	No	0.01	Param.
Iron (mg/L)	MW-01R	4.044	2.599	25.01	No	28	3.321	1.547	0	No	0.01	Param.
Lead (mg/L)	MW-03	0.0005	0.00038	0.014	No	21	0.0004395	0.0001571	66.67	No	0.01	NP (NDs)
Lead (mg/L)	MW-04	0.0005	0.00037	0.014	No	21	0.0004414	0.00009404		No	0.01	NP (NDs)
Lead (mg/L)	MW-02	0.0046	0.001745	0.014	No	21	0.003172	0.002587	14.29	No	0.01	Param.
Lead (mg/L)	MW-05	0.00075	0.00045	0.014	No	18	0.002287	0.006514	55.56	No	0.01	NP (NDs)

	Grand Hav	en BLP Cli	ent: Golder As	sociates	Data:	DT-G	rand Haven BL	P Printed 1	/3/2022,	1:31 PM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliand	ceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Lead (mg/L)	MW-06	0.0023	0.0005	0.014	No	18	0.001507	0.00107	22.22	No	0.01	NP (normality)
Lead (mg/L)	MW-07 (bg)	0.00062	0.00045	0.014	No	18	0.0005756	0.0005995	72.22	No	0.01	NP (NDs)
Lead (mg/L)	MW-08	0.00067	0.00046	0.014	No	18	0.0008167	0.0008797	50	No	0.01	NP (normality)
Lead (mg/L)	MW-10	0.0089	0.0005	0.014	No	10	0.006608	0.01373	20	No	0.011	NP (Cohens/xfrm)
Lead (mg/L)	MW-09	0.0016	0.0005	0.014	No	10	0.000793	0.0005488	70	No	0.011	NP (NDs)
Lead (mg/L)	MW-01R	0.03128	0.01062	0.014	No	28	0.03329	0.04093	0	ln(x)	0.01	Param.
Lithium (mg/L)	MW-03	0.07409	0.04808	0.059	No	21	0.06108	0.02358	4.762	No	0.01	Param.
Lithium (mg/L)	MW-04	0.05878	0.04167	0.059	No	21	0.05022	0.0155	4.762	No	0.01	Param.
Lithium (mg/L)	MW-02	1.499	1.233	0.059	Yes	21	1.366	0.241	0	No	0.01	Param.
Lithium (mg/L)	MW-05	0.1286	0.07023	0.059	Yes	18	0.09939	0.0482	11.11	No	0.01	Param.
Lithium (mg/L)	MW-06	0.23	0.17	0.059	Yes	18	0.1909	0.06135	5.556	No	0.01	NP (normality)
Lithium (mg/L)	MW-07 (bg)	0.00835	0.0039	0.059	No	18	0.008872	0.01265	44.44	No	0.01	NP (normality)
Lithium (mg/L)	MW-08	0.03732	0.02431	0.059	No	18	0.03082	0.01075	5.556	No	0.01	Param.
Lithium (mg/L)	MW-10	1.481	0.9786	0.059	Yes	10	1.23	0.2818	0	No	0.01	Param.
Lithium (mg/L)	MW-09	0.26	0.16	0.059	Yes	10	0.235	0.04249	0	No	0.011	NP (normality)
Lithium (mg/L)	MW-01R	3.133	2.418	0.059	Yes	28	2.775	0.7644	0	No	0.01	Param.
Mercury (mg/L)	MW-03	8.0e-7	1.6e-7	0.00014	No	21	0.00001079	0.00002658	71.43	No	0.01	NP (NDs)
Mercury (mg/L)	MW-04	0.00006008	1.6e-7	0.00014	No	21	0.00000683	0.00002131	95.24	No	0.01	NP (NDs)
Mercury (mg/L)	MW-02	0.0000031	1.6e-7	0.00014	No	21	0.00001119	0.00002659	71.43	No	0.01	NP (NDs)
Mercury (mg/L)	MW-05	0.00017	1.6e-7	0.00014	No	18	0.000009596	0.00004003	94.44	No	0.01	NP (NDs)
Mercury (mg/L)	MW-06	0.000083	1.6e-7	0.00014	No	18	0.00002561	0.00004623	55.56	No	0.01	NP (NDs)
Mercury (mg/L)	MW-07 (bg)	80000.0	1.6e-7	0.00014	No	18	0.00002347	0.00004661	77.78	No	0.01	NP (NDs)
Mercury (mg/L)	MW-08	0.00006008	1.6e-7	0.00014	No	18	0.00001919	0.00003791	66.67	No	0.01	NP (NDs)
Mercury (mg/L)	MW-10	0.00008055	1.6e-7	0.00014	No	10	0.00001648	0.00003381	40	No	0.011	NP (normality)
Mercury (mg/L)	MW-09	8.8e-7	1.6e-7	0.00014	No	10	0.000008344	0.0000253	60	No	0.011	NP (NDs)
Mercury (mg/L)	MW-01R	0.00002335	0.000005832	0.00014	No	28	0.00002651	0.00003384	3.571	ln(x)	0.01	Param.
Molybdenum (mg/L)	MW-03	0.0049	0.000093	0.1	No	21	0.002009	0.003164	52.38	No	0.01	NP (NDs)
Molybdenum (mg/L)	MW-04	0.00158	0.000607	0.1	No	21	0.001178	0.0007406	19.05	No	0.01	Param.
Molybdenum (mg/L)	MW-02	0.009148	0.004689	0.1	No	21	0.006918	0.004042	9.524	No	0.01	Param.
Molybdenum (mg/L)	MW-05	0.01285	0.004305	0.1	No	18	0.008579	0.007063	11.11	No	0.01	Param.
Molybdenum (mg/L)	MW-06	0.001081	0.000237	0.1	No	18	0.0007473	0.0005699	22.22	No	0.01	Param.
Molybdenum (mg/L)	MW-07 (bg)	0.004	0.000093	0.1	No	18	0.001595	0.00211	27.78	No	0.01	NP (normality)
Molybdenum (mg/L)	MW-08	0.004627	0.002527	0.1	No	18	0.003577	0.001735	11.11	No	0.01	Param.
Molybdenum (mg/L)	MW-10	0.01203	0.004568	0.1	No	10	0.0083	0.004183	0	No	0.01	Param.
Molybdenum (mg/L)	MW-09	0.02601	0.01353	0.1	No	10	0.01977	0.006998	0	No	0.01	Param.
Molybdenum (mg/L)	MW-01R	0.01	0.008	0.1	No	28	0.008514	0.003256	0	No	0.01	NP (normality)

	Grand Hav	en BLP Cli	ent: Golder As	ssociates	Data:	DT-G	rand Haven Bl	_P Printed 1	/3/2022,	1:31 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliand	ceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	Transform	<u>Alpha</u>	Method
Nickel (mg/L)	MW-03	0.003	0.002	0.11	No	10	0.00282	0.001522	20	No	0.011	NP (normality)
Nickel (mg/L)	MW-04	0.01853	0.01407	0.11	No	10	0.0163	0.002497	0	No	0.01	Param.
Nickel (mg/L)	MW-02	0.02424	0.01436	0.11	No	10	0.0193	0.005539	0	No	0.01	Param.
Nickel (mg/L)	MW-05	0.0039	0.0015	0.11	No	10	0.002594	0.001548	40	No	0.011	NP (Cohens/xfrm)
Nickel (mg/L)	MW-06	0.0022	0.0022	0.11	No	10	0.00219	0.0001197	70	No	0.011	NP (NDs)
Nickel (mg/L)	MW-07 (bg)	0.0022	0.00042	0.11	No	10	0.001842	0.0007547	80	No	0.011	NP (NDs)
Nickel (mg/L)	MW-08	0.0022	0.0013	0.11	No	10	0.002	0.0004243	80	No	0.011	NP (NDs)
Nickel (mg/L)	MW-10	0.0041	0.0022	0.11	No	10	0.00285	0.0011	50	No	0.011	NP (normality)
Nickel (mg/L)	MW-09	0.0032	0.0022	0.11	No	10	0.00246	0.000631	60	No	0.011	NP (NDs)
Nickel (mg/L)	MW-01R	0.01981	0.009064	0.11	No	28	0.0194	0.01951	0	ln(x)	0.01	Param.
pH (SU)	MW-03	7.466	6.91	9	No	20	7.188	0.4345	0	No	0.005	Param.
pH (SU)	MW-04	7.681	7.101	9	No	20	7.391	0.4537	0	No	0.005	Param.
pH (SU)	MW-02	7.742	7.095	9	No	20	7.419	0.5058	0	No	0.005	Param.
pH (SU)	MW-05	7.785	7.087	9	No	17	7.436	0.4927	0	No	0.005	Param.
pH (SU)	MW-06	7.767	7.243	9	No	17	7.509	0.3782	0	ln(x)	0.005	Param.
pH (SU)	MW-07 (bg)	7.501	6.873	9	No	17	7.187	0.4429	0	No	0.005	Param.
pH (SU)	MW-08	7.812	7.156	9	No	17	7.484	0.4631	0	No	0.005	Param.
pH (SU)	MW-10	8.044	7.5	9	No	10	7.772	0.2644	0	No	0.005	Param.
pH (SU)	MW-09	7.701	7.065	9	No	10	7.383	0.3094	0	No	0.005	Param.
pH (SU)	MW-01R	8.454	7.861	9	No	28	8.158	0.566	0	No	0.005	Param.
Selenium (mg/L)	MW-03	0.0012	0.0009	0.005	No	21	0.001026	0.0002179	66.67	No	0.01	NP (NDs)
Selenium (mg/L)	MW-04	0.0013	0.00065	0.005	No	21	0.0008943	0.0001214	85.71	No	0.01	NP (NDs)
Selenium (mg/L)	MW-02	0.0027	0.0012	0.005	No	21	0.002543	0.002738	19.05	No	0.01	NP (normality)
Selenium (mg/L)	MW-05	0.0009	0.0009	0.005	No	18	0.0009	0	100	No	0.01	NP (NDs)
Selenium (mg/L)	MW-06	0.0009	0.0009	0.005	No	18	0.0009	0	100	No	0.01	NP (NDs)
Selenium (mg/L)	MW-07 (bg)	0.0009	0.0009	0.005	No	18	0.0009	0	100	No	0.01	NP (NDs)
Selenium (mg/L)	MW-08	0.0009	0.0009	0.005	No	18	0.0009	0	100	No	0.01	NP (NDs)
Selenium (mg/L)	MW-10	0.0009	0.0009	0.005	No	10	0.0009	0	100	No	0.011	NP (NDs)
Selenium (mg/L)	MW-09	0.0009	0.0009	0.005	No	10	0.0009	0	100	No	0.011	NP (NDs)
Selenium (mg/L)	MW-01R	0.0021	0.0013	0.005	No	28	0.001949	0.001097	17.86	No	0.01	NP (Cohens/xfrm)
Silver (mg/L)	MW-03	0.0003	0.0003	0.001	No	10	0.0002726	0.00008665	90	No	0.011	NP (NDs)
Silver (mg/L)	MW-04	0.0003	0.000015	0.001	No	10	0.0002429	0.0001204	80	No	0.011	NP (NDs)
Silver (mg/L)	MW-02	0.0003	0.0003	0.001	No	10	0.0002736	0.00008348	90	No	0.011	NP (NDs)
Silver (mg/L)	MW-05	0.0003	0.0003	0.001	No	10	0.0002716	0.00008981	90	No	0.011	NP (NDs)
Silver (mg/L)	MW-06	0.0003	0.0003	0.001	No	10	0.0002724	0.00008728	90	No	0.011	NP (NDs)
Silver (mg/L)	MW-07 (bg)	0.0003	0.000034	0.001	No	10	0.0002456	0.0001147	80	No	0.011	NP (NDs)

	Grand Hav	ven BLP Cli	ent: Golder A	ssociates	Data	: DT-G	rand Haven B	LP Printed 1	1/3/2022,	1:31 PM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Complian	ceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Silver (mg/L)	MW-08	0.0003	0.0003	0.001	No	10	0.0002728	0.00008601	90	No	0.011	NP (NDs)
Silver (mg/L)	MW-10	0.0003	0.0003	0.001	No	10	0.0003	0	100	No	0.011	NP (NDs)
Silver (mg/L)	MW-09	0.0003	0.0003	0.001	No	10	0.0003	0	100	No	0.011	NP (NDs)
Silver (mg/L)	MW-01R	0.0003	0.0003	0.001	No	28	0.0003	0	100	No	0.01	NP (NDs)
Sulfate (mg/L)	MW-03	972	485.9	370	Yes	22	729	452.8	0	No	0.01	Param.
Sulfate (mg/L)	MW-04	801.8	639.1	370	Yes	22	720.5	151.5	0	No	0.01	Param.
Sulfate (mg/L)	MW-02	1.5	0.41	370	No	22	1.98	3.488	54.55	No	0.01	NP (NDs)
Sulfate (mg/L)	MW-05	1100	100	370	No	18	694.8	446.6	0	No	0.01	NP (normality)
Sulfate (mg/L)	MW-06	50.27	6.247	370	No	18	45.39	50.74	5.556	ln(x)	0.01	Param.
Sulfate (mg/L)	MW-07 (bg)	47.04	25.3	370	No	18	36.17	17.96	0	No	0.01	Param.
Sulfate (mg/L)	MW-08	7.348	1.78	370	No	18	6.977	9.683	5.556	ln(x)	0.01	Param.
Sulfate (mg/L)	MW-10	5.8	0.41	370	No	10	7.538	16.09	30	No	0.011	NP (Cohens/xfrm)
Sulfate (mg/L)	MW-09	131	19.54	370	No	10	75.26	62.45	0	No	0.01	Param.
Sulfate (mg/L)	MW-01R	761.3	528	370	Yes	28	644.6	249.6	0	No	0.01	Param.
Thallium (mg/L)	MW-03	0.0003	0.0003	0.001	No	21	0.0003	0	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-04	0.0003	0.0003	0.001	No	21	0.0003	0	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-02	0.0003	0.0003	0.001	No	21	0.0003	0	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-05	0.0003	0.0003	0.001	No	18	0.0003	0	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-06	0.0003	0.0003	0.001	No	18	0.0002869	0.00005563	88.89	No	0.01	NP (NDs)
Thallium (mg/L)	MW-07 (bg)	0.0003	0.0003	0.001	No	18	0.0003	0	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-08	0.0003	0.0003	0.001	No	18	0.0003	0	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-10	0.0003	0.0003	0.001	No	10	0.0003	0	100	No	0.011	NP (NDs)
Thallium (mg/L)	MW-09	0.0003	0.0003	0.001	No	10	0.000355	0.0001739	90	No	0.011	NP (NDs)
Thallium (mg/L)	MW-01R	0.0028	0.0003	0.001	No	28	0.0003893	0.0004725	96.43	No	0.01	NP (NDs)
Total Dissolved Solids (mg/L)	MW-03	3450	2795	867	Yes	22	3123	610.2	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-04	2400	1900	867	Yes	22	2092	514.9	0	No	0.01	NP (normality)
Total Dissolved Solids (mg/L)	MW-02	2202	1880	867	Yes	22	2041	300.3	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-05	2400	870	867	Yes	18	1760	629.5	0	No	0.01	NP (normality)
Total Dissolved Solids (mg/L)	MW-06	1600	1200	867	Yes	18	1394	201.4	0	No	0.01	NP (normality)
Total Dissolved Solids (mg/L)	MW-07 (bg)	713.3	618.9	867	No	18	666.1	78	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-08	605.9	400.8	867	No	18	503.3	169.5	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-10	1902	1458	867	Yes	10	1680	248.6	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-09	1146	712.3	867	No	10	929	242.9	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-01R	3500	3200	867	Yes	28	3214	470.4	0	No	0.01	NP (normality)
Vanadium (mg/L)	MW-03	0.00188	0.0005939	0.027	No	10	0.001237	0.0007208	10	No	0.01	Param.
Vanadium (mg/L)	MW-04	0.0009392	0.0005128	0.027	No	10	0.000726	0.000239	10	No	0.01	Param.

	Grand Have	en BLP Clie	ent: Golder As	sociates	Data:	DT-Gra	and Haven BL	P Printed 1	/3/2022,	1:31 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliand	eSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Vanadium (mg/L)	MW-02	0.004916	0.00139	0.027	No	10	0.003153	0.001976	10	No	0.01	Param.
Vanadium (mg/L)	MW-05	0.0013	0.0005	0.027	No	10	0.000958	0.0007621	40	No	0.011	NP (normality)
Vanadium (mg/L)	MW-06	0.00076	0.0005	0.027	No	10	0.000554	0.0001553	60	No	0.011	NP (NDs)
Vanadium (mg/L)	MW-07 (bg)	0.0007082	0.0005598	0.027	No	10	0.000634	0.00008316	0	No	0.01	Param.
Vanadium (mg/L)	MW-08	0.0005	0.00049	0.027	No	10	0.000485	0.00004403	80	No	0.011	NP (NDs)
Vanadium (mg/L)	MW-10	0.0019	0.00076	0.027	No	10	0.001383	0.000535	0	No	0.011	NP (normality)
Vanadium (mg/L)	MW-09	0.0021	0.0005	0.027	No	10	0.00087	0.0007889	80	No	0.011	NP (NDs)
Vanadium (mg/L)	MW-01R	0.003589	0.002157	0.027	No	28	0.003179	0.00173	3.571	In(x)	0.01	Param.
Zinc (mg/L)	MW-03	0.018	0.018	0.27	No	10	0.01628	0.005436	90	No	0.011	NP (NDs)
Zinc (mg/L)	MW-04	0.018	0.018	0.27	No	10	0.0165	0.004743	90	No	0.011	NP (NDs)
Zinc (mg/L)	MW-02	0.018	0.018	0.27	No	10	0.01719	0.002561	90	No	0.011	NP (NDs)
Zinc (mg/L)	MW-05	0.018	0.018	0.27	No	10	0.03665	0.06461	80	No	0.011	NP (NDs)
Zinc (mg/L)	MW-06	0.018	0.018	0.27	No	10	0.0173	0.002214	90	No	0.011	NP (NDs)
Zinc (mg/L)	MW-07 (bg)	0.018	0.018	0.27	No	10	0.01673	0.005157	80	No	0.011	NP (NDs)
Zinc (mg/L)	MW-08	0.018	0.018	0.27	No	10	0.01646	0.00487	90	No	0.011	NP (NDs)
Zinc (mg/L)	MW-10	0.018	0.018	0.27	No	10	0.0315	0.0452	80	No	0.011	NP (NDs)
Zinc (mg/L)	MW-09	0.018	0.018	0.27	No	10	0.01684	0.003668	90	No	0.011	NP (NDs)
Zinc (mg/L)	MW-01R	0.067	0.022	0.27	No	28	0.06954	0.07713	28.57	No	0.01	NP (normality)

APPENDIX B

Laboratory Report and Field Forms

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

November 09, 2021

Mr. Paul Cederquist Grand Haven Board of Light and Power-Monthly MWs 1700 Eaton Drive Grand Haven, MI 49417

RE: Trace Project

roject 21J1032

Client Project

Impoundment Sampling

Dear Mr. Cederquist:

Enclosed are your analytical results. The results of this report relate only to the samples listed in the body of this report.

All reports were examined through Trace's validation process to ensure that requirements for quality and completeness were satisfied. All reported analytical results were obtained in accordance with the methods referenced on the reports. Every practical effort was made to meet the reporting limit specifications for this work, however, some results may have raised reporting limits to correct for percent solids.

For clients that require NELAP Accreditation, Trace certifies that these test results meet all requirements of the NELAP Standard, except for those analytes with a "N" notation. These analytes have not been evaluated by NELAP at Trace's discretion and will not be reported unless requested by client.

If you have questions concerning this report, please contact me at 231.773.5998 or by email at jmink@trace-labs.com.

Sincerely,

Jon Mink Senior Project Manager Enclosures

NJDEP Accreditation No. MI008

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

SAMPLE SUMMARY

Trace Project ID:

21J1032

Client Project ID:

Impoundment Sampling

Trace ID	Sample ID	Matrix	Collected By	Date Collected	Date Received
21J1032-01	Unit 1/2 Near MW-5	Ground Water	TRACE-EB/TB	10/26/21 11:25	10/27/21 08:52
21J1032-02	Unit 1/2 Near SG-2	Ground Water	TRACE-EB/TB	10/26/21 15:25	10/27/21 08:52

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

AN EXPLANATION OF TERMS AND SYMBOLS WHICH MAY OCCUR IN THIS REPORT

DEFINITIONS

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

MS Matrix Spike

MSD Matrix Spike Duplicate
RPD Relative Percent Difference

DUP Matrix Duplicate

RDL Reporting Detection Limit
MCL Maximum Contamination Limit
TIC Tentatively Identified Compound

<, ND or U Indicates the compound was analyzed for but not detected

Indicates a result that exceeds its associated MCL or Surrogate control limits
 Indicates that the laboratory is not accredited by NELAP for this compound

NA Indicates that the compound is not available.

NOTE: Samples for volatiles that have been extracted with a water miscible solvent were corrected for the

total volume of the solvent/water mixture.

Solid matrices Method Blanks are at 100% solids as such results are the same wet or dry.

DATA QUALIFIERS

ace ID: 21J1032-01 Analysis: EPA 6020B	
Antimony	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Chromium	Note 206: The MS and MSD recoveries were out of control high. The result for this analyte, in the non-spiked version of the sample, must be considered estimated.
Lead	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Manganese	Note 206: The MS and MSD recoveries were out of control high. The result for this analyte, in the non-spiked version of the sample, must be considered estimated.
Thallium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Vanadium	Note 206: The MS and MSD recoveries were out of control high. The result for this analyte, in the non-spiked version of the sample, must be considered estimated.
ace ID: 21J1032-02 Analysis: EPA 6020B	
Lead	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Thallium	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.

Trace ID: T116174-MSD1

Analysis: EPA 6010D

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Calcium	Note 226: The MS recovery was out of control, resulting in an out of control RPD between the MS and MSD. Because the background concentration of this analyte is greater than four times the spike amount, no data require qualification.
Analysis: EPA 6020B	
Chromium	Note 206: The MS and MSD recoveries were out of control high. The result for this analyte, in the non-spiked version of the sample, must be considered estimated.
Manganese	Note 206: The MS and MSD recoveries were out of control high. The result for this analyte, in the non-spiked version of the sample, must be considered estimated.
Vanadium	Note 206: The MS and MSD recoveries were out of control high. The result for this analyte, in the non-spiked version of the sample, must be considered estimated.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

Trace ID: 21J1032-01 Matrix: Ground Water Date Collected: 10/26/21 11:25

Sample ID: Unit 1/2 Near MW-5		Date	Received: 10/27/	/21 08:52	Fie	ld pH: 7.11			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: EPA 1631E Batch: T116281									
Mercury	1.5 ng/L	0.50	1	11/01/21	ckd	11/02/21	ckd	N	
Analysis Method: EPA 6010D Batch: T116174									
Beryllium	<0.0020 mg/L	0.0020	1	10/28/21	mrh	11/02/21	ckd		
Boron	1.8 mg/L	0.050	1	10/28/21	mrh	11/02/21	ckd		
Calcium	470 mg/L	5.0	10	10/28/21	mrh	11/02/21	ckd		
Iron	0.28 mg/L	0.20	1	10/28/21	mrh	11/02/21	ckd		
Lithium	0.039 mg/L	0.010	1	10/28/21	mrh	11/02/21	ckd	N	
Magnesium	34 mg/L	0.20	1	10/28/21	mrh	11/02/21	ckd		
Potassium	12 mg/L	1.0	1	10/28/21	mrh	11/02/21	ckd		
Sodium	20 mg/L	0.50	1	10/28/21	mrh	11/02/21	ckd	N	
Zinc	<0.020 mg/L	0.020	1	10/28/21	mrh	11/02/21	ckd		
Analysis Method: EPA 6020B Batch: T116174									
Antimony	0.00047 mg/L	0.00030	1	10/28/21	mrh	11/04/21	acs		
Arsenic	0.0021 mg/L	0.0010	1	10/28/21	mrh	11/04/21	acs		
Barium	0.035 mg/L	0.010	1	10/28/21	mrh	11/04/21	acs		
Cadmium	<0.0010 mg/L	0.0010	1	10/28/21	mrh	11/04/21	acs		
Chromium	0.0017 mg/L	0.00090	1	10/28/21	mrh	11/04/21	acs	206	
Cobalt	0.00086 mg/L	0.0016	1	10/28/21	mrh	11/04/21	acs	J	
Copper	<0.0040 mg/L	0.0040	1	10/28/21	mrh	11/04/21	acs		
Lead	<0.0020 mg/L	0.0020	1	10/28/21	mrh	11/04/21	acs		
Manganese	0.072 mg/L	0.025	1	10/28/21	mrh	11/04/21	acs	206	
Molybdenum	0.0064 mg/L	0.00040	1	10/28/21	mrh	11/04/21	acs	N	
Nickel	0.0032 mg/L	0.0050	1	10/28/21	mrh	11/04/21	acs	J	
Selenium	0.0011 mg/L	0.0020	1	10/28/21	mrh	11/04/21	acs	J	
Silver	<0.0010 mg/L	0.0010	1	10/28/21	mrh	11/04/21	acs		
Thallium	<0.0010 mg/L	0.0010	1	10/28/21	mrh	11/04/21	acs		
Vanadium	0.00094 mg/L	0.00080	1	10/28/21	mrh	11/04/21	acs	206	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1032

Vanadium

Client Project ID: Impoundment Sampling

Trace ID: 21J1032-01 Sample ID: Unit 1/2 Near MW-5	Matrix: Ground Water	Date Collected: 10/26/21 11:25 Date Received: 10/27/21 08:52			Field pH: 7.11				
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	ВҮ	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	1300 mg/L	0.82	10	10/28/21		11/02/21	ckd	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T116098									
Beryllium	<0.0010 mg/L	0.0010	1	10/27/21	ckd	10/29/21	ckd		
Boron	1.8 mg/L	0.050	1	10/27/21	ckd	10/29/21	ckd		
Calcium	480 mg/L	5.0	10	10/27/21	ckd	10/29/21	ckd		
Iron	0.098 mg/L	0.10	1	10/27/21	ckd	10/29/21	ckd	J	
Lithium	0.037 mg/L	0.010	1	10/27/21	ckd	10/29/21	ckd	N	
Magnesium	33 mg/L	0.20	1	10/27/21	ckd	10/29/21	ckd		
Potassium	12 mg/L	1.0	1	10/27/21	ckd	10/29/21	ckd		
Sodium	20 mg/L	0.50	1	10/27/21	ckd	10/29/21	ckd	N	
Zinc	0.0030 mg/L	0.020	1	10/27/21	ckd	10/29/21	ckd	J	
Analysis Method: EPA 6020B Batch: T116167									
Antimony	0.00088 mg/L	0.0010	5	11/08/21	ckd	11/08/21	ckd	402.5, J	
Arsenic	0.0016 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Barium	0.040 mg/L	0.0030	5	11/08/21	ckd	11/08/21	ckd		
Cadmium	<0.0010 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Chromium	<0.00080 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		
Cobalt	0.00058 mg/L	0.0016	1	11/08/21	ckd	11/08/21	ckd	J	
Copper	0.00035 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd	J	
Lead	<0.0020 mg/L	0.0020	5	11/08/21	ckd	11/08/21	ckd	402.5	
Manganese	0.066 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Molybdenum	0.0048 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	N	
Nickel	0.0022 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Selenium	0.00086 mg/L	0.00087	1	11/08/21	ckd	11/08/21	ckd	J	
Silver	<0.000040 mg/L	0.000040	1	11/08/21	ckd	11/08/21	ckd		
Thallium	<0.00087 mg/L	0.00087	5	11/08/21	ckd	11/08/21	ckd	402.5	

CERTIFICATE OF ANALYSIS

0.00080

0.00035 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

J

Page 6 of 23

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID:

21J1032

Client Project ID:

Impoundment Sampling

Trace ID: 21J1032-01

Sample ID: Unit 1/2 Near MW-5

Matrix: Ground Water

Date Collected: 10/26/21 11:25

Date Received: 10/27/21 08:52

Field pH: 7.11

PARAMETERS

RESULTS UNITS

DILUTION RDL

PREPARED

10/27/21

10/29/21

10/29/21

BY ANALYZED

ΒY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Fluoride

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116092

Chloride Sulfate as SO4

3.1 mg/L 28 mg/L 1300 mg/L 0.10 0.75 60

5 10/27/21 100 10/29/21

5

1

ans ans

ans

mr

mr

10/28/21 10/28/21

10/29/21

ans

ans

10/29/21

10/29/21

Ν

Ν

mr

Analysis Method: SM 2540 C-11

Analysis Method: SM 2320 B-11 Batch: T116236

Bicarbonate Alkalinity as CaCO3 at pH 4.5

Carbonate Alkalinity as CaCO3 at pH 8.2

Batch: T116175

Total Dissolved Solids Total Dissolved Solids 1200 mg/L 1800 mg/L

93 mg/L

<10 mg/L

20 20

10

10

2 2 10/28/21 11/01/21 gmr 10/28/21 11/02/21 mr

gmr mr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

Trace ID: 21J1032-02 Matrix: Ground Water Date Collected: 10/26/21 15:25

Sample ID: Unit 1/2 Near SG-2	Date Received: 10/27/21 08:52 Field pH: 8.39								
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: EPA 1631E Batch: T116281									
Mercury	3.3 ng/L	0.50	1	11/01/21	ckd	11/02/21	ckd	N	
Analysis Method: EPA 6010D Batch: T116174									
Beryllium	<0.0020 mg/L	0.0020	1	10/28/21	mrh	11/02/21	ckd		
Boron	4.6 mg/L	0.050	1	10/28/21	mrh	11/02/21	ckd		
Calcium	280 mg/L	5.0	10	10/28/21	mrh	11/02/21	ckd		
Iron	0.25 mg/L	0.20	1	10/28/21	mrh	11/02/21	ckd		
Lithium	0.061 mg/L	0.010	1	10/28/21	mrh	11/02/21	ckd	N	
Magnesium	56 mg/L	0.20	1	10/28/21	mrh	11/02/21	ckd		
Potassium	15 mg/L	1.0	1	10/28/21	mrh	11/02/21	ckd		
Sodium	48 mg/L	0.50	1	10/28/21	mrh	11/02/21	ckd	N	
Zinc	<0.020 mg/L	0.020	1	10/28/21	mrh	11/02/21	ckd		
Analysis Method: EPA 6020B Batch: T116174									
Antimony	0.00045 mg/L	0.00030	1	10/28/21	mrh	11/04/21	acs		
Arsenic	0.0024 mg/L	0.0010	1	10/28/21	mrh	11/04/21	acs		
Barium	0.044 mg/L	0.010	1	10/28/21	mrh	11/04/21	acs		
Cadmium	<0.0010 mg/L	0.0010	1	10/28/21	mrh	11/04/21	acs		
Chromium	0.0013 mg/L	0.00090	1	10/28/21	mrh	11/04/21	acs		
Cobalt	<0.0016 mg/L	0.0016	1	10/28/21	mrh	11/04/21	acs		
Copper	0.0021 mg/L	0.0040	1	10/28/21	mrh	11/04/21	acs	J	
Lead	0.00083 mg/L	0.0020	1	10/28/21	mrh	11/04/21	acs	J	
Manganese	0.082 mg/L	0.025	1	10/28/21	mrh	11/04/21	acs		
Molybdenum	0.0048 mg/L	0.00040	1	10/28/21	mrh	11/04/21	acs	N	
Nickel	0.0037 mg/L	0.0050	1	10/28/21	mrh	11/04/21	acs	J	
Selenium	0.00093 mg/L	0.0020	1	10/28/21	mrh	11/04/21	acs	J	
Silver	<0.0010 mg/L	0.0010	1	10/28/21	mrh	11/04/21	acs		
Thallium	<0.0010 mg/L	0.0010	1	10/28/21	mrh	11/04/21	acs		
Vanadium	0.0014 mg/L	0.00080	1	10/28/21	mrh	11/04/21	acs		

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1032

Thallium

Vanadium

Client Project ID: Impoundment Sampling

Trace ID: 21J1032-02 Sample ID: Unit 1/2 Near SG-2	Matrix: Ground Water		Date Collected: 10/26/21 15:25 Date Received: 10/27/21 08:52			Field pH: 8.39			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	940 mg/L	0.82	10	10/28/21		11/02/21	ckd	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T116098									
Beryllium	<0.0010 mg/L	0.0010	1	10/27/21	ckd	10/29/21	ckd		
Boron	4.7 mg/L	0.050	1	10/27/21	ckd	10/29/21	ckd		
Calcium	280 mg/L	5.0	10	10/27/21	ckd	10/29/21	ckd		
Iron	0.056 mg/L	0.10	1	10/27/21	ckd	10/29/21	ckd	J	
Lithium	0.057 mg/L	0.010	1	10/27/21	ckd	10/29/21	ckd	N	
Magnesium	54 mg/L	0.20	1	10/27/21	ckd	10/29/21	ckd		
Potassium	15 mg/L	1.0	1	10/27/21	ckd	10/29/21	ckd		
Sodium	49 mg/L	0.50	1	10/27/21	ckd	10/29/21	ckd	N	
Zinc	0.0013 mg/L	0.020	1	10/27/21	ckd	10/29/21	ckd	J	
Analysis Method: EPA 6020B Batch: T116167									
Antimony	0.0012 mg/L	0.0010	5	11/08/21	ckd	11/08/21	ckd		
Arsenic	0.0018 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Barium	0.061 mg/L	0.0030	5	11/08/21	ckd	11/08/21	ckd		
Cadmium	0.000045 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd	J	
Chromium	<0.00080 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		
Cobalt	0.00023 mg/L	0.0016	1	11/08/21	ckd	11/08/21	ckd	J	
Copper	0.00062 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd	J	
Lead	0.00028 mg/L	0.0020	5	11/08/21	ckd	11/08/21	ckd	402.5, J	
Manganese	0.054 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Molybdenum	0.0042 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	N	
Nickel	0.0017 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Selenium	0.00075 mg/L	0.00087	1	11/08/21	ckd	11/08/21	ckd	J	
Silver	<0.000040 mg/L	0.000040	1	11/08/21	ckd	11/08/21	ckd		

CERTIFICATE OF ANALYSIS

0.00087

0.00080

<0.00087 mg/L

0.00038 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

5

1

11/08/21

11/08/21

ckd

ckd

11/08/21

11/08/21

402.5

J

ckd

ckd

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Date Collected: 10/26/21 15:25

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

Trace ID: 21J1032-02 Matrix: Ground Water

Sample ID: Unit 1/2 Near SG-2 Date Received: 10/27/21 08:52 Field pH: 8.39

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116092

Fluoride 3.1 mg/L 10/27/21 10/28/21 0.10 5 ans ans Chloride 81 mg/L 15 100 10/28/21 10/28/21 ans Sulfate as SO4 770 mg/L 60 100 10/28/21 10/28/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116236

Bicarbonate Alkalinity as CaCO3 at pH 4.5 91 mg/L 10 1 10/29/21 mr 10/29/21 Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <10 mg/L 10 10/29/21 10/29/21 Ν mr mr

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 1500 mg/L 20 2 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

QUALITY CONTROL RESULTS

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116281 Analysis Description: Mercury, Total, Low Level

QC Batch Method: EPA 1631E Analysis Method: EPA 1631E Analysis Method: EPA 1631E

METHOD BLANK: T116281-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/l	<0.20	0.20	

METHOD BLANK: T116281-BLK2

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/L	<0.20	0.20	

METHOD BLANK: T116281-BLK3

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/L	<0.20	0.20	

LABORATORY CONTROL SAMPLE: T116281-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Mercury	ng/L	25.0	23.4	94	77-123	

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116098 Analysis Description: Zinc, Dissolved
QC Batch Method: Analysis Method: EPA 6010D

METHOD BLANK: T116098-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Boron	mg/L	0.0023	0.050	J
Beryllium	mg/L	0.000061	0.0010	J
Calcium	mg/L	<0.50	0.50	
Iron	mg/L	<0.10	0.10	
Potassium	mg/L	0.015	1.0	J
Lithium	mg/L	<0.010	0.010	
Magnesium	mg/L	<0.20	0.20	
Sodium	mg/L	<0.50	0.50	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T116098-BLK1

Parameter	Units	Blank Reporting Result Limit	Notes
Zinc	mg/L	<0.020 0.020	

LABORATORY CONTROL SAMPLE: T116098-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	1.00	0.966	97	80-120	
Beryllium	mg/L	0.0500	0.0510	102	80-120	
Calcium	mg/L	10.0	10.3	103	80-120	
Iron	mg/L	10.0	10.4	104	80-120	
Potassium	mg/L	10.0	10.4	104	80-120	
Lithium	mg/L	0.500	0.522	104	80-120	
Magnesium	mg/L	10.0	10.5	105	80-120	
Sodium	mg/L	10.0	10.6	106	80-120	
Zinc	mg/L	1.00	1.04	104	80-120	

Original: 21J1032-01 MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116098-MSD1

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Boron	mg/L	1.83	1.00	2.78	2.79	95	96	75-125	8.0	20	
Beryllium	mg/L	0	0.0500	0.0476	0.0479	95	96	75-125	0.6	20	
Iron	mg/L	0.0978	10.0	9.84	10.0	97	99	75-125	2	20	
Potassium	mg/L	11.6	10.0	21.8	21.9	102	104	75-125	2	20	
Lithium	mg/L	0.0370	0.500	0.568	0.573	106	107	75-125	0.9	20	
Magnesium	mg/L	33.4	10.0	42.3	42.3	90	90	75-125	0.2	20	
Sodium	mg/L	20.3	10.0	30.8	31.0	105	107	75-125	2	20	
Zinc	mg/L	0.00301	1.00	0.991	1.02	99	102	75-125	3	20	

Original: 21J1032-01 MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116098-MSD2

		Original	Spike	MS	MSD	MS	MSD	% Rec	222	Max	Mistori
Parameter	Units	Result	Conc.	Result	Result	% Rec	% Rec	Limit	RPD	RPD	Notes
Calcium	ma/l	478	100	576	562	98	84	75-125	16	20	

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116174

Analysis Description: Potassium, Total

QC Batch Method: EPA 3015 Microwave Assisted Digestions

Analysis Method: EPA 6010D

for Liquids

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T116174-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Boron	mg/L	<0.050	0.050	
Beryllium	mg/L	<0.0020	0.0020	
Calcium	mg/L	<0.50	0.50	
Iron	mg/L	<0.20	0.20	
Potassium	mg/L	0.060	1.0	J
Lithium	mg/L	<0.010	0.010	
Magnesium	mg/L	<0.20	0.20	
Sodium	mg/L	<0.50	0.50	
Zinc	mg/L	<0.020	0.020	

LABORATORY CONTROL SAMPLE: T116174-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	0.889	0.830	93	80-120	
Beryllium	mg/L	0.111	0.109	98	80-120	
Calcium	mg/L	8.89	8.74	98	80-120	
Iron	mg/L	8.89	9.02	101	80-120	
Potassium	mg/L	8.89	9.03	102	80-120	
Lithium	mg/L	0.889	0.880	99	80-120	
Magnesium	mg/L	8.89	9.09	102	80-120	
Sodium	mg/L	8.89	9.07	102	80-120	
Zinc	mg/L	0.889	0.894	101	80-120	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116174-MSD1 Original: 21J1032-01

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Boron	mg/L	1.81	0.889	2.72	2.61	102	90	75-125	13	20	
Beryllium	mg/L	0	0.111	0.113	0.110	101	99	75-125	2	20	
Calcium	mg/L	468	8.89	498	475	342	80	75-125	124	20	226
Iron	mg/L	0.275	8.89	9.42	9.20	103	100	75-125	2	20	
Potassium	mg/L	11.6	8.89	21.7	21.1	113	107	75-125	6	20	
Lithium	mg/L	0.0394	0.889	0.997	0.969	108	105	75-125	3	20	
Magnesium	mg/L	33.6	8.89	42.5	41.6	99	89	75-125	11	20	
Sodium	mg/L	20.0	8.89	30.3	29.6	116	108	75-125	8	20	
Zinc	mg/L	0	0.889	0.909	0.876	102	99	75-125	4	20	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Page 14 of 23

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116167 Analysis Description: Vanadium, Dissolved

QC Batch Method: Analysis Method: EPA 6020B

METHOD BLANK: T116167-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Silver	mg/L	0.000026	0.000040	J
Arsenic	mg/L	<0.0010	0.0010	
Barium	mg/L	<0.00060	0.00060	
Cadmium	mg/L	<0.00020	0.00020	
Cobalt	mg/L	<0.0016	0.0016	
Chromium	mg/L	<0.00080	0.00080	
Copper	mg/L	<0.00080	0.00080	
Manganese	mg/L	<0.00040	0.00040	
Molybdenum	mg/L	<0.00040	0.00040	
Nickel	mg/L	<0.00040	0.00040	
Lead	mg/L	<0.00040	0.00040	
Antimony	mg/L	0.00017	0.00020	J
Selenium	mg/L	<0.00087	0.00087	
Thallium	mg/L	<0.00017	0.00017	
Vanadium	mg/L	<0.00080	0.00080	

LABORATORY CONTROL SAMPLE: T116167-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Silver	mg/L	0.0600	0.0612	102	80-120	
Arsenic	mg/L	0.0600	0.0630	105	80-120	
Barium	mg/L	0.0600	0.0588	98	80-120	
Cadmium	mg/L	0.0600	0.0613	102	80-120	
Cobalt	mg/L	0.0600	0.0604	101	80-120	
Chromium	mg/L	0.0600	0.0629	105	80-120	
Copper	mg/L	0.0600	0.0610	102	80-120	
Manganese	mg/L	0.0600	0.0615	102	80-120	
Molybdenum	mg/L	0.0600	0.0588	98	80-120	
Nickel	mg/L	0.0600	0.0602	100	80-120	
Lead	mg/L	0.0600	0.0616	103	80-120	
Antimony	mg/L	0.0600	0.0577	96	80-120	
Selenium	mg/L	0.0600	0.0630	105	80-120	
Thallium	mg/L	0.0600	0.0617	103	80-120	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T116167-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Vanadium	mg/L	0.0600	0.0581	97	80-120	_

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116167-MSD1

	Origin	ıal:	21.	J103	2-02
--	--------	------	-----	------	------

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Silver	mg/L	0	0.0500	0.0435	0.0420	87	84	75-125	4	20	
Arsenic	mg/L	0.00177	0.0500	0.0600	0.0573	116	111	75-125	5	20	
Cadmium	mg/L	0.0000452	0.0500	0.0492	0.0482	98	96	75-125	2	20	
Cobalt	mg/L	0.000233	0.0500	0.0459	0.0450	91	89	75-125	2	20	
Chromium	mg/L	0	0.0500	0.0493	0.0481	99	96	75-125	3	20	
Copper	mg/L	0.000624	0.0500	0.0419	0.0408	83	80	75-125	3	20	
Manganese	mg/L	0.0537	0.0500	0.105	0.102	102	97	75-125	5	20	
Molybdenum	mg/L	0.00421	0.0500	0.0585	0.0556	109	103	75-125	6	20	
Nickel	mg/L	0.00170	0.0500	0.0455	0.0445	88	86	75-125	2	20	
Selenium	mg/L	0.000753	0.0500	0.0555	0.0537	109	106	75-125	3	20	
Vanadium	mg/L	0.000380	0.0500	0.0516	0.0499	103	99	75-125	4	20	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116167-MSD2

Original:	21J1	032-02
-----------	------	--------

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Barium	mg/L	0.0610	0.250	0.308	0.306	99	98	75-125	1	20	
Lead	mg/L	0.000275	0.250	0.258	0.257	103	103	75-125	0.3	20	
Antimony	mg/L	0.00115	0.250	0.260	0.259	104	103	75-125	0.7	20	
Thallium	mg/L	0	0.250	0.265	0.262	106	105	75-125	1	20	

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116174

Analysis Description: Selenium, Total

QC Batch Method: EPA 3015 Microwave Assisted Digestions

Analysis Method: EPA 6020B

for Liquids

METHOD BLANK: T116174-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Silver	mg/L	<0.0010	0.0010	
Arsenic	mg/L	<0.0010	0.0010	
Barium	mg/L	<0.010	0.010	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T116174-BLK1

Parameter	Units	Blank Result	Reporting Limit	N
Cadmium	mg/L	<0.0010	0.0010	
Cobalt	mg/L	<0.0016	0.0016	
Chromium	mg/L	<0.00090	0.00090	
Copper	mg/L	<0.0040	0.0040	
Manganese	mg/L	<0.025	0.025	
Molybdenum	mg/L	0.00027	0.00040	
Nickel	mg/L	<0.0050	0.0050	
Lead	mg/L	<0.0020	0.0020	
Antimony	mg/L	<0.00030	0.00030	
Selenium	mg/L	<0.0020	0.0020	
Thallium	mg/L	<0.0010	0.0010	
Vanadium	mg/L	<0.00080	0.00080	

LABORATORY CONTROL SAMPLE: T116174-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Silver	mg/L	0.0278	0.0333	120	80-120	
Arsenic	mg/L	0.0556	0.0599	108	80-120	
Barium	mg/L	0.889	0.950	107	80-120	
Cadmium	mg/L	0.0278	0.0297	107	80-120	
Cobalt	mg/L	0.889	0.892	100	80-120	
Chromium	mg/L	0.0278	0.0288	104	80-120	
Copper	mg/L	0.890	0.863	97	80-120	
Manganese	mg/L	0.887	0.878	99	80-120	
Molybdenum	mg/L	0.889	0.942	106	80-120	
Nickel	mg/L	0.889	0.840	95	80-120	
Lead	mg/L	0.0556	0.0533	96	80-120	
Antimony	mg/L	0.0556	0.0608	109	80-120	
Selenium	mg/L	0.0556	0.0560	101	80-120	
Thallium	mg/L	0.0556	0.0542	98	80-120	
Vanadium	mg/L	0.889	0.915	103	80-120	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116174-MSD1 Original: 21J1032-01

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Silver	mg/L	0	0.0278	0.0308	0.0292	111	105	75-125	5	20	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116174-MSD1

Original:	21.	J10	32-01
-----------	-----	-----	-------

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Arsenic	mg/L	0.00212	0.0556	0.0711	0.0670	124	117	75-125	6	20	
Barium	mg/L	0.0351	0.889	1.06	0.994	115	108	75-125	7	20	
Cadmium	mg/L	0	0.0278	0.0298	0.0280	107	101	75-125	6	20	
Cobalt	mg/L	0.000863	0.889	1.05	0.997	118	112	75-125	5	20	
Chromium	mg/L	0.00175	0.0278	0.0404	0.0382	139	131	75-125	6	20	206
Copper	mg/L	0	0.890	0.944	0.887	106	100	75-125	6	20	
Manganese	mg/L	0.0718	0.887	1.30	1.22	139	130	75-125	7	20	206
Molybdenum	mg/L	0.00638	0.889	1.03	0.980	115	110	75-125	5	20	
Nickel	mg/L	0.00323	0.889	0.959	0.909	108	102	75-125	5	20	
Lead	mg/L	0	0.0556	0.0499	0.0476	90	86	75-125	5	20	
Antimony	mg/L	0.000470	0.0556	0.0643	0.0600	115	107	75-125	7	20	
Selenium	mg/L	0.00107	0.0556	0.0649	0.0605	115	107	75-125	7	20	
Thallium	mg/L	0	0.0556	0.0519	0.0491	93	88	75-125	6	20	
Vanadium	mg/L	0.000945	0.889	1.35	1.28	152	144	75-125	6	20	206

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: [CALC] Analysis Description: Hardness (Metals)
QC Batch Method: Analysis Method: SM 2340 B-11

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116092 Analysis Description: Fluoride
QC Batch Method: IC Prep W Analysis Method: EPA 300.0 Rev. 2.1

METHOD BLANK: T116092-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Chloride	mg/L	<0.15	0.15	
Fluoride	mg/L	<0.020	0.020	

LABORATORY CONTROL SAMPLE: T116092-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Chloride	mg/L	5.00	5.00	100	90-110	
Fluoride	mg/L	1.00	0.992	99	90-110	

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

QC Batch: T116163

QC Batch Method: IC Prep W

Analysis Description: Sulfate

Analysis Method: EPA 300.0 Rev. 2.1

METHOD BLANK: T116163-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Chloride	mg/L	<0.15	0.15	
Sulfate as SO4	mg/L	<0.60	0.60	

LABORATORY CONTROL SAMPLE: T116163-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Chloride	mg/L	5.00	5.11	102	90-110	
Sulfate as SO4	mg/L	5.00	4.88	98	90-110	

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116228 Analysis Description: Sulfate

QC Batch Method: IC Prep W Analysis Method: EPA 300.0 Rev. 2.1

METHOD BLANK: T116228-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Sulfate as SO4	mg/L	<0.60	0.60	

LABORATORY CONTROL SAMPLE: T116228-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Sulfate as SO4	mg/L	5.00	4.89	98	90-110	

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116236 Analysis Description: Alkalinity, Bicarbonate

QC Batch Method: SM 2320 B-11 Analysis Method: SM 2320 B-11

LABORATORY CONTROL SAMPLE: T116236-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Bicarbonate Alkalinity as CaCO3 at pH 4.5	mg/L	100	100	100	88-112	
Carbonate Alkalinity as CaCO3 at pH 8.2	mg/L	100	100	100	88-112	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

SAMPLE DUPLICATE: T116236-DUP1	Ori
--------------------------------	-----

Original: 21J1032-01

Parameter	Units	Original Result	DUP Result	RPD	Max RPD	Notes
Bicarbonate Alkalinity as CaCO3 at pH 4.5	mg/L	93.1	91.8	1	200	

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116175
QC Batch Method: SM 2540 C-11

Analysis Description: Total Dissolved Solids Analysis Method: SM 2540 C-11

METHOD BLANK: T116175-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Total Dissolved Solids	ma/l	1.0	10	J

LABORATORY CONTROL SAMPLE: T116175-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Total Dissolved Solids	mg/L	500	543	109	80-120	

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116265
QC Batch Method: SM 2540 C-11

Analysis Description: Total Dissolved Solids Analysis Method: SM 2540 C-11

METHOD BLANK: T116265-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Total Dissolved Solids	mg/L	9.0	10	J

LABORATORY CONTROL SAMPLE: T116265-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Total Dissolved Solids	mg/L	500	527	105	80-120	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Plea 3)	ise Si	n Released By								10.00	2 11.00 11.00	_	Trace Date Time No. Collected Collected	Project Name: Impound		*Results provided end of busing	3 Day*	Turnaround Requirements: X Standard, 5-10 Days	Email Address:	Office Phone:	City, State, Zip Code:	Mailing Address:	Report To: Paul Cederquist	Company Name: Grand Have	Report Results To:	A RAINTOAL L		
In executing this	1 Bala	By / Repeived By								Office 1/2 Near SG-2	CHAIN IN THE CO.	I hit 1/2 Noo	Client Sample ID	Impoundment Sampling	and any or prive approval.	*Results provided end of business day requires prior approval		nts:		Cell Phone:				Company Name: Grand Haven Board of Light & Power		ABORATORIES, INC.		1 1
Chain of Custody, the client	dedoi	1 By Date								1 00-2	- AAIM	· MAN E	e D	Sampled By:		SL = Sludge A = Air	į	Matrix Key: S = Soil / Solid WI = V	Billing Email Address:	Phone Number:	City, State, Zip Code:	Billing Add	Contact Name:	PO#.	Bill To:	Muskegon,	Trace Anal	우
acknowledges the terms as se	1 8:262	Time									× ×	7	Metals Field Filtered (Y / N) Matrix Number of Containers Cool HCI HNO ₃ H ₂ SO ₄ NaOH	By: FB	0	A = Air D = Drinking Water	LW = Liquid Waste	WI = Wipes	ail Address:	nber:	Zip Code:	Billing Address (if different):	ame:			224 i black Creek Road Muskegon, MI 49444-2673	Trace Analytical Laboratories, Inc.	CHAIN-OF-CUSTODY RECORD
in executing this Chain of Custody, the client acknowledges the terms as set forth at www.trace-labs.com/terms-of-accement		Released By									×		NaOH S Other T-B,Ca,Fe,S T-Co,Cu, P T-TI, V,Zn, Diss.Metals	b, Li,M Mn,Mg	10,N 3,K,N	i Se, la	Ag				4 300 88				9	Fax 888.979.4469 www.trace-labs.com	Phone 231.773.5998	RECORD
terms-of-personnent		Received By									× × ×		Fluoride,Sul pH LLHg Radiums 22 Bicarb-Alk, (6/228			rides	Analysis Requested		Sampling Time:	меон	Soil Volatile	Checked By:	Logged By:	Trace Use:	1469 / 1s.com	3.5998	
		Data								\$.39	pH= 1.11	1	Remarks					ested		ime:	H Low Level L	Pres	¥ DH	5/2	se:	211032	Trace ID No.	Page 1 of
		; -	+	+	+	+	+	+	+	+	=	+	ossible Healti	n Haza	rds?			$\left\{ \right\}$			Lab .	ë.						

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

21J103	32
Grand Haven E	Board of Light
Project Manager: I	

Sample Log In Checklist

Date: 10-27-2	Ę	ature			4°C)		
Time: 9: 20	Observation	Temperat	ပ္	1°C)	:-0.4		
Logged by: DH	Obse	od Ter	+0.1°C)	CF: 50	743 (CI	Blank	Sample
Package Description:	la la	T T	Ę.	9	2	p Bl	t S
Cooler	Original	Corrected	IR-9	IR-10	20B1	Temp	Client
Package Temp °C	-1.7	-1.6		/			
Representative Sample Temp °C	1.8	1.9		1			1

Sample Receipt		· · · · · · · · · · · · · · · · · · ·
Yes No Received on Ice or other coolant ☐ Ice still present upon receipt ☐ ☐ Custody seals present Yes ☐ Trace Courier ☐ Client Drop-off ☐ UPS	□ No Custody seals intact (if ap	
Sample Condition		
Yes No N/A. All sample containers arrived unbroken a Sufficient sample to run requested analy Correct chemical preservative added to some samples preserved at Trace	ses	
Chemical preservation verified, check EN	/ID pH test strip used (if applicable ☐ pH 11.0-13.0 (Lot: HC	e) 022540)
Chain of Custody (COC)	e	
Yes No All bottle labels agree with COC COC filled out properly COC signed by client	3	
Notes:		
		h 2
Form 70-A.40 Effective 10/2/21	* ************************************	TRACE Analytical Laboratories, In

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

Stabilization Criteria:
Temperature: 3%
Spec. Conductivity: 3%
Dissolved Oxygen: 10%
ORP: +/- 10 mV
Turbidity: 10% or <1
pH: +/- 0.1

Pump Used: Peristaltic

오

ニゲ

Notes:

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ORP (mV) Oxygen Depth to Specific Water Turbidity(NTU) Conductivity (Celsius) **Reading Time** Client: GHBLP Dissolved Temperature Impoundment ID: Unit by MWS Depth to Point Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form Purge Start Time: 16:55 (= 11.00 (-1 0 0 1.00 0 ſ 0 Date: 10-26-21 00 1 Purge Rate: Bowl Sample Tubing Depth: 2017 Field Personnel:

Spec. Conductivity: 3%
Dissolved Oxygen: 10%
ORP: +/- 10 mV
Turbidity: 10% or <1
pH: +/- 0.1

Pump Used: Peristaltic

모

200

8.39

8.39

Stabilization Criteria:

Notes:

Temperature: 3%

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Water Oxygen Specific Turbidity(NTU) ORP (mV) (Celsius) Depth to Dissolved Conductivity Reading Time Client: GHBLP Temperature Impoundment ID: Wir 1/2 by SG2 Purge Start Time: 14:55 Ś 8 63 . | | | 1 . W 2 160 163 W Ń 1 120 00 D 9.87 S į Depth to Point: 8 Date: 10-26-21 5 '.' G Purge Rate: 300ml/min Sample Tubing Depth: 20 台ナ Field Personnel:

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

November 09, 2021

Mr. Paul Cederquist Grand Haven Board of Light and Power-Monthly MWs 1700 Eaton Drive Grand Haven, MI 49417

RE: Trace Project

21J1034

Client Project

MW Sampling

Dear Mr. Cederquist:

Enclosed are your analytical results. The results of this report relate only to the samples listed in the body of this report.

All reports were examined through Trace's validation process to ensure that requirements for quality and completeness were satisfied. All reported analytical results were obtained in accordance with the methods referenced on the reports. Every practical effort was made to meet the reporting limit specifications for this work, however, some results may have raised reporting limits to correct for percent solids.

For clients that require NELAP Accreditation, Trace certifies that these test results meet all requirements of the NELAP Standard, except for those analytes with a "N" notation. These analytes have not been evaluated by NELAP at Trace's discretion and will not be reported unless requested by client.

If you have questions concerning this report, please contact me at 231.773.5998 or by email at jmink@trace-labs.com.

Sincerely,

Jon Mink Senior Project Manager Enclosures

> TNI HABORATORY

NJDEP Accreditation No. MI008

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

SAMPLE SUMMARY

Trace Project ID: 21J1034 Client Project ID: MW Sampling

Trace ID	Sample ID	Matrix	Collected By	Date Collected	Date Received
21J1034-01	MW-1R	Ground Water	TRACE-EB/TB	10/26/21 11:45	10/27/21 09:16
21J1034-02	MW-2	Ground Water	TRACE-EB/TB	10/26/21 13:55	10/27/21 09:16
21J1034-03	MW-3	Ground Water	TRACE-EB/TB	10/26/21 12:35	10/27/21 09:16
21J1034-04	MW-4	Ground Water	TRACE-EB/TB	10/26/21 12:00	10/27/21 09:16
21J1034-05	MW-5	Ground Water	TRACE-EB/TB	10/26/21 10:35	10/27/21 09:16
21J1034-06	MW-6	Ground Water	TRACE-EB/TB	10/26/21 11:00	10/27/21 09:16
21J1034-07	MW-7	Ground Water	TRACE-EB/TB	10/26/21 10:20	10/27/21 09:16
21J1034-08	MW-8	Ground Water	TRACE-EB/TB	10/26/21 15:35	10/27/21 09:16
21J1034-09	MW-9	Ground Water	TRACE-EB/TB	10/26/21 14:30	10/27/21 09:16
21J1034-10	MW-10	Ground Water	TRACE-EB/TB	10/26/21 15:05	10/27/21 09:16

AN EXPLANATION OF TERMS AND SYMBOLS WHICH MAY OCCUR IN THIS REPORT

DEFINITIONS

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

MS Matrix Spike

MSD Matrix Spike Duplicate
RPD Relative Percent Difference

DUP Matrix Duplicate

RDL Reporting Detection Limit
MCL Maximum Contamination Limit
TIC Tentatively Identified Compound

<, ND or U Indicates the compound was analyzed for but not detected

Indicates a result that exceeds its associated MCL or Surrogate control limits
 Indicates that the laboratory is not accredited by NELAP for this compound

NA Indicates that the compound is not available.

NOTE: Samples for volatiles that have been extracted with a water miscible solvent were corrected for the

total volume of the solvent/water mixture.

Solid matrices Method Blanks are at 100% solids as such results are the same wet or dry.

DATA QUALIFIERS

race ID: 21J1034-01 Analysis: EPA 6020B						
Antimony	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards. Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.					
Cadmium						
Lead	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.					
Silver	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.					
Thallium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.					
race ID: 21J1034-02 Analysis: EPA 6020B						
Antimony	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.					
Lead	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.					
Thallium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.					

Trace ID: 21J1034-03 *Analysis: EPA 6020B*

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Antimony	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards. Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards. Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.					
Lead						
Thallium						
Trace ID: 21J1034-04 <i>Analysis: EPA</i> 6020B						
Antimony	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.					
Lead	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.					
Thallium	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.					
Trace ID: 21J1034-10 <i>Analysis: EPA 6020B</i>						
Antimony	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.					
Lead	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.					
Thallium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.					
Trace ID: T116175-DUP2 Analysis: SM 2540 C-11						
Total Dissolved Solids	Note 623: The relative percent difference between the sample and sample duplicate is out of control. The sample result should be considered estimated.					

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-01 Matrix: Ground Water Date Collected: 10/26/21 11:45 Sample ID: MW-1R Date Received: 10/27/21 09:16 Field pH: 7.80 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury 1.9 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116174 0.0020 Beryllium <0.0020 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 140 mg/L 0.50 10 10/28/21 mrh 11/02/21 ckd Calcium 220 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd 0.20 10/28/21 mrh 11/02/21 Iron 1.7 mg/L 1 ckd 11/02/21 Lithium 2.8 mg/L 0.010 1 10/28/21 mrh ckd Ν Magnesium 120 mg/L 2.0 10 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 92 mg/L 1 1.0 mrh ckd Sodium 480 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 0.00044 mg/L 0.00030 1 10/28/21 11/04/21 Antimony mrh acs Arsenic 0.0046 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs 0.20 mg/L 0.010 10/28/21 11/04/21 Barium 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Chromium 0.0022 mg/L 0.00090 1 10/28/21 mrh 11/04/21 acs Cobalt 0.0022 mg/L 0.0016 1 10/28/21 mrh 11/04/21 acs <0.0040 mg/L 0.0040 1 10/28/21 11/04/21 Copper mrh acs Lead 0.0024 mg/L 0.0020 1 10/28/21 mrh 11/04/21 acs 10/28/21 11/04/21 0.40 mg/L 0.025 1 mrh Manganese acs Molybdenum 0.0016 mg/L 0.00040 1 10/28/21 11/04/21 N mrh acs 11/04/21 Nickel 0.0039 mg/L 0.0050 1 10/28/21 mrh acs J 0.00097 mg/L 10/28/21 11/04/21 Selenium 0.0020 mrh 1 acs <0.0010 mg/L 0.0010 11/04/21 Silver 1 10/28/21 mrh acs Thallium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

0.0017 mg/L

10/28/21

11/04/21

acs

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Page 6 of 54

ANALYTICAL RESULTS

Trace Project ID:	21J1034
Client Project ID:	MW Sampling

Trace ID: 21J1034-01	Matrix: Ground Water	Date Collected: 10/26/21 11:45							
Sample ID: MW-1R		Date	Date Received: 10/27/21 09:16						
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	МС
METALS, TOTAL									
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	1000 mg/L	8.2	10	10/28/21		11/02/21	ckd	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T116098									
Beryllium	<0.0010 mg/L	0.0010	1	10/27/21	ckd	10/29/21	ckd		
Boron	130 mg/L	2.5	50	10/27/21	ckd	10/29/21	ckd		
Calcium	250 mg/L	5.0	10	10/27/21	ckd	10/29/21	ckd		
Iron	1.5 mg/L	0.10	1	10/27/21	ckd	10/29/21	ckd		
Lithium	2.6 mg/L	0.010	1	10/27/21	ckd	10/29/21	ckd	N	
Magnesium	120 mg/L	2.0	10	10/27/21	ckd	10/29/21	ckd		
Potassium	85 mg/L	1.0	1	10/27/21	ckd	10/29/21	ckd		
Sodium	470 mg/L	5.0	10	10/27/21	ckd	10/29/21	ckd	N	
Zinc	0.0013 mg/L	0.020	1	10/27/21	ckd	10/29/21	ckd	J	
Analysis Method: EPA 6020B Batch: T116167									
Antimony	0.00050 mg/L	0.0010	5	11/08/21	ckd	11/08/21	ckd	402.5, J	
Arsenic	0.0040 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Barium	0.21 mg/L	0.0030	5	11/08/21	ckd	11/08/21	ckd		
Cadmium	<0.0010 mg/L	0.0010	5	11/08/21	ckd	11/08/21	ckd	402.5	
Chromium	0.00099 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		
Cobalt	0.00073 mg/L	0.0016	1	11/08/21	ckd	11/08/21	ckd	J	
Copper	<0.00080 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		
Lead	<0.0020 mg/L	0.0020	5	11/08/21	ckd	11/08/21	ckd	402.5	
Manganese	0.29 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Molybdenum	0.0011 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	N	
Nickel	0.0019 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Selenium	0.00066 mg/L	0.00087	1	11/08/21	ckd	11/08/21	ckd	J	
Silver	<0.00020 mg/L	0.00020	5	11/08/21	ckd	11/08/21	ckd	402.5	
Thallium	<0.00087 mg/L	0.00087	5	11/08/21	ckd	11/08/21	ckd	402.5	
Vanadium	0.00092 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-01 Matrix: Group

Matrix: Ground Water Date Collected: 10/26/21 11:45

Sample ID: MW-1R Date Received: 10/27/21 09:16 Field pH: 7.80

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

Fluoride 13 mg/L 100 10/27/21 10/27/21 2.0 ans ans Chloride 230 mg/L 15 100 10/27/21 10/27/21 ans Sulfate as SO4 530 mg/L 60 100 10/27/21 10/27/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116236

Bicarbonate Alkalinity as CaCO3 at pH 4.5 1200 mg/L 10 1 10/29/21 mr 10/29/21 Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <10 mg/L 10 10/29/21 10/29/21 Ν mr mr

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 3600 mg/L 20 2 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-02 Matrix: Ground Water Date Collected: 10/26/21 13:55 Sample ID: MW-2 Date Received: 10/27/21 09:16 Field pH: 6.48 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury 2.8 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116174 0.0020 Beryllium <0.0020 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 100 mg/L 0.50 10 10/28/21 mrh 11/02/21 ckd Calcium 190 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd 0.20 10/28/21 mrh 11/02/21 Iron 22 mg/L 1 ckd 11/02/21 Lithium 1.2 mg/L 0.010 1 10/28/21 mrh ckd Ν Magnesium 62 mg/L 0.20 1 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 50 mg/L 1.0 1 mrh ckd Sodium 300 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony <0.00030 mg/L 0.00030 1 10/28/21 11/04/21 mrh acs Arsenic 0.012 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs 0.50 mg/L 0.010 10/28/21 11/04/21 Barium 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Chromium 0.040 mg/L 0.00090 1 10/28/21 mrh 11/04/21 acs Cobalt 0.0055 mg/L 0.0016 1 10/28/21 mrh 11/04/21 acs 0.0022 mg/L 1 10/28/21 11/04/21 Copper 0.0040 mrh acs J Lead 0.0018 mg/L 0.0020 1 10/28/21 mrh 11/04/21 J acs 10/28/21 11/04/21 0.80 mg/L 0.025 1 mrh Manganese acs Molybdenum 0.0045 mg/L 0.00040 1 10/28/21 11/04/21 mrh acs Ν 11/04/21 Nickel 0.017 mg/L 0.0050 1 10/28/21 mrh acs 10/28/21 11/04/21 Selenium 0.0017 mg/L 0.0020 mrh 1 acs <0.0010 mg/L 11/04/21 Silver 0.0010 1 10/28/21 mrh acs Thallium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

0.0039 mg/L

10/28/21

11/04/21

acs

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-02 Matrix: Ground Water Date Collected: 10/26/21 13:55 Sample ID: MW-2 Date Received: 10/27/21 09:16 Field pH: 6.48 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 740 mg/L 0.82 10 10/28/21 11/02/21 Ν ckd METALS, DISSOLVED Analysis Method: EPA 6010D Batch: T116098 Beryllium <0.0010 mg/L 0.0010 10/27/21 ckd 10/29/21 ckd 98 mg/L 10 10/29/21 Boron 0.50 10/27/21 ckd ckd Calcium 200 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd Iron 22 mg/L 1.0 10 10/27/21 ckd 10/29/21 ckd Lithium 0.010 10/27/21 10/29/21 1.1 mg/L 1 ckd ckd Ν 10/29/21 Magnesium 65 mg/L 2.0 10 10/27/21 ckd ckd Potassium 48 mg/L 10 10 10/27/21 ckd 10/29/21 ckd Sodium 310 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd N Zinc 0.0030 mg/L 0.020 1 10/27/21 10/29/21 J ckd ckd Analysis Method: EPA 6020B Batch: T116167 <0.0010 mg/L 0.0010 5 11/08/21 11/08/21 402.5 Antimony ckd ckd Arsenic 0.012 mg/L 0.0010 1 11/08/21 ckd 11/08/21 ckd **Barium** 0.48 mg/L 0.0030 5 11/08/21 ckd 11/08/21 ckd Cadmium 0.000054 mg/L 0.0010 1 11/08/21 ckd 11/08/21 ckd J 0.028 mg/L 0.00080 1 11/08/21 11/08/21 Chromium ckd ckd 0.0047 mg/L Cobalt 0.0016 1 11/08/21 ckd 11/08/21 ckd 0.00072 mg/L 0.00080 11/08/21 ckd 11/08/21 J Copper ckd 0.0020 5 11/08/21 11/08/21 402.5, J Lead 0.0012 mg/L ckd ckd 0.80 mg/L 0.00040 11/08/21 11/08/21 Manganese 1 ckd ckd Molybdenum 0.0038 mg/L 0.00040 11/08/21 11/08/21 Ν ckd ckd 0.015 mg/L 0.00040 1 11/08/21 11/08/21 Nickel ckd ckd Selenium 0.0013 mg/L 0.00087 1 11/08/21 ckd 11/08/21 ckd Silver 0.000027 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd J <0.00087 mg/L 5 402.5 Thallium 0.00087 11/08/21 ckd 11/08/21 ckd

CERTIFICATE OF ANALYSIS

0.00080

0.0029 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

MCL

ANALYTICAL RESULTS

Date Collected: 10/26/21 13:55

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-02 Matrix: Ground Water

Sample ID: MW-2 Date Received: 10/27/21 09:16 Field pH: 6.48

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

Fluoride 9.4 mg/L 0.50 25 10/27/21 ans 10/27/21 ans Chloride 140 mg/L 3.8 25 10/27/21 10/27/21 ans Sulfate as SO4 3.0 10/27/21 10/27/21 <3.0 mg/L 5 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 2100 mg/L 50 10 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <50 mg/L 50 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 2000 mg/L 40 4 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034 Client Project ID: MW Sampling

Trace ID: 21J1034-03 Matrix: Ground Water Date Collected: 10/26/21 12:35 Sample ID: MW-3 Date Received: 10/27/21 09:16 Field pH: 6.91 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury 0.79 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116174 0.0020 Beryllium <0.0020 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 4.4 mg/L 0.050 1 10/28/21 mrh 11/02/21 ckd Calcium 490 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd 0.20 10/28/21 mrh 11/02/21 Iron 4.5 mg/L 1 ckd 11/02/21 Lithium 0.053 mg/L 0.010 1 10/28/21 mrh ckd Ν Magnesium 200 mg/L 0.20 1 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 21 mg/L 1.0 1 mrh ckd Sodium 140 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony 0.00030 <0.00030 mg/L 1 10/28/21 11/04/21 mrh acs Arsenic 0.0012 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs 0.47 mg/L 0.010 10/28/21 11/04/21 Barium 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Chromium 0.0041 mg/L 0.00090 1 10/28/21 mrh 11/04/21 acs Cobalt 0.0014 mg/L 0.0016 1 10/28/21 mrh 11/04/21 acs J <0.0040 mg/L 0.0040 1 10/28/21 11/04/21 Copper mrh acs <0.0020 mg/L 11/04/21 Lead 0.0020 1 10/28/21 mrh acs 10/28/21 11/04/21 Manganese 2.1 mg/L 0.25 10 mrh acs Molybdenum 0.00012 mg/L 0.00040 1 10/28/21 11/04/21 J, N mrh acs 0.0027 mg/L Nickel 0.0050 1 10/28/21 mrh 11/04/21 acs J Selenium <0.0020 mg/L 0.0020 10/28/21 11/04/21 mrh acs <0.0010 mg/L 0.0010 11/04/21 Silver 1 10/28/21 mrh acs Thallium <0.0010 mg/L 0.0010 10/28/21 11/04/21

CERTIFICATE OF ANALYSIS

0.00080

0.0014 mg/L

1

mrh

10/28/21

acs

acs

11/04/21

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Vanadium

Trace ID: 21J1034-03 Matrix: Ground Water Date Collected: 10/26/21 12:35 Sample ID: MW-3 Date Received: 10/27/21 09:16 Field pH: 6.91 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 2100 mg/L 0.82 10 10/28/21 11/02/21 Ν ckd **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T116098 Beryllium <0.0010 mg/L 0.0010 10/27/21 ckd 10/29/21 ckd 4.3 mg/L 0.050 10/29/21 Boron 1 10/27/21 ckd ckd Calcium 500 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd Iron 4.4 mg/L 0.10 1 10/27/21 ckd 10/29/21 ckd Lithium 0.053 mg/L 0.010 10/27/21 ckd 10/29/21 1 ckd Ν 220 mg/L 10/27/21 10/29/21 Magnesium 2.0 10 ckd ckd Potassium 21 mg/L 1.0 1 10/27/21 ckd 10/29/21 ckd Sodium 140 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd N Zinc 0.00074 mg/L 0.020 1 10/27/21 10/29/21 J ckd ckd Analysis Method: EPA 6020B Batch: T116167 <0.0010 mg/L 0.0010 5 11/08/21 11/08/21 402.5 Antimony ckd ckd 1 Arsenic 0.0011 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd **Barium** 0.45 mg/L 0.0030 5 11/08/21 ckd 11/08/21 ckd Cadmium <0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd 0.0018 mg/L 0.00080 1 11/08/21 Chromium 11/08/21 ckd ckd Cobalt 0.00063 mg/L 0.0016 1 11/08/21 ckd 11/08/21 ckd J 0.00046 mg/L 0.00080 11/08/21 ckd 11/08/21 J Copper ckd <0.0020 mg/L 0.0020 5 11/08/21 ckd 11/08/21 402.5 Lead ckd 0.00040 11/08/21 11/08/21 Manganese 1.6 mg/L 1 ckd ckd Molybdenum 0.00010 mg/L 0.00040 11/08/21 11/08/21 1 ckd ckd J, N 0.0013 mg/L 0.00040 1 11/08/21 ckd 11/08/21 Nickel ckd Selenium 0.00048 mg/L 0.00087 1 11/08/21 ckd 11/08/21 ckd J Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00087 mg/L 5 Thallium 0.00087 11/08/21 ckd 11/08/21 ckd 402.5

CERTIFICATE OF ANALYSIS

0.00080

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

J.

Page 12 of 54

ckd

0.00068 mg/L

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Date Collected: 10/26/21 12:35

Trace Project ID: 21J1034 Client Project ID: MW Sampling

Trace ID: 21J1034-03 Matrix: Ground Water

Sample ID: MW-3 Date Received: 10/27/21 09:16 Field pH: 6.91

PARAMETERS RESULTS UNITS DILUTION PREPARED BY ANALYZED BY NOTES MCL RDL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

Fluoride	0.89 mg/L	0.10	5	10/27/21	ans	10/27/21	ans	
Chloride	330 mg/L	15	100	10/27/21	ans	10/27/21	ans	
Sulfate as SO4	23 mg/L	3.0	5	10/27/21	ans	10/27/21	ans	
Analysis Method: SM 2320 B-11 Batch: T116366								
Bicarbonate Alkalinity as CaCO3 at pH 4.5	2000 mg/L	50	10	11/03/21	ans	11/04/21	ans	N
Carbonate Alkalinity as CaCO3 at pH 8.2	<50 mg/L	50	10	11/03/21	ans	11/04/21	ans	N

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 2500 mg/L 40 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-04 Matrix: Ground Water Date Collected: 10/26/21 12:00 Sample ID: MW-4 Date Received: 10/27/21 09:16 Field pH: 6.74 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury <0.50 ng/L 0.50 11/01/21 ckd 11/02/21 ckd Ν Analysis Method: EPA 6010D Batch: T116174 Beryllium <0.0020 mg/L 0.0020 1 10/28/21 mrh 11/02/21 ckd Boron 3.7 mg/L 0.050 1 10/28/21 mrh 11/02/21 ckd Calcium 370 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd 0.20 10/28/21 mrh 11/02/21 Iron 5.2 mg/L 1 ckd 11/02/21 Lithium 0.061 mg/L 0.010 1 10/28/21 mrh ckd Ν Magnesium 89 mg/L 0.20 1 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 22 mg/L 1.0 mrh ckd 1 1 Sodium 81 mg/L 0.50 10/28/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony 0.00030 <0.00030 mg/L 1 10/28/21 11/04/21 mrh acs Arsenic 0.0019 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs 0.12 mg/L 0.010 10/28/21 11/04/21 Barium 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Chromium 0.0033 mg/L 0.00090 1 10/28/21 mrh 11/04/21 acs Cobalt 0.00079 mg/L 0.0016 1 10/28/21 mrh 11/04/21 acs J <0.0040 mg/L 0.0040 1 10/28/21 11/04/21 Copper mrh acs <0.0020 mg/L 11/04/21 Lead 0.0020 1 10/28/21 mrh acs 10/28/21 11/04/21 Manganese 1.1 mg/L 0.025 1 mrh acs Molybdenum 0.0015 mg/L 0.00040 1 10/28/21 11/04/21 N mrh acs Nickel 0.011 mg/L 0.0050 1 10/28/21 mrh 11/04/21 acs Selenium <0.0020 mg/L 0.0020 10/28/21 mrh 11/04/21 acs <0.0010 mg/L 0.0010 11/04/21 Silver 1 10/28/21 mrh acs Thallium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

0.0010 mg/L

10/28/21

11/04/21

acs

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Vanadium

Trace ID: 21J1034-04 Matrix: Ground Water Date Collected: 10/26/21 12:00 Sample ID: MW-4 Date Received: 10/27/21 09:16 Field pH: 6.74 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 1300 mg/L 0.82 10 10/28/21 11/02/21 Ν ckd **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T116098 Beryllium <0.0010 mg/L 0.0010 10/27/21 ckd 10/29/21 ckd 4.1 mg/L 0.050 10/29/21 Boron 1 10/27/21 ckd ckd Calcium 380 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd Iron 5.4 mg/L 0.10 1 10/27/21 ckd 10/29/21 ckd Lithium 0.071 mg/L 0.010 10/27/21 ckd 10/29/21 1 ckd N 90 mg/L 10/27/21 10/29/21 Magnesium 0.20 1 ckd ckd Potassium 21 mg/L 1.0 1 10/27/21 ckd 10/29/21 ckd Sodium 83 mg/L 0.50 1 10/27/21 ckd 10/29/21 ckd N 10/27/21 10/29/21 Zinc <0.020 mg/L 0.020 1 ckd ckd Analysis Method: EPA 6020B Batch: T116167 <0.0010 mg/L 0.0010 5 11/08/21 11/08/21 402.5 Antimony ckd ckd 1 Arsenic 0.0012 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd **Barium** 0.13 mg/L 0.0030 5 11/08/21 ckd 11/08/21 ckd Cadmium <0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd 0.0021 mg/L 0.00080 1 11/08/21 Chromium 11/08/21 ckd ckd 0.00048 mg/L Cobalt 0.0016 1 11/08/21 ckd 11/08/21 ckd J <0.00080 mg/L 0.00080 11/08/21 ckd 11/08/21 Copper ckd <0.0020 mg/L 0.0020 5 11/08/21 ckd 11/08/21 ckd 402.5 Lead 0.00040 11/08/21 11/08/21 Manganese 0.83 mg/L 1 ckd ckd Molybdenum 0.00089 mg/L 0.00040 11/08/21 11/08/21 1 ckd ckd Ν 0.0080 mg/L 0.00040 1 11/08/21 ckd 11/08/21 Nickel ckd <0.00087 mg/L 11/08/21 11/08/21 Selenium 0.00087 1 ckd ckd Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00087 mg/L 5 Thallium 0.00087 11/08/21 ckd 11/08/21 ckd 402.5

CERTIFICATE OF ANALYSIS

0.00080

0.00063 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

J

ckd

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Date Collected: 10/26/21 12:00

Trace Project ID: 21J1034 Client Project ID: MW Sampling

Trace ID: 21J1034-04 Matrix: Ground Water

Sample ID: MW-4 Date Received: 10/27/21 09:16 Field pH: 6.74

PARAMETERS RESULTS UNITS DILUTION PREPARED BY ANALYZED ΒY NOTES MCL RDL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

Fluoride 1.3 mg/L 0.10 10/27/21 5 ans 10/27/21 ans Chloride 170 mg/L 7.5 50 10/27/21 10/27/21 ans Sulfate as SO4 450 mg/L 30 50 10/27/21 10/27/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 870 mg/L 50 10 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <50 mg/L 50 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 1900 mg/L 40 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-05 Matrix: Ground Water Date Collected: 10/26/21 10:35 Sample ID: MW-5 Date Received: 10/27/21 09:16 Field pH: 7.43 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury <0.50 ng/L 0.50 11/01/21 ckd 11/02/21 ckd Ν Analysis Method: EPA 6010D Batch: T116174 0.0014 Beryllium <0.0014 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 3.0 mg/L 0.035 1 10/28/21 mrh 11/02/21 ckd Calcium 340 mg/L 3.5 10 10/28/21 mrh 11/02/21 ckd 10/28/21 mrh 11/02/21 Iron 2.5 mg/L 0.14 1 ckd 11/02/21 Lithium 0.089 mg/L 0.0070 1 10/28/21 mrh ckd Ν Magnesium 37 mg/L 0.14 1 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 9.3 mg/L 0.70 mrh ckd 1 1 Sodium 29 mg/L 0.35 10/28/21 mrh 11/02/21 ckd N <0.014 mg/L 0.014 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony <0.00021 mg/L 0.00021 1 10/28/21 11/04/21 mrh acs Arsenic 0.040 mg/L 0.00070 1 10/28/21 mrh 11/04/21 acs 0.087 mg/L 0.0070 10/28/21 11/04/21 Barium 1 mrh acs <0.00070 mg/L Cadmium 0.00070 1 10/28/21 mrh 11/04/21 acs Chromium 0.0017 mg/L 0.00063 1 10/28/21 mrh 11/04/21 acs Cobalt 0.00069 mg/L 0.0011 1 10/28/21 mrh 11/04/21 acs J <0.0028 mg/L 0.0028 1 10/28/21 11/04/21 Copper mrh acs <0.0014 mg/L 11/04/21 Lead 0.0014 1 10/28/21 mrh acs 11/04/21 Manganese 0.90 mg/L 0.018 1 10/28/21 mrh acs Molybdenum 0.0023 mg/L 0.00028 1 10/28/21 11/04/21 Ν mrh acs Nickel 0.0015 mg/L 0.0035 1 10/28/21 mrh 11/04/21 acs J Selenium <0.0014 mg/L 0.0014 10/28/21 11/04/21 mrh acs <0.00070 mg/L 11/04/21 Silver 0.00070 1 10/28/21 mrh acs Thallium <0.00070 mg/L 0.00070 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00056

0.00089 mg/L

10/28/21

11/04/21

acs

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Vanadium

Trace ID: 21J1034-05 Matrix: Ground Water Date Collected: 10/26/21 10:35 Sample ID: MW-5 Date Received: 10/27/21 09:16 Field pH: 7.43 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 1000 mg/L 0.58 10 10/28/21 11/02/21 Ν ckd **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T116098 Beryllium <0.0010 mg/L 0.0010 10/27/21 ckd 10/29/21 ckd 3.1 mg/L 0.050 10/29/21 Boron 1 10/27/21 ckd ckd Calcium 360 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd Iron 2.0 mg/L 0.10 1 10/27/21 ckd 10/29/21 ckd Lithium 0.092 mg/L 0.010 10/27/21 ckd 10/29/21 1 ckd Ν 10/27/21 10/29/21 Magnesium 39 mg/L 0.20 1 ckd ckd Potassium 9.4 mg/L 1.0 1 10/27/21 ckd 10/29/21 ckd Sodium 30 mg/L 0.50 1 10/27/21 ckd 10/29/21 ckd N 10/27/21 10/29/21 Zinc <0.020 mg/L 0.020 1 ckd ckd Analysis Method: EPA 6020B Batch: T116167 11/08/21 Antimony 0.00010 mg/L 0.00020 1 11/08/21 ckd ckd J Arsenic 0.043 mg/L 0.0010 1 11/08/21 ckd 11/08/21 ckd **Barium** 0.088 mg/L 0.00060 1 11/08/21 ckd 11/08/21 ckd Cadmium <0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd <0.00080 mg/L 0.00080 11/08/21 11/08/21 Chromium 1 ckd ckd Cobalt 0.00021 mg/L 0.0016 1 11/08/21 ckd 11/08/21 ckd J <0.00080 mg/L 0.00080 11/08/21 ckd 11/08/21 ckd Copper <0.00040 mg/L 0.00040 1 11/08/21 ckd 11/08/21 Lead ckd 0.00040 11/08/21 11/08/21 Manganese 0.69 mg/L 1 ckd ckd Molybdenum 0.0016 mg/L 0.00040 11/08/21 11/08/21 1 ckd ckd Ν 0.00017 mg/L 0.00040 1 11/08/21 ckd 11/08/21 J Nickel ckd <0.00087 mg/L 11/08/21 11/08/21 Selenium 0.00087 1 ckd ckd Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00017 mg/L Thallium 0.00017 1 11/08/21 ckd 11/08/21 ckd

CERTIFICATE OF ANALYSIS

0.00080

0.00066 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

J

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-05

Matrix: Ground Water

Date Collected: 10/26/21 10:35

Date Received: 10/27/21 09:16 Field pH: 7.43

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

Sample ID: MW-5

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

Fluoride 3.3 mg/L 10/27/21 0.10 5 ans 10/27/21 ans Chloride 22 mg/L 0.75 5 10/27/21 10/27/21 ans Sulfate as SO4 320 mg/L 15 25 10/27/21 10/27/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 750 mg/L 50 10 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <50 mg/L 50 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 1300 mg/L 40 4 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-06 Matrix: Ground Water Date Collected: 10/26/21 11:00 Sample ID: MW-6 Date Received: 10/27/21 09:16 Field pH: 7.60 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury 0.94 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116174 0.0014 Beryllium <0.0014 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 13 mg/L 0.35 10 10/28/21 mrh 11/02/21 ckd Calcium 200 mg/L 3.5 10 10/28/21 mrh 11/02/21 ckd 10/28/21 mrh 11/02/21 Iron 13 mg/L 0.14 1 ckd 11/02/21 Lithium 0.23 mg/L 0.0070 1 10/28/21 mrh ckd Ν Magnesium 100 mg/L 1.4 10 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 34 mg/L 0.70 1 mrh ckd Sodium 110 mg/L 3.5 10 10/28/21 mrh 11/02/21 ckd N <0.014 mg/L 0.014 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony 0.00021 <0.00021 mg/L 1 10/28/21 11/04/21 mrh acs Arsenic 0.0017 mg/L 0.00070 1 10/28/21 mrh 11/04/21 acs 0.035 10/28/21 11/04/21 Barium 1.6 mg/L 5 mrh acs Cadmium 0.00053 mg/L 0.00070 1 10/28/21 11/04/21 J mrh acs Chromium 0.0029 mg/L 0.00063 1 10/28/21 mrh 11/04/21 acs Cobalt 0.00082 mg/L 0.0011 1 10/28/21 mrh 11/04/21 acs <0.0028 mg/L 0.0028 1 10/28/21 11/04/21 Copper mrh acs Lead 0.0014 mg/L 0.0014 1 10/28/21 mrh 11/04/21 acs 10/28/21 11/04/21 Manganese 0.41 mg/L 0.018 1 mrh acs 0.00076 mg/L Molybdenum 0.00028 1 10/28/21 11/04/21 Ν mrh acs Nickel 0.0022 mg/L 0.0035 1 10/28/21 mrh 11/04/21 acs J Selenium <0.0014 mg/L 0.0014 10/28/21 11/04/21 mrh acs <0.00070 mg/L Silver 0.00070 1 10/28/21 mrh 11/04/21 acs Thallium 0.00030 mg/L 0.00070 1 10/28/21 mrh 11/04/21 J acs

CERTIFICATE OF ANALYSIS

0.00056

0.00083 mg/L

10/28/21

11/04/21

acs

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Vanadium

Trace ID: 21J1034-06 Matrix: Ground Water Date Collected: 10/26/21 11:00 Sample ID: MW-6 Date Received: 10/27/21 09:16 Field pH: 7.60 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 940 mg/L 5.8 10 10/28/21 11/02/21 Ν ckd **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T116098 Beryllium <0.0010 mg/L 0.0010 10/27/21 ckd 10/29/21 ckd 13 mg/L 10 10/29/21 Boron 0.50 10/27/21 ckd ckd Calcium 200 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd Iron 6.9 mg/L 0.10 1 10/27/21 ckd 10/29/21 ckd Lithium 0.22 mg/L 0.010 10/27/21 ckd 10/29/21 1 ckd Ν 10/29/21 Magnesium 110 mg/L 2.0 10 10/27/21 ckd ckd Potassium 36 mg/L 1.0 1 10/27/21 ckd 10/29/21 ckd Sodium 120 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd N 10/29/21 Zinc 0.0027 mg/L 0.020 1 10/27/21 J ckd ckd Analysis Method: EPA 6020B Batch: T116167 11/08/21 **Antimony** 0.00033 mg/L 0.00020 1 11/08/21 ckd ckd Arsenic 0.0017 mg/L 0.0010 1 11/08/21 ckd 11/08/21 ckd **Barium** 1.5 mg/L 0.00060 1 11/08/21 ckd 11/08/21 ckd Cadmium 0.000072 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd J 0.0011 mg/L 0.00080 1 11/08/21 11/08/21 Chromium ckd ckd 0.00042 mg/L Cobalt 0.0016 1 11/08/21 ckd 11/08/21 ckd J 0.00016 mg/L 0.00080 11/08/21 ckd 11/08/21 Copper ckd <0.00040 mg/L 0.00040 1 11/08/21 ckd 11/08/21 Lead ckd 0.00040 11/08/21 11/08/21 Manganese 0.29 mg/L 1 ckd ckd Molybdenum 0.00069 mg/L 0.00040 11/08/21 11/08/21 ckd ckd Ν 0.0013 mg/L 0.00040 1 11/08/21 ckd 11/08/21 Nickel ckd <0.00087 mg/L 11/08/21 11/08/21 Selenium 0.00087 ckd ckd Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00017 mg/L Thallium 0.00017 1 11/08/21 ckd 11/08/21 ckd

CERTIFICATE OF ANALYSIS

0.00080

0.00029 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

J

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Date Collected: 10/26/21 11:00

Trace Project ID: 21J1034 Client Project ID: MW Sampling

Trace ID: 21J1034-06 Matrix: Ground Water

Sample ID: MW-6 Date Received: 10/27/21 09:16

Field pH: 7.60

PARAMETERS RESULTS UNITS DILUTION PREPARED BY ANALYZED BY NOTES MCL RDL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

F	luoride	1.6 mg/L	0.10	5	10/27/21	ans	10/27/21	ans		
C	Chloride	200 mg/L	7.5	50	10/27/21	ans	10/27/21	ans		
S	Sulfate as SO4	1.3 mg/L	3.0	5	10/27/21	ans	10/27/21	ans	J	
Ana	alysis Method: SM 2320 B-11 Batch: T116366									
E	Bicarbonate Alkalinity as CaCO3 at pH 4.5	960 mg/L	50	10	11/03/21	ans	11/04/21	ans	N	
C	Carbonate Alkalinity as CaCO3 at pH 8.2	<50 mg/L	50	10	11/03/21	ans	11/04/21	ans	Ν	

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 1300 mg/L 40 10/28/21 gmr 10/28/21

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-07 Matrix: Ground Water Date Collected: 10/26/21 10:20 Sample ID: MW-7 Date Received: 10/27/21 09:16 Field pH: 7.01 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury <0.50 ng/L 0.50 11/01/21 ckd 11/02/21 ckd Ν Analysis Method: EPA 6010D Batch: T116174 0.0020 Beryllium <0.0020 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 15 mg/L 0.50 10 10/28/21 mrh 11/02/21 ckd Calcium 130 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd 0.20 10/28/21 11/02/21 Iron 16 mg/L 1 mrh ckd 11/02/21 Lithium <0.010 mg/L 0.010 1 10/28/21 mrh ckd Ν Magnesium 35 mg/L 0.20 1 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 4.5 mg/L 1.0 mrh 1 ckd 1 Sodium 54 mg/L 0.50 10/28/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony 0.00030 <0.00030 mg/L 1 10/28/21 11/04/21 mrh acs Arsenic <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs 0.36 mg/L 0.010 10/28/21 11/04/21 Barium 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Chromium 0.0010 mg/L 0.00090 1 10/28/21 mrh 11/04/21 acs Cobalt 0.00088 mg/L 0.0016 1 10/28/21 mrh 11/04/21 acs J <0.0040 mg/L 0.0040 1 10/28/21 11/04/21 Copper mrh acs <0.0020 mg/L 11/04/21 Lead 0.0020 1 10/28/21 mrh acs 10/28/21 11/04/21 Manganese 2.0 mg/L 0.025 1 mrh acs <0.00040 mg/L 0.00040 10/28/21 11/04/21 Molybdenum 1 mrh Ν acs <0.0050 mg/L Nickel 0.0050 1 10/28/21 mrh 11/04/21 acs Selenium <0.0020 mg/L 0.0020 10/28/21 mrh 11/04/21 acs <0.0010 mg/L 0.0010 Silver 1 10/28/21 mrh 11/04/21 acs Thallium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

0.00067 mg/L

10/28/21

11/04/21

acs

J

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID:	21J1034
Client Project ID:	MW Sampling

Trace ID: 21J1034-07 Sample ID: MW-7	Matrix: Ground Water		Collected: 10/26 Received: 10/27		Fie	eld pH: 7.01			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	470 mg/L	0.82	10	10/28/21		11/02/21	ckd	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T116098									
Beryllium	<0.0010 mg/L	0.0010	1	10/27/21	ckd	10/29/21	ckd		
Boron	16 mg/L	0.25	5	10/27/21	ckd	10/29/21	ckd		
Calcium	130 mg/L	0.50	1	10/27/21	ckd	10/29/21	ckd		
Iron	17 mg/L	0.10	1	10/27/21	ckd	10/29/21	ckd		
Lithium	0.011 mg/L	0.010	1	10/27/21	ckd	10/29/21	ckd	N	
Magnesium	36 mg/L	0.20	1	10/27/21	ckd	10/29/21	ckd		
Potassium	4.7 mg/L	1.0	1	10/27/21	ckd	10/29/21	ckd		
Sodium	56 mg/L	0.50	1	10/27/21	ckd	10/29/21	ckd	N	
Zinc	<0.020 mg/L	0.020	1	10/27/21	ckd	10/29/21	ckd		
Analysis Method: EPA 6020B Batch: T116167									
Antimony	0.00016 mg/L	0.00020	1	11/08/21	ckd	11/08/21	ckd	J	
Arsenic	0.00033 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd	J	
Barium	0.35 mg/L	0.00060	1	11/08/21	ckd	11/08/21	ckd		
Cadmium	<0.0010 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Chromium	<0.00080 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		
Cobalt	0.00073 mg/L	0.0016	1	11/08/21	ckd	11/08/21	ckd	J	
Copper	<0.00080 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		
Lead	<0.00040 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Manganese	1.7 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Molybdenum	<0.00040 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	N	
Nickel	0.00013 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	J	
Selenium	<0.00087 mg/L	0.00087	1	11/08/21	ckd	11/08/21	ckd		
Silver	<0.000040 mg/L	0.000040	1	11/08/21	ckd	11/08/21	ckd		
Thallium	<0.00017 mg/L	0.00017	1	11/08/21	ckd	11/08/21	ckd		
Vanadium	0.00058 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd	J	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Date Collected: 10/26/21 10:20

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-07 Matrix: Ground Water

Sample ID: MW-7 Date Received: 10/27/21 09:16 Field pH: 7.01

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

Fluoride 0.094 mg/L 0.10 10/27/21 5 ans 10/27/21 ans J Chloride 14 mg/L 0.75 5 10/27/21 10/27/21 ans Sulfate as SO4 30 mg/L 3.0 5 10/27/21 10/27/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 630 mg/L 50 10 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <50 mg/L 50 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 630 mg/L 40 4 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-08 Matrix: Ground Water Date Collected: 10/26/21 15:35 Sample ID: MW-8 Date Received: 10/27/21 09:16 Field pH: 6.74 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury <0.50 ng/L 0.50 11/01/21 ckd 11/02/21 ckd Ν Analysis Method: EPA 6010D Batch: T116174 0.0020 Beryllium <0.0020 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 1.4 mg/L 0.050 1 10/28/21 mrh 11/02/21 ckd Calcium 130 mg/L 2.5 5 10/28/21 mrh 11/02/21 ckd 0.20 10/28/21 mrh 11/02/21 Iron 29 mg/L 1 ckd 11/02/21 Lithium 0.043 mg/L 0.010 1 10/28/21 mrh ckd Ν Magnesium 25 mg/L 0.20 1 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 9.4 mg/L 1.0 mrh 1 ckd 1 Sodium 27 mg/L 0.50 10/28/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony 0.00030 <0.00030 mg/L 1 10/28/21 11/04/21 mrh acs Arsenic 0.0067 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs 0.010 10/28/21 11/04/21 Barium 1.0 mg/L 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Chromium 0.0012 mg/L 0.00090 1 10/28/21 mrh 11/04/21 acs Cobalt <0.0016 mg/L 0.0016 10/28/21 mrh 11/04/21 acs <0.0040 mg/L 0.0040 1 10/28/21 11/04/21 Copper mrh acs <0.0020 mg/L 11/04/21 Lead 0.0020 1 10/28/21 mrh acs 11/04/21 Manganese 1.5 mg/L 0.025 1 10/28/21 mrh acs Molybdenum 0.0037 mg/L 0.00040 1 10/28/21 11/04/21 N mrh acs <0.0050 mg/L Nickel 0.0050 1 10/28/21 mrh 11/04/21 acs Selenium <0.0020 mg/L 0.0020 10/28/21 11/04/21 mrh acs Silver <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Thallium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

<0.00080 mg/L

10/28/21

11/04/21

acs

mrh

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID:	21J1034
Client Project ID:	MW Sampling

Trace ID: 21J1034-08 Sample ID: MW-8	Matrix: Ground Water		Collected: 10/26 Received: 10/27		Fie	eld pH: 6.74			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	440 mg/L	0.82	5	10/28/21		11/02/21	ckd	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T116098									
Beryllium	<0.0010 mg/L	0.0010	1	10/27/21	ckd	10/29/21	ckd		
Boron	1.4 mg/L	0.050	1	10/27/21	ckd	10/29/21	ckd		
Calcium	140 mg/L	0.50	1	10/27/21	ckd	10/29/21	ckd		
Iron	28 mg/L	0.10	1	10/27/21	ckd	10/29/21	ckd		
Lithium	0.043 mg/L	0.010	1	10/27/21	ckd	10/29/21	ckd	N	
Magnesium	26 mg/L	0.20	1	10/27/21	ckd	10/29/21	ckd		
Potassium	9.3 mg/L	1.0	1	10/27/21	ckd	10/29/21	ckd		
Sodium	28 mg/L	0.50	1	10/27/21	ckd	10/29/21	ckd	N	
Zinc	0.0015 mg/L	0.020	1	10/27/21	ckd	10/29/21	ckd	J	
Analysis Method: EPA 6020B Batch: T116167									
Antimony	0.00033 mg/L	0.00020	1	11/08/21	ckd	11/08/21	ckd		
Arsenic	0.0062 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Barium	0.96 mg/L	0.00060	1	11/08/21	ckd	11/08/21	ckd		
Cadmium	<0.0010 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Chromium	0.00065 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd	J	
Cobalt	0.00030 mg/L	0.0016	1	11/08/21	ckd	11/08/21	ckd	J	
Copper	<0.00080 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		
Lead	0.000042 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	J	
Manganese	1.3 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Molybdenum	0.0033 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	N	
Nickel	0.0010 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Selenium	<0.00087 mg/L	0.00087	1	11/08/21	ckd	11/08/21	ckd		
Silver	<0.000040 mg/L	0.000040	1	11/08/21	ckd	11/08/21	ckd		
Thallium	<0.00017 mg/L	0.00017	1	11/08/21	ckd	11/08/21	ckd		
Vanadium	0.00038 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd	J	

CERTIFICATE OF ANALYSIS

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034 Client Project ID: MW Sampling

Trace ID: 21J1034-08 Matrix: Ground Water

Date Collected: 10/26/21 15:35

Sample ID: MW-8 Date Received: 10/27/21 09:16 Field pH: 6.74

PARAMETERS RESULTS UNITS DILUTION PREPARED BY ANALYZED BY NOTES MCL RDL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

riuoride	0.42 mg/L	0.10	э	10/2//21	ans	10/2//21	ans	
Chloride	30 mg/L	0.75	5	10/27/21	ans	10/27/21	ans	
Sulfate as SO4	37 mg/L	3.0	5	10/27/21	ans	10/27/21	ans	
Analysis Method: SM 2320 B-11 Batch: T116366								
Bicarbonate Alkalinity as CaCO3 at pH 4.5	450 mg/L	50	10	11/03/21	ans	11/04/21	ans	N
Carbonate Alkalinity as CaCO3 at pH 8.2	<50 mg/L	50	10	11/03/21	ans	11/04/21	ans	N

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 630 mg/L 40 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-09 Matrix: Ground Water Date Collected: 10/26/21 14:30 Sample ID: MW-9 Date Received: 10/27/21 09:16 Field pH: 7.31 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury 0.62 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116174 0.0020 Beryllium <0.0020 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 6.8 mg/L 0.050 1 10/28/21 mrh 11/02/21 ckd Calcium 220 mg/L 2.5 5 10/28/21 mrh 11/02/21 ckd 0.20 10/28/21 mrh 11/02/21 Iron 19 mg/L 1 ckd 11/02/21 Lithium 0.26 mg/L 0.010 1 10/28/21 mrh ckd Ν Magnesium 36 mg/L 0.20 1 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 16 mg/L 1.0 mrh 1 ckd 1 Sodium 32 mg/L 0.50 10/28/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony 0.00030 <0.00030 mg/L 1 10/28/21 11/04/21 mrh acs Arsenic 0.0025 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs 10 10/28/21 11/04/21 Barium 5.0 mg/L 0.10 mrh acs Cadmium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Chromium 0.0029 mg/L 0.00090 1 10/28/21 mrh 11/04/21 acs Cobalt <0.0016 mg/L 0.0016 10/28/21 mrh 11/04/21 acs <0.0040 mg/L 0.0040 1 10/28/21 11/04/21 Copper mrh acs <0.0020 mg/L 11/04/21 Lead 0.0020 1 10/28/21 mrh acs 11/04/21 Manganese 0.72 mg/L 0.025 1 10/28/21 mrh acs Molybdenum 0.017 mg/L 0.00040 1 10/28/21 11/04/21 N mrh acs Nickel <0.0050 mg/L 0.0050 1 10/28/21 mrh 11/04/21 acs Selenium <0.0020 mg/L 0.0020 10/28/21 11/04/21 mrh acs Silver <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Thallium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

<0.00080 mg/L

10/28/21

11/04/21

acs

mrh

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034

Client Project ID: MW Sampling

Vanadium

Trace ID: 21J1034-09 Matrix: Ground Water Date Collected: 10/26/21 14:30 Sample ID: MW-9 Date Received: 10/27/21 09:16 Field pH: 7.31 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 690 mg/L 0.82 5 10/28/21 11/02/21 Ν ckd **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T116098 Beryllium <0.0010 mg/L 0.0010 10/27/21 ckd 10/29/21 ckd 0.050 10/29/21 Boron 6.6 mg/L 1 10/27/21 ckd ckd Calcium 210 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd Iron 18 mg/L 0.10 1 10/27/21 ckd 10/29/21 ckd Lithium 0.27 mg/L 0.010 10/27/21 ckd 10/29/21 1 ckd Ν 10/27/21 10/29/21 Magnesium 36 mg/L 0.20 1 ckd ckd Potassium 15 mg/L 1.0 1 10/27/21 ckd 10/29/21 ckd Sodium 33 mg/L 0.50 1 10/27/21 ckd 10/29/21 ckd N Zinc 0.0013 mg/L 0.020 1 10/27/21 10/29/21 J ckd ckd Analysis Method: EPA 6020B Batch: T116167 11/08/21 **Antimony** 0.00046 mg/L 0.00020 1 11/08/21 ckd ckd Arsenic 0.0027 mg/L 0.0010 1 11/08/21 ckd 11/08/21 ckd **Barium** 5.1 mg/L 0.0060 10 11/08/21 ckd 11/08/21 ckd Cadmium <0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd 0.0018 mg/L 0.00080 1 11/08/21 Chromium 11/08/21 ckd ckd Cobalt 0.00039 mg/L 0.0016 1 11/08/21 ckd 11/08/21 ckd J <0.00080 mg/L 0.00080 11/08/21 ckd 11/08/21 ckd Copper <0.00040 mg/L 0.00040 1 11/08/21 ckd 11/08/21 Lead ckd 0.55 mg/L 0.00040 11/08/21 11/08/21 Manganese 1 ckd ckd Molybdenum 0.019 mg/L 0.00040 11/08/21 11/08/21 1 ckd ckd Ν 0.00080 mg/L 0.00040 1 11/08/21 11/08/21 Nickel ckd ckd Selenium 0.00037 mg/L 0.00087 1 11/08/21 ckd 11/08/21 ckd J Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00017 mg/L Thallium 0.00017 1 11/08/21 ckd 11/08/21 ckd

CERTIFICATE OF ANALYSIS

0.00080

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

J

Page 30 of 54

0.00031 mg/L

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-09 Matrix: Ground Water

atrix: Ground Water Date Collected: 10/26/21 14:30

Sample ID: MW-9 Date Received: 10/27/21 09:16 Field pH: 7.31

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

Fluoride 2.5 mg/L 10/27/21 0.10 5 ans 10/27/21 ans Chloride 13 mg/L 0.75 5 10/27/21 10/27/21 ans Sulfate as SO4 14 mg/L 3.0 5 10/27/21 10/27/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 760 mg/L 50 10 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <50 mg/L 50 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 880 mg/L 40 4 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-10 Matrix: Ground Water Date Collected: 10/26/21 15:05 Sample ID: MW-10 Date Received: 10/27/21 09:16 Field pH: 7.42 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury 0.80 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116174 0.0020 Beryllium <0.0020 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 52 mg/L 0.50 10 10/28/21 mrh 11/02/21 ckd Calcium 140 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd 0.20 10/28/21 mrh 11/02/21 Iron 10 mg/L 1 ckd 11/02/21 Lithium 1.4 mg/L 0.010 1 10/28/21 mrh ckd Ν Magnesium 65 mg/L 0.20 1 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 52 mg/L 1.0 1 mrh ckd Sodium 480 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony <0.00030 mg/L 0.00030 1 10/28/21 11/04/21 mrh acs Arsenic 0.0011 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs 0.010 10/28/21 11/04/21 Barium 1.5 mg/L 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Chromium 0.011 mg/L 0.00090 1 10/28/21 mrh 11/04/21 acs Cobalt 0.0011 mg/L 0.0016 1 10/28/21 mrh 11/04/21 acs J 0.0050 mg/L 1 10/28/21 11/04/21 Copper 0.0040 mrh acs Lead 0.0012 mg/L 0.0020 1 10/28/21 mrh 11/04/21 J acs 10/28/21 11/04/21 Manganese 0.50 mg/L 0.025 1 mrh acs Molybdenum 0.012 mg/L 0.00040 1 10/28/21 11/04/21 mrh acs Ν Nickel 0.0027 mg/L 0.0050 1 10/28/21 mrh 11/04/21 acs J. Selenium <0.0020 mg/L 0.0020 10/28/21 11/04/21 mrh acs <0.0010 mg/L 11/04/21 Silver 0.0010 1 10/28/21 mrh acs Thallium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

0.0018 mg/L

10/28/21

11/04/21

acs

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-10 Matrix: Ground Water Date Collected: 10/26/21 15:05 Sample ID: MW-10 Date Received: 10/27/21 09:16 Field pH: 7.42 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 620 mg/L 0.82 10 10/28/21 11/02/21 Ν ckd **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T116098 Beryllium <0.0010 mg/L 0.0010 1 10/27/21 ckd 10/29/21 ckd 51 mg/L 10/29/21 Boron 0.50 10 10/27/21 ckd ckd Calcium 140 mg/L 0.50 1 10/27/21 ckd 10/29/21 ckd Iron 8.2 mg/L 0.10 1 10/27/21 ckd 10/29/21 ckd Lithium 0.010 10/27/21 ckd 10/29/21 1.4 mg/L 1 ckd Ν 1 10/27/21 10/29/21 Magnesium 65 mg/L 0.20 ckd ckd Potassium 48 mg/L 10 10 10/27/21 ckd 10/29/21 ckd Sodium 490 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd N Zinc 0.0016 mg/L 0.020 1 10/27/21 10/29/21 J ckd ckd Analysis Method: EPA 6020B Batch: T116167 <0.0010 mg/L 0.0010 5 11/08/21 11/08/21 402.5 Antimony ckd ckd 1 Arsenic 0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd **Barium** 1.3 mg/L 0.0030 5 11/08/21 ckd 11/08/21 ckd Cadmium <0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd 0.0079 mg/L 0.00080 1 11/08/21 Chromium 11/08/21 ckd ckd 0.00080 mg/L Cobalt 0.0016 1 11/08/21 ckd 11/08/21 ckd J 0.00013 mg/L 0.00080 11/08/21 ckd 11/08/21 J Copper ckd <0.0020 mg/L 0.0020 5 11/08/21 ckd 11/08/21 402.5 Lead ckd 0.00040 11/08/21 11/08/21 Manganese 0.37 mg/L 1 ckd ckd Molybdenum 0.0089 mg/L 0.00040 11/08/21 11/08/21 1 ckd ckd Ν 0.0017 mg/L 0.00040 1 11/08/21 11/08/21 Nickel ckd ckd Selenium 0.00058 mg/L 0.00087 1 11/08/21 ckd 11/08/21 ckd J Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00087 mg/L 5 Thallium 0.00087 11/08/21 ckd 11/08/21 ckd 402.5

CERTIFICATE OF ANALYSIS

0.00080

0.0013 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Date Collected: 10/26/21 15:05

Trace Project ID: 21J1034 Client Project ID: MW Sampling

Trace ID: 21J1034-10 Matrix: Ground Water

Sample ID: MW-10

Date Received: 10/27/21 09:16 Field pH: 7.42

PARAMETERS RESULTS UNITS DILUTION PREPARED BY ANALYZED BY NOTES MCL RDL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116179

Fluoride 11 mg/L 0.20 10 10/28/21 10/28/21 ans ans Chloride 520 mg/L 15 100 10/28/21 10/28/21 ans Sulfate as SO4 53 mg/L 3.0 5 10/27/21 10/27/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 970 mg/L 50 10 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <50 mg/L 50 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 2000 mg/L 40 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

QUALITY CONTROL RESULTS

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116281 Analysis Description: Mercury, Total, Low Level
QC Batch Method: EPA 1631E Analysis Method: EPA 1631E

METHOD BLANK: T116281-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/l	<0.20	0.20	

METHOD BLANK: T116281-BLK2

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/L	<0.20	0.20	

METHOD BLANK: T116281-BLK3

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	na/L	<0.20	0.20	

LABORATORY CONTROL SAMPLE: T116281-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Mercury	ng/l	25.0	23.4	94	77-123	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116281-MSD1

1

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Mercury	ng/L	1.88	10.0	10.1	9.92	82	80	71-125	2	24	

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116098 Analysis Description: Sodium, Dissolved QC Batch Method: Analysis Method: EPA 6010D

METHOD BLANK: T116098-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Boron	mg/L	0.0023	0.050	J
Beryllium	mg/L	0.000061	0.0010	J
Calcium	mg/L	<0.50	0.50	

METHOD BLANK: T116098-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Iron	mg/L	<0.10	0.10	
Potassium	mg/L	0.015	1.0	J
Lithium	mg/L	<0.010	0.010	
Magnesium	mg/L	<0.20	0.20	
Sodium	mg/L	<0.50	0.50	
Zinc	mg/L	<0.020	0.020	

LABORATORY CONTROL SAMPLE: T116098-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	1.00	0.966	97	80-120	
Beryllium	mg/L	0.0500	0.0510	102	80-120	
Calcium	mg/L	10.0	10.3	103	80-120	
Iron	mg/L	10.0	10.4	104	80-120	
Potassium	mg/L	10.0	10.4	104	80-120	
Lithium	mg/L	0.500	0.522	104	80-120	
Magnesium	mg/L	10.0	10.5	105	80-120	
Sodium	mg/L	10.0	10.6	106	80-120	
Zinc	mg/L	1.00	1.04	104	80-120	

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116174
QC Batch Method: EPA 3015 Microwave Assisted Digestions

Analysis Description: Lithium, Total

for Liquids

Analysis Method: EPA 6010D

METHOD BLANK: T116174-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Boron	mg/L	<0.050	0.050	
Beryllium	mg/L	<0.0020	0.0020	
Calcium	mg/L	<0.50	0.50	
Iron	mg/L	<0.20	0.20	
Potassium	mg/L	0.060	1.0	J
Lithium	mg/L	<0.010	0.010	
Magnesium	mg/L	<0.20	0.20	
Sodium	mg/L	<0.50	0.50	
Zinc	mg/L	<0.020	0.020	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T116174-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	0.889	0.830	93	80-120	
Beryllium	mg/L	0.111	0.109	98	80-120	
Calcium	mg/L	8.89	8.74	98	80-120	
Iron	mg/L	8.89	9.02	101	80-120	
Potassium	mg/L	8.89	9.03	102	80-120	
Lithium	mg/L	0.889	0.880	99	80-120	
Magnesium	mg/L	8.89	9.09	102	80-120	
Sodium	mg/L	8.89	9.07	102	80-120	
Zinc	mg/L	0.889	0.894	101	80-120	

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116167 QC Batch Method: Analysis Description: Barium, Dissolved

Analysis Method: EPA 6020B

METHOD BLANK: T116167-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Silver	mg/L	0.000026	0.000040	J
Arsenic	mg/L	<0.0010	0.0010	
Barium	mg/L	<0.00060	0.00060	
Cadmium	mg/L	<0.00020	0.00020	
Cobalt	mg/L	<0.0016	0.0016	
Chromium	mg/L	<0.00080	0.00080	
Copper	mg/L	<0.00080	0.00080	
Manganese	mg/L	<0.00040	0.00040	
Molybdenum	mg/L	<0.00040	0.00040	
Nickel	mg/L	<0.00040	0.00040	
Lead	mg/L	<0.00040	0.00040	
Antimony	mg/L	0.00017	0.00020	J
Selenium	mg/L	<0.00087	0.00087	
Thallium	mg/L	<0.00017	0.00017	
Vanadium	mg/L	<0.00080	0.00080	

LABORATORY CONTROL SAMPLE: T116167-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Silver	mg/L	0.0600	0.0612	102	80-120	
Arsenic	mg/L	0.0600	0.0630	105	80-120	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T116167-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Barium	mg/L	0.0600	0.0588	98	80-120	
Cadmium	mg/L	0.0600	0.0613	102	80-120	
Cobalt	mg/L	0.0600	0.0604	101	80-120	
Chromium	mg/L	0.0600	0.0629	105	80-120	
Copper	mg/L	0.0600	0.0610	102	80-120	
Manganese	mg/L	0.0600	0.0615	102	80-120	
Molybdenum	mg/L	0.0600	0.0588	98	80-120	
Nickel	mg/L	0.0600	0.0602	100	80-120	
Lead	mg/L	0.0600	0.0616	103	80-120	
Antimony	mg/L	0.0600	0.0577	96	80-120	
Selenium	mg/L	0.0600	0.0630	105	80-120	
Thallium	mg/L	0.0600	0.0617	103	80-120	
Vanadium	mg/L	0.0600	0.0581	97	80-120	

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116174

QC Batch Method: EPA 3015 Microwave Assisted Digestions

for Liquids

Analysis Description: Selenium, Total Analysis Method: EPA 6020B

METHOD BLANK: T116174-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Silver	mg/L	<0.0010	0.0010	
Arsenic	mg/L	<0.0010	0.0010	
Barium	mg/L	<0.010	0.010	
Cadmium	mg/L	<0.0010	0.0010	
Cobalt	mg/L	<0.0016	0.0016	
Chromium	mg/L	<0.00090	0.00090	
Copper	mg/L	<0.0040	0.0040	
Manganese	mg/L	<0.025	0.025	
Molybdenum	mg/L	0.00027	0.00040	J
Nickel	mg/L	<0.0050	0.0050	
Lead	mg/L	<0.0020	0.0020	
Antimony	mg/L	<0.00030	0.00030	
Selenium	mg/L	<0.0020	0.0020	
Thallium	mg/L	<0.0010	0.0010	
Vanadium	mg/L	<0.00080	0.00080	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T116174-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Silver	mg/L	0.0278	0.0333	120	80-120	
Arsenic	mg/L	0.0556	0.0599	108	80-120	
Barium	mg/L	0.889	0.950	107	80-120	
Cadmium	mg/L	0.0278	0.0297	107	80-120	
Cobalt	mg/L	0.889	0.892	100	80-120	
Chromium	mg/L	0.0278	0.0288	104	80-120	
Copper	mg/L	0.890	0.863	97	80-120	
Manganese	mg/L	0.887	0.878	99	80-120	
Molybdenum	mg/L	0.889	0.942	106	80-120	
Nickel	mg/L	0.889	0.840	95	80-120	
Lead	mg/L	0.0556	0.0533	96	80-120	
Antimony	mg/L	0.0556	0.0608	109	80-120	
Selenium	mg/L	0.0556	0.0560	101	80-120	
Thallium	mg/L	0.0556	0.0542	98	80-120	
Vanadium	mg/L	0.889	0.915	103	80-120	

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: [CALC] QC Batch Method:

Analysis Description: Hardness (Metals) Analysis Method: SM 2340 B-11

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116121

QC Batch Method: IC Prep W

Analysis Description: Sulfate

Analysis Method: EPA 300.0 Rev. 2.1

METHOD BLANK: T116121-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Chloride	mg/L	<0.15	0.15	
Fluoride	mg/L	<0.020	0.020	
Sulfate as SO4	mg/L	<0.60	0.60	

LABORATORY CONTROL SAMPLE: T116121-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Chloride	mg/L	5.00	5.02	100	90-110	
Fluoride	mg/L	1.00	1.02	102	90-110	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY	CONTROL	SAMPLE.	T116121_RS1
LABURATURI	CONTROL	SAIVIF LE.	1110121-031

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Sulfate as SO4	mg/L	5.00	5.14	103	90-110	

MATRIX SPIKE: T116121-MS1 Original: 21J1034-01

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Unit	Notes
Chloride	mg/L	233	500	794	112	80-120	
Fluoride	mg/L	12.6	100	107	94	80-120	
Sulfate as SO4	mg/L	533	500	1120	118	80-120	

MATRIX SPIKE: T116121-MS2 Original: 21J1034-07

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Unit	Notes
Chloride	mg/L	13.9	25.0	39.6	103	80-120	
Fluoride	mg/L	0.0942	5.00	4.60	90	80-120	
Sulfate as SO4	mg/L	29.6	25.0	54.1	98	80-120	

Trace Project ID: 21J1034
Client Project ID: MW Sampling

QC Batch: T116179 Analysis Description: Fluoride
QC Batch Method: IC Prep W Analysis Method: EPA 300.0 Rev. 2.1

METHOD BLANK: T116179-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Chloride	mg/L	<0.15	0.15	
Fluoride	mg/L	<0.020	0.020	

LABORATORY CONTROL SAMPLE: T116179-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Chloride	mg/L	5.00	5.03	101	90-110	
Fluoride	mg/L	1.00	1.01	101	90-110	

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116236 Analysis Description: Alkalinity, Bicarbonate

QC Batch Method: SM 2320 B-11 Analysis Method: SM 2320 B-11

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T116236-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Bicarbonate Alkalinity as CaCO3 at pH 4.5	mg/L	100	100	100	88-112	
Carbonate Alkalinity as CaCO3 at pH 8.2	mg/L	100	100	100	88-112	

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116366

QC Batch Method: SM 2320 B-11

Analysis Description: Alkalinity, Carbonate

Analysis Method: SM 2320 B-11

LABORATORY CONTROL SAMPLE: T116366-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Bicarbonate Alkalinity as CaCO3 at pH 4.5	mg/L	100	97.3	97	88-112	
Carbonate Alkalinity as CaCO3 at pH 8.2	mg/L	100	97.3	97	88-112	

SAMPLE DUPLICATE: T116366-DUP1

Original: 21J1034-02

Parameter	Units	Original Result	DUP Result	Max RPD RPD	Notes
Bicarbonate Alkalinity as CaCO3 at pH 4.5	mg/L	2150	218	163 200	
Carbonate Alkalinity as CaCO3 at pH 8.2	mg/L	0	<5.0	200	

Trace Project ID: 21J1034
Client Project ID: MW Sampling

QC Batch: T116175 Analysis Description: Total Dissolved Solids

QC Batch Method: SM 2540 C-11 Analysis Method: SM 2540 C-11

METHOD BLANK: T116175-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Total Dissolved Solids	mg/L	1.0	10	J

LABORATORY CONTROL SAMPLE: T116175-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Total Dissolved Solids	ma/L	500	543	109	80-120	_

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

SAMPLE DUPLICATE: T116175-DUP2

Original: 21J1034-01

Parameter	Units	Original Result	DUP Result	RPD	Max RPD	Notes	_
Total Dissolved Solids	mg/L	3600	2800	25	10	623	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Р	leas	se Si	gn										Ó	Trace No.	Project Name:	1 Day* *Results provided end of business day, requires prior approval. *Results provided end of business day, requires prior approval.	□ 3 Day*	Turnaround Requirements:	Email Address:	Office Phone:	City, State, Zip Code:	Mailing Address:	Report To: Paul Cederquist	Company Name: Grand Haven Board of Light & Power	Report Results To:	N. LOW	
		M		6								-	10,26:21	Date Collected)ay* ovided ei	L⊠ standard, 5-10 Days ☐ 3 Day*	ind Re	:SS:	œ.	Zip Code	ress:	Paul C	ame: G	esults		1
		Ĭ.	Released By	15:05	14:30	15:35	10:30	00:11	16:35	12:00	12:35	13:55	11:45	Time Collected	MW Sampling	nd of bus	-10 Days	quiren					ederqu	rand H	To:		
		$ \rangle$	sed By	S	Ö	S)	0		01	0	S	S	S	8	ampl	siness di		ents:					list	aven E			111
															ing	ay, requi								Board o) A
	(1							Z 200							res prior				Cell				of Light		ROFATORIES,	
In exec	,	K	9	_									_	Clier		approva				Cell Phone:				& Pow		ž I	
uting this	2.00	2	Receive	MW-10	MW-9	MW-8	MW-7	MW-6	MW-5	MW-4	MW-3	MW-2	MW-1R	Client Sample ID	la C									/er		1"	l
Chain c		7	Med By										~	Ë		SL = Sludge OI = Oil	S = Soil / Si W = Water	Matr									
f Custod																Sludge	S = Soil / Solid W = Water	Matrix Key:								≥ 2:	_ 1
In executing this Chain of Custody, the client acknowledges the terms as set forth at www.trace-labs.com/terms-of-agreement.	1	IZQQ!	O,												Sampled By:	و ج ت			Billing E	Phone Number:	City, Sta	Billing Address (if different):	Contact Name:	PO#	Bill To:	2241 Black Creek Road Muskegon, MI 49444-2673	CHAIN-OF-CUSTODY
ent ackn		12	ate	~								_	~	Metals Field Filtered (Y / N)	d By:	A = Air D = Drinking Water	WI = Wipes LW = Liquid Waste		Billing Email Address:	lumber:	City, State, Zip Code:	ddress (Name:		×	ick Cre	HAIN
owledge:		8326	Time	ď								_	∀	Matrix Number of	33	g Water	Waste		ress:		ode:	f differer				ek Roa	CHAIN-OF-CUSTODY RECORD
s the ter	4	55	ē										×	Cool HCI	E C							ť.				2673	USTO
ms as se													×	HCI Preservation										į.		5	DY R
t forth at			Re										×	Other T-B,Ca,Fe,	Sh As	Ba Be Cd	Cr	П									COR
www.tra			Released By	,								_	×	T- Co,Cu, F] [Fax Fax	
ce-labs.			×	•						_			×	T- TI, V,Zn,			.,	$\ \ $								Fax 888.979.4469 www.trace-labs.com	; , ,
com/tern					_								×	Diss.Metals Fluoride,Su				11								9.4469 labs.co	773 50
ns-of-agr				<u> </u>				_	_	_		_	X	рН				An			de e					3 8	5
eement.			Rece	-									$\times \times$	LLHg Radiums 22	26/228			Analysis Requested		Sam		Soil	Che	Logi	Tra		
			eceived By	<		_	_				_	_	×	Bicarb-Alk,	Carbo	nate-Alk		eques		Sampling Time:	МеОН	Volatiles	Checked By:	.ogged By:	Trace Use:	12	7
								6									-	sted		ne:		Presen		Ť	i.i.	5	Page_
				6										1							Low Level	Soil Volatiles Preserved (circle if applicable):	¥	Ž		100 H	
			Date	7.	7	6	_1	الـ	1	6	6	6	pH=	Remarks							<u>0</u>	e if appli				1	<u>-</u>
			Time	2 L	$\overline{\omega}$	74	101	6	5	74		. 48	pH=7.%0	v							Lab	cable):					-

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

21.11034	Sample Log In Checklist										
Grand Haven Board of Light Project Manager: Jon Mink	Date: 10 - 27 - 21 Time: 9:20 Logged by: □ Package Description: Coole(Package Temp °C Representative Sample Temp °C Date: 10 - 27 - 21 Lime: 9:20 Package Temp °C Package Temp °C Representative Sample Temp °C Package Temp °C										
Sample Receipt											
Yes No Received on ice or other coolant Ice still present upon receipt Custody seals present Trace Courier Client Drop-off	☐ Yes ☐ No Custody seals intact (if applicable) ☐ UPS ☐ Fed Ex ☐ US Mail ☐ Other										
Sample Condition											
Yes No N/A All sample containers arrived Sufficient sample to run requ Correct chemical preservativ Samples preserved at Trace Chemical preservation verific pH 0-2.5 (Lot: HC	rested analyses re added to samples See be loω red, check EMD pH test strip used (if applicable) 2029115) □ pH 11.0-13.0 (Lot: HC022540) □ Other										
Chain of Custody (COC)											
Yes No All bottle labels agree with COC COC filled out properly COC signed by client											
Notes: HNO3 added to O2-E at 10:00 on 10/27	, 03-E, 04-E, 05-E, 06-E, 10-E										
Na OH added to DH 1	0/37/al										
HNOz Preserved radiums	10/27/21 @ 13:11										
Form 70-A.40 Effective 10/2/21	TRACE Analytical Laboratories, Inc.										

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW -1R

Depth to Water: 6.23

Depth to Point: 18.2ft

Purge Start Time: 11:25

Field Personnel:

Purge Rate: _

Stabilization Criteria:

Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3%

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Pump Ušed: Peristaltic

Notes:

1.01 1.01 1.01	3,44 3,44 3,44	17.07 17.07 17.07	751 7.51	11:38 11:41 11:44

Specific

2

2

(Celsius)

Temperature

Depth to Water

5

2)

15.23

15.23

Reading Time

13:51

Depth to Water:

ニード

Well No.: MW 2

ORP (mV)

20

2

-129

0.0

Oxygen

Dissolved Conductivity

Turbidity(NTU)

0.0

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP Date: (1)~ み(6・1)

Depth to Point: 23.51'

Purge Start Time: 13.35

Field Personnel:

Purge Rate:

Stabilization Criteria:

Temperature: 3%

암

2

148

Dissolved Oxygen: 10% Spec. Conductivity: 3%

ORP: +/- 10 mV Turbidity: 10% or <1

Pump Used: Peristaltic

Notes:

(Celsius)

36

5

36

9851

Temperature

Specific

3.96

3.96

96

Depth to

Reading Time

Water

72

Ø

. در.

3

8

Oxygen

7

F

Dissolved Conductivity

ORP (mV)

100

1

1

2

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP Field Personnel:

Depth to Point: 20.5'

Depth to Water: _ Well No.: MW 3

Purge Start Time: \2:

0

Purge Rate: _ 300ml/min

Stabilization Criteria: Temperature: 3%

모

6

6

6

. _0

-0

2

Turbidity(NTU)

S

6

Dissolved Oxygen: 10% Spec. Conductivity: 3%

ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1

Notes:

Pump Used: Peristaltic

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Depth to Point: 18.01'

Purge Start Time: 11:40

Depth to Water:

Well No.: MW 4

Field Personnel:

Purge Rate: 3001WL/Min

Stabilization Criteria:

Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10%

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Pump Used: Peristaltic

Notes:

	Г.	_			Γ .		
pН	Turbidity(NTU)	F1981 F 200 21	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Depth to Water	Reading Time
6.74	0	-116	14.	2.56 2.56 2.56	16.68	674	
6.74 6.74 6.74	0.0	-116	.47	2.56	16.68 16.88 16.68	11.03	11:57 12:06
6.74	0.0	116	. H8	2.56	16.68	11.03	12:06
						**	
		3-3-400					

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 5

Depth to Water: 265

Depth to Point: 11.5'

Date: 10- 26-2

Purge Start Time: 10:15

Field Personnel:

Purge Rate:

(Celsius)

6.02

Temperature

Specific

76

Water Depth to

w

6

Reading Time

. 25

16.02 76 871

公丁 -)48 7.43

ORP (mV)

Oxygen

Dissolved Conductivity

Turbidity(NTU)

17.41 7.43

얼

Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3%

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Notes:

Stabilization Criteria:

Pump Used: Peristaltic

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Well No.: MW 6 Client: GHBLP Field Personnel:

Depth to Point: 16.55'

Purge Start Time: 10:40

Depth to Water:

Purge Rate:

Stabilization Criteria:

Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3%

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Pump Used: Peristaltic

Notes:

рH	Turbidity(NTU)	ORP (mV)		Ϊŧ	Temperature (Celsius)	Depth to Water	Reading Time
7.60	3	18	57	2.06	17.59	9.31	W:55
7.60 7.60 7.60	, 4	-18	.57 .57	2.06 2.06 2.06	17.59 17.59 17.59	9.31 9.31	10:53 10:56
7.60		-)8	.57	2.66	17.59	9.31	10:56
						8	

Conductivity Specific (Celsius)

15,24

15.24 15.24

5

Temperature

Depth to

Reading Time

B: 15

Water

ORP (mV)

7

Turbidity(NTU)

1

모

7.0

Oxygen

Dissolved

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Date: 10 - 26 - 21

Client: GHBLP

Well No.: MW 7

Depth to Water: 5.25

Purge Start Time: 10:00

Depth to Point: 18.81'

Field Personnel:

Purge Rate:

ORP: +/- 10 mV Turbidity: 10% or <1 Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3%

Notes:

Stabilization Criteria:

Pump Used: Peristaltic

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 8

Depth to Water: 4.04

Depth to Point: 11.85

Purge Start Time: 15:10

Field Personnel:

Purge Rate:

Stabilization Criteria:

Spec. Conductivity: 3% Temperature: 3%

Turbidity: 10% or <1 pH: +/- 0.1 Dissolved Oxygen: 10% ORP: +/- 10 mV

Pump Used: Peristaltic

Notes:

PH	Turbidity(NTU)	ORP (mV)					Reading Time
6.74	0.0	-137	0.0	h08.	15.72	4.86	15:25
6.74 6.74 6.74	0.0	-137 -137 -137	0.0	SOB: 508: HOB:	15.72 15.72 15.72	4.86 4.86 4.86	15:25 15:28 15:31
6.74	0.0	-137	0.0	. 805	15.72	4.86	15:31
						·	
							ī.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Depth to Water: 8.49 Well No.: MW 9

8

工

Depth to Point: 14.9

Purge Start Time: 14' 10

Date: 10-26-21

Field Personnel:

Purge Rate:_

Depth to ORP (mV) Oxygen Water 오 Turbidity(NTU) Conductivity Specific (Celsius) Dissolved Temperature Reading Time N 5

\$J

6

92

0.

2

a.

W

Stabilization Criteria:

Notes:

_

S

S

1

S

二

5

I

5

1

2

10

0

56

56

2

S

Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3%

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Pump Used: Peristaltic

CERTIFICATE OF ANALYSIS

ORP: +/- 10 mV Dissolved Oxygen: 10%

Turbidity: 10% or <1 pH: +/- 0.1

Specific (Celsius)

ORP (mV) Oxygen

Dissolved Conductivity

25

20

Turbidity(NTU)

198

198

198

엄

7.42

7.42

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 10

Depth to Water: 5.32

Depth to

Reading Time

SS:14

14:58

20.0

Water

.07

107

Temperature

90

90

Date: 10-26-2

Depth to Point: 13.00

Field Personnel:

Purge Start Time: 14:45

Purge Rate: 300000 min

Spec. Conductivity: 3% Temperature: 3% Stabilization Criteria:

Notes:

Pump Used: Peristaltic

CERTIFICATE OF ANALYSIS

231-773-5998 Phone

888-979-4469 Fax

www.trace-labs.com

November 30, 2021

Mr. Paul Cederquist Grand Haven Board of Light and Power-Monthly MWs 1700 Eaton Drive Grand Haven, MI 49417

RE: Trace Project 21J1032 & 21J1034

Client Project Impoundment & MW Sampling

Dear Mr. Cederquist:

Enclosed are your analytical results. The results of this report relate only to the samples listed in the body of this report.

All reports were examined through Trace's validation process to ensure that requirements for quality and completeness were satisfied. All reported analytical results were obtained in accordance with the methods referenced on the reports. Every practical effort was made to meet the reporting limit specifications for this work, however, some results may have raised reporting limits to correct for percent solids.

The results were obtained from Eurofins.

For clients that require NELAC Accreditation, Trace certifies that these test results meet all requirements of the NELAC Standard, except for those analytes with a "N" notation. These analytes have not been evaluated by NELAC at Trace's discretion and will not be reported unless requested by client.

If you have questions concerning this report, please contact me at 231.773.5998 or by email at jmink@trace-labs.com.

Sincerely,

Jon Mink

Senior Project Manager

Enclosures

NJDEP Accreditation No. MI008

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673

SAMPLE SUMMARY

Trace Project ID:

21J1032

Client Project ID:

Impoundment Sampling

Trace ID	Sample ID	Matrix	Collected By	Date Collected	Date Received
21J1032-01	Unit 1/2 Near MW-5	Ground Water	TRACE-EB/TB	10/26/21 11:25	10/27/21 08:52
21J1032-02	Unit 1/2 Near SG-2	Ground Water	TRACE-EB/TB	10/26/21 15:25	10/27/21 08:52

SAMPLE SUMMARY

Trace Project ID:

21J1034

Client Project ID:

MW Sampling

Trace ID	Sample ID	Matrix	Collected By	Date Collected	Date Received
21J1034-01	MW-1R	Ground Water	TRACE-EB/TB	10/26/21 11:45	10/27/21 09:16
21J1034-02	MW-2	Ground Water	TRACE-EB/TB	10/26/21 13:55	10/27/21 09:16
21J1034-03	MW-3	Ground Water	TRACE-EB/TB	10/26/21 12:35	10/27/21 09:16
21J1034-04	MW-4	Ground Water	TRACE-EB/TB	10/26/21 12:00	10/27/21 09:16
21J1034-05	MW-5	Ground Water	TRACE-EB/TB	10/26/21 10:35	10/27/21 09:16
21J1034-06	MW-6	Ground Water	TRACE-EB/TB	10/26/21 11:00	10/27/21 09:16
21J1034-07	MW-7	Ground Water	TRACE-EB/TB	10/26/21 10:20	10/27/21 09:16
21J1034-08	MW-8	Ground Water	TRACE-EB/TB	10/26/21 15:35	10/27/21 09:16
21J1034-09	MW-9	Ground Water	TRACE-EB/TB	10/26/21 14:30	10/27/21 09:16
21J1034-10	MW-10	Ground Water	TRACE-EB/TB	10/26/21 15:05	10/27/21 09:16

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673

AN EXPLANATION OF TERMS AND SYMBOLS WHICH MAY OCCUR IN THIS REPORT

DEFINITIONS

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

MS Matrix Spike

MSD Matrix Spike Duplicate
RPD Relative Percent Difference

DUP Matrix Duplicate

RDL Reporting Detection Limit
MCL Maximum Contamination Limit
TIC Tentatively Identified Compound

<, ND or U Indicates the compound was analyzed for but not detected

* Indicates a result that exceeds its associated MCL or Surrogate control limits

N Indicates that the compound has not been evaluated by NELAC

NA Indicates that the compound is not available.

Environment Testing America

ANALYTICAL REPORT

Eurofins Eaton Analytical - South Bend 110 S Hill Street South Bend, IN 46617 Tel: (574)233-4777

Laboratory Job ID: 810-6209-1

Client Project/Site: Trace-21J1034 & 21J1032

Revision: 1

For:

Trace Analytical Laboratories 2241 Black Creek Road Muskegon, Michigan 49444

Attn: Jon Mink

Karew Fullner

Authorized for release by: 11/29/2021 6:14:27 PM

Karen Fullmer, Project Manager (574)233-4777

karen.fullmer@eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

Δ

5

6

0

9

10

12

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032 Laboratory Job ID: 810-6209-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	12
QC Association Summary	15
Lab Chronicle	16
Certification Summary	20
Method Summary	21
Sample Summary	22
Chain of Custody	23
Receipt Checklists	27

-6

4

5

7

9

10

12

13

Definitions/Glossary

Client: Trace Analytical Laboratories Job ID: 810-6209-1

Project/Site: Trace-21J1034 & 21J1032

Qualifiers

Rad Qualifier Qu

Qualifier Description

U Result is less than the sample detection limit.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

4

Ę

0

0

0

10

13

Case Narrative

Client: Trace Analytical Laboratories
Project/Site: Trace-21J1034 & 21J1032

Job ID: 810-6209-1

Job ID: 810-6209-1

Laboratory: Eurofins Eaton Analytical - South Bend

Narrative

Job Narrative 810-6209-1

Comments

No additional comments.

Revision

The report being provided is a revision of the original report sent on 11/22/2021. The report (revision 1) is being revised due to: Project was logged in as drinking water matrix by accident. Report revised to change matrix..

Receipt

The samples were received on 10/28/2021 9:45 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 14.0° C and 14.2° C.

RAD

Method SM7500 Ra D: The barium carrier recovery is outside the upper control limit (110%) <OR> lower control for the following sample(s): 6209-A-11-D Re-analysis is required.

Method SM7500 Ra D: The barium carrier recovery 69.2mg is outside the established limits of 40.5-64.8mg for the following sample: MW-9 (810-6209-11). Re-analysis is required.

Method SM7500 Ra D: The barium carrier recovery 69.2mg is outside the established limits of 40.5-64.8mg for the following sample: MW-9 (810-6209-11). Re-analysis is required.Insufficient sample was available for re-analysis and matrix is dirty; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

0

8

9

10

12

13

Detection Summary

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032	Job ID: 810-6209-1
Client Sample ID: Unit 1/2 Near MW-5	Lab Sample ID: 810-6209-1
No Detections.	
Client Sample ID: Unit 1/2 Near SG-2	Lab Sample ID: 810-6209-2
No Detections.	
Client Sample ID: MW-1R	Lab Sample ID: 810-6209-3
No Detections.	
Client Sample ID: MW-2	Lab Sample ID: 810-6209-4
No Detections.	
Client Sample ID: MW-3	Lab Sample ID: 810-6209-5
No Detections.	
Client Sample ID: MW-4	Lab Sample ID: 810-6209-6
No Detections.	
Client Sample ID: MW-5	Lab Sample ID: 810-6209-7
No Detections.	
Client Sample ID: MW-6	Lab Sample ID: 810-6209-8
No Detections.	
Client Sample ID: MW-7	Lab Sample ID: 810-6209-9
No Detections.	
Client Sample ID: MW-8	Lab Sample ID: 810-6209-10
No Detections.	
Client Sample ID: MW-9	Lab Sample ID: 810-6209-11
No Detections.	
Client Sample ID: MW-10	Lab Sample ID: 810-6209-12
_	

No Detections.

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032

Lab Sample ID: 810-6209-1

Client Sample ID: Unit 1/2 Near MW-5 Date Collected: 10/26/21 11:25

Date Received: 10/28/21 09:45

Matrix: Ground Water

Job ID: 810-6209-1

Method: 7500 Ra D - Radium 226 Radium 228	8 Combined
Co	unt Total

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.000	U	0.72719		1.00	0.620	pCi/L		11/12/21 13:20	1

+ 228

Method: SM7500 Ra B - Radium-226

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.290	U	0.380		1.00	0.410	pCi/L	11/02/21 14:10	11/05/21 10:31	1

Method: SM7500 Ra D - Radium-228

			Count	iotai						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	0.500	U	0.620		1.00	0.620	pCi/L	11/02/21 14:13	11/11/21 14:44	1

Client Sample ID: Unit 1/2 Near SG-2

Lab Sample ID: 810-6209-2 Date Collected: 10/26/21 15:25 **Matrix: Ground Water** Date Received: 10/28/21 09:45

Method: 7500 Ra D - Radium 226 Radium 228 Combined

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.000	U	0.60745		1.00	0.550	pCi/L		11/12/21 13:20	1

Method: SM7500 Ra B - Radium-226

			Count	Total					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.310	U	0.330		1.00	0.330 pCi/L	11/02/21 14:10	11/05/21 10:31	1

Method: SM7500 Ra D - Radium-228

١				Count	Total						
				Uncert.	Uncert.						
	Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Į	Ra-228	-0.410	U	0.510		1.00	0.550	pCi/L	11/02/21 14:13	11/11/21 14:44	1

Client Sample ID: MW-1R	Lab Sample ID: 810-6209-3
Date Collected: 10/26/21 11:45	Matrix: Ground Water
Date Received: 10/28/21 09:45	

Method: 7500 Ra D - Radium 226 Radium 228 Combined

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.410		0.51088		1.00	0.410	pCi/L		11/12/21 13:20	1

Eurofins Eaton Analytical - South Bend

Job ID: 810-6209-1

Client Sample ID: MW-1R Lab Sample ID: 810-6209-3 Date Collected: 10/26/21 11:45

Matrix: Ground Water

Date Received: 10/28/21 09:45

Method: SM75	500 Ra B - Radium-226								
		Count Uncert.	Total Uncert.						
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.410	0.330		1.00	0.310	pCi/L	11/02/21 14:10	11/05/21 10:31	1
Method: SM75	500 Ra D - Radium-228								

Count Total Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac 11/02/21 14:13 11/11/21 14:44 0.0800 U 0.390 1.00 Ra-228 0.410 pCi/L

Client Sample ID: MW-2 Lab Sample ID: 810-6209-4 Date Collected: 10/26/21 13:55 **Matrix: Ground Water**

Date Received: 10/28/21 09:45

Method: 7500 Ra D	- Radium	226 Radiu	ım 228 Coı	mbined						
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	2.27		0.91351		1.00	0.610	pCi/L		11/12/21 13:20	1

Method: SM750	00 Ra B - Radi	um-226								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-226	1.00		0.680		1.00	0.610	pCi/L	11/02/21 14:10	11/05/21 10:31	1

Method: SM7500 R	a D - Radi	um-228								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	1.27		0.610		1.00	0.580	pCi/L	11/02/21 14:13	11/11/21 14:44	1

Client Sample ID: MW-3 Lab Sample ID: 810-6209-5 Date Collected: 10/26/21 12:35 **Matrix: Ground Water** Date Received: 10/28/21 09:45

Method: 7500 Ra D	- Radium	226 Radi	um 228 Co	mbined						
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.01		0.68593		1.00	0.540	pCi/L		11/12/21 13:20	1

Method: SM7500 Ra B - Radium-226											
			Count	Total							
			Uncert.	Uncert.							
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac	
Ra-226	0.310	U	0.490		1.00	0.540	pCi/L	11/02/21 14:10	11/05/21 10:31	1	

Client Sample ID: MW-3 Lab Sample ID: 810-6209-5

Date Collected: 10/26/21 12:35 Matrix: Ground Water

Date Received: 10/28/21 09:45

Method:	SM7500	Ra D -	Radium-228

			Count	iotai						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	1.01		0.480		1.00	0.460	pCi/L	11/02/21 14:13	11/11/21 14:44	1

Client Sample ID: MW-4 Lab Sample ID: 810-6209-6

Date Collected: 10/26/21 12:00 Matrix: Ground Water

Date Received: 10/28/21 09:45

Method: 7500 Ra D - Radium 226 Radium 228 Combined

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.87		0.67209		1.00	0.460	pCi/L		11/12/21 13:20	1
226 + 228										

Method: SM7500 Ra B - Radium-226

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC (Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.910		0.460		1.00	0.360	pCi/L	11/02/21 14:10	11/05/21 10:31	1
	Analyte	Analyte Result	Analyte Result Qualifier	Count Uncert. Analyte Result Qualifier (2σ+/-)	Count Total Uncert. Uncert. Analyte Result Qualifier (2\sigmu+/-) (2\sigmu+/-)	Count Total Uncert. Uncert. Analyte Result Qualifier (2σ+/-) (2σ+/-) RL	Count Total Uncert. Uncert. Analyte Result Qualifier (2σ+/-) (2σ+/-) RL MDC	Count Total Uncert. Uncert. Analyte Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit	Count Total Uncert. Uncert. Analyte Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared	Count Total Uncert. Uncert. Analyte Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared Analyzed

Method: SM7500 Ra D - Radium-228

		Count	Total					
		Uncert.	Uncert.					
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Ra-228	0.960	0.490		1.00	0.460 pCi/L	11/02/21 14:13	11/11/21 14:44	1

Client Sample ID: MW-5

Date Collected: 10/26/21 10:35

Lab Sample ID: 810-6209-7

Matrix: Ground Water

Date Collected: 10/26/21 10:35 Date Received: 10/28/21 09:45

Method: 7500 Ra D - Radium 226 Radium 228 Combined

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.000	U	0.60539		1.00	0.530	pCi/L		11/12/21 13:20	1

Method: SM7500 Ra B - Radium-226

			Count	iotai						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac	
Ra-226	0.160	U	0.310		1.00	0.350 pCi/L	11/02/21 14:10	11/05/21 10:31	1	

Method: SM7500 Ra D - Radium-228

			Count	iotai					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Ra-228	0.340	U	0.520		1.00	0.530 pCi/L	11/02/21 14:13	11/11/21 14:44	1

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032

Client Sample ID: MW-6

Date Collected: 10/26/21 11:00 Date Received: 10/28/21 09:45 Lab Sample ID: 810-6209-8

Matrix: Ground Water

Job ID: 810-6209-1

Method: 7500 Ra D - Radium 226 Radiur	n 228 Com	bined
	0	T-4-1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.000	U	0.76485		1.00	0.630	pCi/L		11/12/21 13:20	1

Method: SM7500 Ra B - Radium-226 Count Total Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ **MDC** Unit RL Prepared Analyzed Dil Fac Ra-226 0.0600 U 0.570 1.00 0.370 pCi/L 11/02/21 14:10 11/12/21 11:43

Method: SM7500 Ra D - Radium-228 Count Total Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac 11/02/21 14:13 11/11/21 14:44 Ra-228 -2.15 U 0.510 1.00 0.630 pCi/L

Client Sample ID: MW-7 Lab Sample ID: 810-6209-9

Date Received: 10/28/21 09:45

Date Collected: 10/26/21 10:20 **Matrix: Ground Water**

Method: 7500 Ra D - Radium 226 Radium 228 Combined

- 1											
				Count	Total						
				Uncert.	Uncert.						
	Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
	Combined Radium	1.33		0.70434		1.00	0.490	pCi/L		11/12/21 13:20	1
1	226 + 228										

Method: SM7500 Ra B - Radium-226 Total Count Uncert. Uncert.

MDC Unit **Analyte** Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL Prepared Analyzed Dil Fac Ra-226 0.790 0.550 1.00 0.490 pCi/L 11/02/21 14:10 11/05/21 10:31

Method: SM7500 Ra D - Radium-228 Total Count Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac 11/02/21 14:13 11/11/21 14:44 Ra-228 0.440 1.00 0.440 pCi/L 0.540

Client Sample ID: MW-8 Lab Sample ID: 810-6209-10

Date Collected: 10/26/21 15:35 **Matrix: Ground Water** Date Received: 10/28/21 09:45

Method: 7500 Ra D	- Radium	226 Radii	um 228 Co	mbined						
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.860		0.63640		1.00	0.530	pCi/L		11/12/21 13:20	1

0.450

Project/Site: Trace-21J1034 & 21J1032

Client Sample ID: MW-8

Lab Sample ID: 810-6209-10

<u>11/02/21 14:13</u> <u>11/11/21 14:44</u>

Matrix: Ground Water

Job ID: 810-6209-1

Date Collected: 10/26/21 15:35 Date Received: 10/28/21 09:45

Method: SM75	00 Ra B - Radium-226	Count Uncert.	Total Uncert.						
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.860	0.450		1.00	0.350	pCi/L	11/02/21 14:10	11/05/21 10:31	1
_ Method: SM75	600 Ra D - Radium-228								
		Count	Total						
		Uncert.	Uncert.						
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac

Client Sample ID: MW-9

Date Collected: 10/26/21 14:30

Lab Sample ID: 810-6209-11

Matrix: Ground Water

1.00

0.530 pCi/L

Date Received: 10/28/21 09:45

-1.22 U

Ra-228

Method: 7500 Ra D	- Radium	226 Radii	um 228 Co	mbined						
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	2.56		0.69527		1.00	0.470	pCi/L		11/11/21 16:33	1

Method: SM/300 K	a B - Raui	uIII-226	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.840		0.450		1.00	0.370	pCi/L	11/02/21 14:16	11/05/21 11:46	1

Method: SM7500 R	a D - Radi	um-228								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	1.72		0.530		1.00	0.470	pCi/L	11/02/21 14:19	11/11/21 12:18	1

Client Sample ID: MW-10

Date Collected: 10/26/21 15:05

Lab Sample ID: 810-6209-12

Matrix: Ground Water

Date Received: 10/28/21 09:45

		Count	Total					
		Uncert.	Uncert.					
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	2.03	0.71505		1.00	0.500 pCi/L		11/11/21 16:33	1

Method: SM7500 R	a B - Radi	um-226								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.930		0.480		1.00	0.380	pCi/L	11/02/21 14:16	11/05/21 11:46	1

Client Sample Results

Client: Trace Analytical Laboratories Job ID: 810-6209-1

Project/Site: Trace-21J1034 & 21J1032

Client Sample ID: MW-10 Lab Sample ID: 810-6209-12

Date Collected: 10/26/21 15:05

Date Received: 10/28/21 09:45

Matrix: Ground Water

Method: SM75	00 Ra D - Radi	um-228								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	1.10		0.530		1.00	0.500	pCi/L	11/02/21 14:19	11/11/21 12:18	1

4

_

8

9

11

13

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032 Job ID: 810-6209-1

.

Method:	SIMI	500 F	ka B -	Radium	1-226

Lab Sample ID: MB 810-6416/1-A

Matrix: Drinking Water Analysis Batch: 7018

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 6416

Count Total мв мв Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Ra-226 0.07000 U 0.250 1.00 0.310 pCi/L 11/02/21 14:10 11/05/21 10:31

Lab Sample ID: LCS 810-6416/2-A

Matrix: Drinking Water Analysis Batch: 7018

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 6416

Total Spike LCS LCS Uncert. %Rec. Analyte Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec I imits Ra-226 8.73 1.00 0.370 pCi/L 90 - 110 7.940 91

Lab Sample ID: 810-6209-9 MS

Matrix: Ground Water Analysis Batch: 7018

Client Sample ID: MW-7

Prep Type: Total/NA Prep Batch: 6416

Total Spike MS MS Uncert. %Rec. Sample Sample Analyte Added RL **MDC** Unit %Rec Limits Result Qual Result Qual $(2\sigma + / -)$ Ra-226 0 790 9 11 8 750 1 00 0.360 pCi/L 96 80 - 120

Lab Sample ID: 810-6209-9 MSD

Matrix: Ground Water Analysis Batch: 7018

Client Sample ID: MW-7 Prep Type: Total/NA

Prep Batch: 6416

Total Sample Sample Spike MSD MSD Uncert. %Rec. **RPD** Added **MDC** Unit Analyte Result Qual Result Qual $(2\sigma + / -)$ RL %Rec Limits **RPD** Limit Ra-226 0.790 8.95 8.080 1.00 0.330 pCi/L 80 - 120

Lab Sample ID: MB 810-6420/1-A

Matrix: Drinking Water Analysis Batch: 7017

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 6420

Count Total MB MB Uncert. Uncert. Result Qualifier Analyte $(2\sigma + / -)$ $(2\sigma + / -)$ RI **MDC** Unit Dil Fac Prepared Analyzed Ra-226 0.5800 0.400 1.00 0.350 pCi/L 11/02/21 14:16 11/05/21 11:46

Lab Sample ID: LCS 810-6420/2-A

Matrix: Drinking Water Analysis Batch: 7017

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 6420

Total LCS LCS **Spike** Uncert. %Rec. Analyte Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Ra-226 8.73 8.170 1.00 0.360 pCi/L 94 90 - 110

Lab Sample ID: 810-6209-11 MS

Matrix: Ground Water Analysis Batch: 7017

Client Sample ID: MW-9 Prep Type: Total/NA

Prep Batch: 6420

Total Spike MS MS Uncert. %Rec. Sample Sample Added Analyte Result Qual Result Qual $(2\sigma + / -)$ RL MDC Unit %Rec Limits Ra-226 0.840 9.04 1.00 80 - 120 8.630 0.400 pCi/L

Eurofins Eaton Analytical - South Bend

2

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032 Job ID: 810-6209-1

Method: SM7500 Ra B - Radium-226

Method: SM7500 Ra B - Radium-226

Lab Sample ID: 810-6209-11 MSD

Client Sample ID: MW-9

Matrix: Ground Water
Analysis Batch: 7017
Prep Batch: 6420

Total Spike MSD MSD %Rec. **RPD** Sample Sample Uncert. RPD Analyte Result Qual Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Limit Ra-226 0.840 8.86 7.400 1.00 0.350 pCi/L 80 - 120 15 20

Method: SM7500 Ra D - Radium-228

Lab Sample ID: MB 810-6417/1-A

Matrix: Drinking Water

Analysis Batch: 7201

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 6417

Count Total MB MB Uncert. Uncert. $(2\sigma + / -)$ Analyte Result Qualifier $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac 11/02/21 14:13 11/11/21 15:31 Ra-228 -0.3600 U 0.390 1.00 0.440 pCi/L

Lab Sample ID: LCS 810-6417/2-A Client Sample ID: Lab Control Sample Matrix: Drinking Water Prep Type: Total/NA

Matrix: Drinking Water

Analysis Batch: 7201

Prep Batch: 6417

Total

Spike LCS LCS Uncert. %Rec. **Analyte** Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits 80 - 120 Ra-228 8.84 7.400 1.00 0.370 pCi/L 84

Lab Sample ID: 810-6209-10 MS

Matrix: Ground Water

Analysis Batch: 7201

Client Sample ID: MW-8

Prep Type: Total/NA

Prep Batch: 6417

Total Sample Sample Spike MS MS Uncert. %Rec. Result Qual Added RL **MDC** Unit %Rec **Analyte** Result Qual $(2\sigma + / -)$ Limits -1.22 U Ra-228 8.98 8.550 1.00 0.370 pCi/L 70 - 130

Lab Sample ID: 810-6209-10 MSD

Matrix: Ground Water

Client Sample ID: MW-8

Prep Type: Total/NA

Analysis Batch: 7201 Prep Batch: 6417

Total Sample Sample Spike MSD MSD Uncert. %Rec. **RPD** Analyte Result Qual Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits **RPD** Limit Ra-228 -1.22 U 9.15 8.240 1.00 0.490 pCi/L 70 - 130 20 90

Lab Sample ID: MB 810-6421/1-A Client Sample ID: Method Blank

Matrix: Drinking Water Prep Type: Total/NA
Analysis Batch: 7161 Prep Batch: 6421

Count Total MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Ra-228 0.1000 U 0.430 1.00 0.450 pCi/L 11/02/21 14:19 11/11/21 12:18

QC Sample Results

Client: Trace Analytical Laboratories Job ID: 810-6209-1

Project/Site: Trace-21J1034 & 21J1032

Method: SM7500 Ra D - Radium-228 (Continued)

Lab Sample ID: LCS 810-6421/2-A	Client Sample ID: Lab Control Sample
Matrix: Drinking Water	Prep Type: Total/NA
Analysis Batch: 7161	Prep Batch: 6421

A	nalysis Batch: 7161								Prep Bate	ch: 642
					Total					
		Spike	LCS	LCS	Uncert.				%Rec.	
Aı	nalyte	Added	Result	Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits	
Ra	a-228	8.84	9.590		- <u> </u>	1.00	0.470 pCi/L	108	80 - 120	

4

6

8

10

11

13

QC Association Summary

Client: Trace Analytical Laboratories Job ID: 810-6209-1 Project/Site: Trace-21J1034 & 21J1032

Rad

Prep Batch: 6416

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
810-6209-1	Unit 1/2 Near MW-5	Total/NA	Ground Water	RAD Prep	
810-6209-2	Unit 1/2 Near SG-2	Total/NA	Ground Water	RAD Prep	
810-6209-3	MW-1R	Total/NA	Ground Water	RAD Prep	
810-6209-4	MW-2	Total/NA	Ground Water	RAD Prep	
810-6209-5	MW-3	Total/NA	Ground Water	RAD Prep	
810-6209-6	MW-4	Total/NA	Ground Water	RAD Prep	
810-6209-7	MW-5	Total/NA	Ground Water	RAD Prep	
810-6209-8	MW-6	Total/NA	Ground Water	RAD Prep	
810-6209-9	MW-7	Total/NA	Ground Water	RAD Prep	
810-6209-10	MW-8	Total/NA	Ground Water	RAD Prep	
MB 810-6416/1-A	Method Blank	Total/NA	Drinking Water	RAD Prep	
LCS 810-6416/2-A	Lab Control Sample	Total/NA	Drinking Water	RAD Prep	
810-6209-9 MS	MW-7	Total/NA	Ground Water	RAD Prep	
810-6209-9 MSD	MW-7	Total/NA	Ground Water	RAD Prep	

Prep Batch: 6417

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
810-6209-1	Unit 1/2 Near MW-5	Total/NA	Ground Water	RAD Prep	_
810-6209-2	Unit 1/2 Near SG-2	Total/NA	Ground Water	RAD Prep	
810-6209-3	MW-1R	Total/NA	Ground Water	RAD Prep	
810-6209-4	MW-2	Total/NA	Ground Water	RAD Prep	
810-6209-5	MW-3	Total/NA	Ground Water	RAD Prep	
810-6209-6	MW-4	Total/NA	Ground Water	RAD Prep	
810-6209-7	MW-5	Total/NA	Ground Water	RAD Prep	
810-6209-8	MW-6	Total/NA	Ground Water	RAD Prep	
810-6209-9	MW-7	Total/NA	Ground Water	RAD Prep	
810-6209-10	MW-8	Total/NA	Ground Water	RAD Prep	
MB 810-6417/1-A	Method Blank	Total/NA	Drinking Water	RAD Prep	
LCS 810-6417/2-A	Lab Control Sample	Total/NA	Drinking Water	RAD Prep	
810-6209-10 MS	MW-8	Total/NA	Ground Water	RAD Prep	
810-6209-10 MSD	MW-8	Total/NA	Ground Water	RAD Prep	

Prep Batch: 6420

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
810-6209-11	MW-9	Total/NA	Ground Water	RAD Prep	
810-6209-12	MW-10	Total/NA	Ground Water	RAD Prep	
MB 810-6420/1-A	Method Blank	Total/NA	Drinking Water	RAD Prep	
LCS 810-6420/2-A	Lab Control Sample	Total/NA	Drinking Water	RAD Prep	
810-6209-11 MS	MW-9	Total/NA	Ground Water	RAD Prep	
810-6209-11 MSD	MW-9	Total/NA	Ground Water	RAD Prep	

Prep Batch: 6421

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
810-6209-11	MW-9	Total/NA	Ground Water	RAD Prep
810-6209-12	MW-10	Total/NA	Ground Water	RAD Prep
MB 810-6421/1-A	Method Blank	Total/NA	Drinking Water	RAD Prep
LCS 810-6421/2-A	Lab Control Sample	Total/NA	Drinking Water	RAD Prep

Page 15 of 27

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032

Client Sample ID: Unit 1/2 Near MW-5

Date Collected: 10/26/21 11:25 Date Received: 10/28/21 09:45 Lab Sample ID: 810-6209-1

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D			7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7018	11/05/21 10:31	JB	EA SB
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Client Sample ID: Unit 1/2 Near SG-2 Lab Sample ID: 810-6209-2

Date Collected: 10/26/21 15:25 Date Received: 10/28/21 09:45

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D			7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7018	11/05/21 10:31	JB	EA SB
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Client Sample ID: MW-1R Lab Sample ID: 810-6209-3 **Matrix: Ground Water**

Date Collected: 10/26/21 11:45 Date Received: 10/28/21 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D			7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7018	11/05/21 10:31	JB	EA SB
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Client Sample ID: MW-2 Lab Sample ID: 810-6209-4 **Matrix: Ground Water**

Date Collected: 10/26/21 13:55 Date Received: 10/28/21 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D		1	7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7018	11/05/21 10:31	JB	EA SB
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Eurofins Eaton Analytical - South Bend

Job ID: 810-6209-1

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032

Client Sample ID: MW-3

Lab Sample ID: 810-6209-5

Matrix: Ground Water

Date Collected: 10/26/21 12:35 Date Received: 10/28/21 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D		1	7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7018	11/05/21 10:31	JB	EA SB
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Lab Sample ID: 810-6209-6

Matrix: Ground Water

Date Collected: 10/26/21 12:00 Date Received: 10/28/21 09:45

Client Sample ID: MW-4

Batch **Batch** Dilution Batch **Prepared Prep Type** Туре Method Run Factor Number or Analyzed Analyst Lab 7500 Ra D Total/NA EA SB Analysis 7233 11/12/21 13:20 JB Total/NA RAD Prep 6416 11/02/21 14:10 ML EA SB Prep Total/NA SM7500 Ra B 7018 11/05/21 10:31 JB EA SB Analysis 1 Total/NA Prep RAD Prep 6417 11/02/21 14:13 ML EA SB EA SB Total/NA Analysis SM7500 Ra D 1 7201 00(Start) 11/11/21 14:44 (End) 11/11/21 17:44

Client Sample ID: MW-5

Date Collected: 10/26/21 10:35

Date Received: 10/28/21 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D		1	7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7018	11/05/21 10:31	JB	EA SB
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Client Sample ID: MW-6

Date Collected: 10/26/21 11:00

Date Received: 10/28/21 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D			7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7223		JB	EA SB
					(Start)	11/12/21 11:43		
					(End)	11/12/21 12:13		

Eurofins Eaton Analytical - South Bend

2

4

6

8

40

11

13

14

Lab Sample ID: 810-6209-7

Lab Sample ID: 810-6209-8

Matrix: Ground Water

Matrix: Ground Water

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032

Client Sample ID: MW-6

Date Collected: 10/26/21 11:00 Date Received: 10/28/21 09:45 Lab Sample ID: 810-6209-8

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Lab Sample ID: 810-6209-9

Matrix: Ground Water

Date Collected: 10/26/21 10:20 Date Received: 10/28/21 09:45

Client Sample ID: MW-7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D			7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7018	11/05/21 10:31	JB	EA SB
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Client Sample ID: MW-8 Lab Sample ID: 810-6209-10 Date Collected: 10/26/21 15:35 **Matrix: Ground Water**

Date Received: 10/28/21 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D		1	7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7018	11/05/21 10:31	JB	EA SB
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Client Sample ID: MW-9 Lab Sample ID: 810-6209-11 Date Collected: 10/26/21 14:30 **Matrix: Ground Water**

Date Received: 10/28/21 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D			7165	11/11/21 16:33	JB	EA SB
Total/NA	Prep	RAD Prep			6420	11/02/21 14:16	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7017	11/05/21 11:46	JB	EA SB
Total/NA	Prep	RAD Prep			6421	11/02/21 14:19	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7161	11/11/21 12:18	00	EA SB

Lab Chronicle

Client: Trace Analytical Laboratories Job ID: 810-6209-1

Project/Site: Trace-21J1034 & 21J1032

Client Sample ID: MW-10 Lab Sample ID: 810-6209-12

Date Collected: 10/26/21 15:05

Date Received: 10/28/21 09:45

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D		1	7165	11/11/21 16:33	JB	EA SB
Total/NA	Prep	RAD Prep			6420	11/02/21 14:16	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7017	11/05/21 11:46	JB	EA SB
Total/NA	Prep	RAD Prep			6421	11/02/21 14:19	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7161	11/11/21 12:18	00	EA SB

Laboratory References:

EA SB = Eurofins Eaton Analytical - South Bend, 110 S Hill Street, South Bend, IN 46617, TEL (574)233-4777

_

6

ا

9

10

12

13

Accreditation/Certification Summary

Client: Trace Analytical Laboratories Job ID: 810-6209-1

Project/Site: Trace-21J1034 & 21J1032

Laboratory: Eurofins Eaton Analytical - South Bend

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
Michigan		State	9926	03-22-22
The following analyte the agency does not		report, but the laboratory is not c	ertified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
7500 Ra D		Ground Water	Combined Radium 226 + 228	3
7500 Ra D SM7500 Ra B	RAD Prep	Ground Water Ground Water	Combined Radium 226 + 228 Ra-226	3

4

7

0

10

11

40

Method Summary

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032 Job ID: 810-6209-1

Method	Method Description	Protocol	Laboratory
7500 Ra D	Radium 226 Radium 228 Combined	SM	EA SB
SM7500 Ra B	Radium-226	SM	EA SB
SM7500 Ra D	Radium-228	SM	EA SB
RAD Prep	Preparation, Radiologicals	None	EA SB

Protocol References:

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

EA SB = Eurofins Eaton Analytical - South Bend, 110 S Hill Street, South Bend, IN 46617, TEL (574)233-4777

3

4

5

6

ŏ

4 0

11

40

Sample Summary

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032

Job I	D:	810)-620	09-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
810-6209-1	Unit 1/2 Near MW-5	Ground Water	10/26/21 11:25	10/28/21 09:45
810-6209-2	Unit 1/2 Near SG-2	Ground Water	10/26/21 15:25	10/28/21 09:45
810-6209-3	MW-1R	Ground Water	10/26/21 11:45	10/28/21 09:45
810-6209-4	MW-2	Ground Water	10/26/21 13:55	10/28/21 09:45
810-6209-5	MW-3	Ground Water	10/26/21 12:35	10/28/21 09:45
810-6209-6	MW-4	Ground Water	10/26/21 12:00	10/28/21 09:45
810-6209-7	MW-5	Ground Water	10/26/21 10:35	10/28/21 09:45
310-6209-8	MW-6	Ground Water	10/26/21 11:00	10/28/21 09:45
810-6209-9	MW-7	Ground Water	10/26/21 10:20	10/28/21 09:45
810-6209-10	MW-8	Ground Water	10/26/21 15:35	10/28/21 09:45
810-6209-11	MW-9	Ground Water	10/26/21 14:30	10/28/21 09:45
810-6209-12	MW-10	Ground Water	10/26/21 15:05	10/28/21 09:45

Eaton Analytical

110 S. Hill Street South Bend, IN 46617 T: 1.800.332.4345

F: 1.574.233.8207

Order#

Batch #

						010-0	209 Chair	1 of Custo	ау							
www.EurofinsUS.com/Eaton						CHAI	N					Page		of		
Shaded area for	r EEA us	e only				CHAI	IN OF	COST	JUT KECOI							
REPORT TO:					SAMPLER (Signature)				PWS ID #	STATE (sample origin)	PROJECT NAME	PC	D#			
Jon Mink, Tim Brewer (jmink@trace-lab Analyitical Laboratories, Inc., 2241 Blad 773-5998	os.com, tbrew ck Creek Rd.,	er@trace-labs.c , Muskegon, Mi	com) 49444	Trace 4 231-						MI		21J10	134.8	- 10		ш
BILL TO:					Yes		No POPULATION SERVED			SOURCE WATER		21J1		H.S		TIME
Accounts Payable, Trace Analytical Lal Muskegon, MI 49444	boratories, Inc	c., 2241 Black (Creek	Rd.,	COMPLIANCE MONITORING									CONTAINERS	X CODE	TURNAROUND
LAB Number	C	OLLECTION			SAMPLING SITE	E			TEST NA	ME	SAMPLE REMARKS	CHLORI	INATED	OF C	MATRIX	RN AN
	DATE	TIME	AM	PM					p	Accept	able	YES	NO	#	Ž	2
1	10/26/21	11:25	x		Unit 1/2 Near MW-5(FF)			Radium 22	6/228	1	A D 1 C		x	1	GW	SW
2	10/26/21	15:25		x	Unit 1/2 Near SG-2(FF)			Radium 22	6/228				x	1	GW	sw
3	10/26/21	11:45	x		MW-1R(FF)			Radium 22	6/228				x	1	GW	SW
4	10/26/21	13:55		x	MW-2(FF)			Radium 22	6/228				x	1	GW	sw
5	10/26/21	12:35		x	MW-3(FF)			Radium 22	6/228				x	1	GW	sw
6	10/26/21	12:00		x	MW-4(FF)			Radium 22	6/228				x	1	GW	sw
7	10/26/21	10:35	x		MW-5(FF)			Radium 22	6/228				x	1	GW	sw
8 (1-2)	10/26/21	11:00	x		MW-6(FF)			Radium 22	6/228				x	1	GW	sw
9 (2.74) (4.75) (4.75) (4.76) (4.76)	10/26/21	10:20	x		MW-7(FF)		-	Radium 22	6/228				x	1	GW	sw
10	10/26/21	15:35		x	MW-8(FF)			Radium 22	6/228				х	1	GW	sw
11 of the second resource of the second	10/26/21	14:30		x	MW-9(FF)			Radium 22	6/228				x	1	GW	sw
12	10/26/21	15:05		x	MW-10(FF)			Radium 22	6/228				x	1	GW	sw
13																
14							1									
RELINQUISHED BY:(Signature)		DATE	T T	IME	RECEIVED BY:(Signature)		DATE	bium 226/	I AB DESERV	ES THE RIGHT TO RETURN UNI	ISED PORTIONS OF NON-	AOUEOUS	SAMPLES 1	LO CLIEN.	T	-
11.1				:24					LAB COMMENTS	ESTITE MONTHONE TONION	SOLD FOR HOLD OF HOLD	AGOLOGO	OPANII EEO	O GENERAL	1	210 2
Wh		1927/21	13	IPM	Fedex			AM PM			aliza	1	-	ili	414	
RELINQUISHED BY:(Signature)		DATE			RECEIVED BY:(Signature)		DATE	TIME		8 1751	JIVC		-	76	رسا	
Feder												(IR	13	iac	1
RELINQUISHED BY:(Signature)		DATE	_	IME	RECEIVED FOR LABORATORY BY:		DATE	TIME		1	10	_	- 23	/	5	-
				PM	Ce1 2000	- 10	28.2	0944 AM PM	CONDITIONS UPON R	et/Blue Ambient	4.0 °C Upon	Receipt_	X	N/A	951	28
MATRIX CODES:		TURN-ARC			E (TAT) - SURCHARGES											
DW-DRINKING WATER		SW = Standard	d Writt	en: (15	working days) 0%	n	V* = Immediat	e Verbal: (3 wo	orking days) 100%							
RW-REAGENT WATER GW-GROUND WATER		RV* = Rush Ve			• • •			e Written: (3 w			Samples received una					
EW-EXPOSURE WATER SW-SURFACE WATER		RW* = Rush W	ritten:	(5 worl	king days) 75%		SP* = Weeken		CALL		may be subject to add					1
PW-POOL WATER WW-WASTE WATER		* Please cal	l, exp	oedite	ed service not available for all testing	S	STAT* = Less	man 48 hours	CALL		06-LO-F0435 Issue	60 Fff	ective Da	te: 2010	3-09-20	

06-LO-F0435 Issue 6.0 Effective Date: 2016-09-20

	eu	rof	Fil	ns
00	_ 0.			

Eaton Analytical

110 S. Hill Street South Bend, IN 46617 T: 1.800.332.4345 F: 1.574.233.8207

Order # Batch #

www.EurofinsUS.com/Eaton						C	HAIN OF	CHST	ODY RECO	PD		D-		- 6		
Shaded area fo	r EEA us	se only					I IAIN OI	C031	ODI RECO	KD		Pag	ge	01		_
REPORT TO:					SAMPLER (Signature	2)			PWS ID#	STATE (sample origin)	PROJECT NAME		PO#			T
Jon Mink, Tim Brewer (jmink@trace-lab: Analytical Laboratories, Inc., 2241 Blac 773-5998										MI						
BILL TO: Accounts Payable, Trace Analytical Lab Muskegon, MI 49444	oratories, In	nc., 2241 Black	Creek	Rd.	COMPLIANCE MONITORING	Yes	No	POP	ULATION SERVED	SOURCE WATER			J1034 & IJ1032	CONTAINERS	MATRIX CODE	TURNAROUND TIME
LAB Number	C	COLLECTION	V		S	AMPLING SITE			TEST NA	ME	SAMPLE REMARKS	СНГС	RINATE	OF CO	TRIX	RNAR
	DATE	TIME	AM	PM								YES	NO	#	¥	1 2
1	10/28/21	11:25	×		Unit 1/2 Near MW-5			Radium 22	26/228				×	1	GW	SW
2	10/26/21	15:25	-	×	Unit 1/2 Near SG-2			Radium 22	26/228				×	1	GW	sw
3	10/26/21	11:45	×		MW-1R			Radium 22	26/228			and the second	×	1	GW	SW
4	10/26/21	13:55		x	MW-2			Radium 22	26/228			-	x	1	GW	SW
5	10/26/21	12:35		×	MW-3			Radium 22	26/228				×	1	GW	sw
6	10/26/21	12:00		x	MW-4			Radium 22	26/228			-	×	1	GW	sw
7	10/26/21	10:35	×		MW-5			Radium 22	26/228				×	1	GW	SW
8	10/26/21	11:00	×		MW-6			Radium 22	26/228				x	1	GW	sw
9	10/26/21	10:20	×		MW-7			Radium 22	26/228				×	1	GW	sw
10 Company of the second secon	10/26/21	15:35		x	MW-8			Radium 22	26/228				x	1	GW	SW
11	10/26/21	14:30		х	MW-9	•		Radium 22	26/228				×	1	GW	SW
12	10/26/21	15:05		×	MW-10			Radium 22	26/228				×	1	GW	sw
13			-	-												
14 RELINQUISHED BY:(Signature)		DATE	TI	IME	RECEIVED BY:(Signa	ature)	DATE	dium 226/	LAB RESERV	ES THE RIGHT TO RETURN UNI	USED PORTIONS OF NON-A	VQUEOU:	S SAMPLES	TO CLIEN	π	
				PM	1					(1) 10 10 10 10 10 10 10 10 10 10 10 10 10						
RELINQUISHED BY:(Signature)		DATE			RECEIVED BY:(Signa	ature)	DATE	TIME								
RELINQUISHED BY:(Signature)		DATE		PM	RECEIVED FOR LABO	RATORY BY:	DATE	AM PM		COMPLETE STATE OF THE STATE OF						
,				Ι					CONDITIONS UPON R	ECEIPT (check one): t/Blue Ambient _	°C Upon F	Receipt		NA		
MATRIX CODES:		TURN-ARC		PM TIM	L E (TAT) - SURCHARG	ES		AM PM	The St. of Steel and St. of the St.	Service Assigned CAR Copper Cope.	marketine of water over 1970		Town March	15 X X X X	200.700.50	
DW-DRINKING WATER RW-REAGENT WATER GW-GROUND WATER EW-EXPOSURE WATER SW-SURFACE WATER PRA-POOL WATER		SW = Standar RV" = Rush Ve RW" = Rush Ve	erbal: (5	wortu	ng days) 50%		IV" = Immediat IV" =Immediat SP" = Weeken	e Written: (3 w d, Holiday			Samples received unanthan 48 hours holding times to addition	me rema	aining			
WW-WASTE WATER Sample analysis will be provided acc	andian Ar M				d service not available						06-LO-F0435 issue 6	.0 Eff	ective Da	e: 2016	-09-20	

Spurgeon, Sheri

From:

Fullmer, Karen

Sent:

Monday, November 01, 2021 1:37 PM

To:

Spurgeon, Sheri

Subject:

FW: Revised chain of custody for J6209

Attachments:

Eurofins COC-Revised for Trace Labs 21J1034 and 21J1032.pdf

Sheri,

Here is a revised COC for Job 6209.

Best regards,

Karen Fullmer

Analytical Service Manager

Eurofins Eaton Analytical, LLC

110 South Hill Street South Bend, IN 46617

Office: +1 574-472-5513 Mobile: +1 574-309-8853

E-Mail: karen.fullmer@eurofinset.com Website: www.EurofinsUS.com/Env

From: Britani Wright bwright@trace-labs.com Sent: Thursday, October 28, 2021 5:27 PM

To: Fullmer, Karen < Karen.Fullmer@eurofinset.com >; Jon Mink < jmink@trace-labs.com >

Subject: Revised chain of custody

EXTERNAL EMAIL*

Hi Karen,

I've attached a revised Chain of Custody for the radium samples that we sent in yesterday afternoon-for Trace Labs ID#'s 21J1034 & 21J1032. The only thing that needs to be changed is that the (FF) after each sampling site ID needs to be removed. Sorry for the inconvenience.

Thank you,

Britani Wright

1

Page 25 of 27

11/29/2021 (Rev. 1)

4

5

6

0

9

10

12

3

C: 616-916-4328 bwright@trace-labs.com

Trace Analytical Laboratories, Inc. 2241 Black Creek Rd. Muskegon, MI 49444 231.773.5998 ext. 243

CONFIDENTIALITY NOTICE:

The contents of this email message and any attachments are intended solely for the addressee(s) and may contain confidential and/or privileged information and may be legally protected from disclosure. If you are not the intended recipient of this message or their agent, or if this message has been addressed to you in error, please immediately alert the sender by reply email and then delete this message and any attachments. If you are not the intended recipient, you are hereby notified that any use, dissemination, copying, or storage of this message or its attachments is strictly prohibited.

* WARNING - EXTERNAL: This email originated from outside of Eurofins Environment Testing America. Do not click any links or open any attachments unless you trust the sender and know that the content is safe!

Login Sample Receipt Checklist

Client: Trace Analytical Laboratories Job Number: 810-6209-1

List Source: Eurofins Eaton Analytical - South Bend Login Number: 6209

List Number: 1

Creator: Spurgeon, Sheri

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Samples do not require splitting or compositing.	True	
Container provided by EEA	True	

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Ple	ease Si	g Released By				15:25	10.36.21 11:25	Trace Date Time No. Collected Collected	Project Name: Impoundment Sampling	*Results provided end of business day, requires prior approval	☐ 1 Day*		Turnaround Requirements:	Email Address:	Office Phone:	City, State, Zip Code:	Mailing Address:	Report To: Paul Cederquist	Company Name: Grand Haven Board of Light & Power	Report Results To:	ANALYTICAL LABORA	111
In executing this Cha	Dall	A Reserved By				Unit 1/2 Near SG-2	Unit 1/2 Near MW-5	Client Sample ID	Sampling			×ω	M		Cell Phone:				of Light & Power		BORATORIES, INC.	
(a) (a) (b) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a	8 14cdoil	Date				3-2	ν-5 Υ W	Metals Field Filtered (Y / N) Matrix	Sampled By: 七分	OI = Oil D = Drinking Water	idge	S = Soil / Solid WI = Wipes	Matrix Key:	Billing Email Address:	Phone Number:	City, State, Zip Code:	Billing Address (if different):	Contact Name:	PO#	Bill To:	2241 Black Creek Road Muskegon, MI 49444-2673	CHAIN-OI
4) dges the terms as set forth at w	8:262	Time Relea					5 × × ×	Number of Containers Cool HCI Pressor August 1980 Aug						9:			ferent):				Road 44-2673	CHAIN-OF-CUSTODY RECORD
ww.trace-labs.com/terms-of-ag		Released By					× × × ×	T- Co,Cu, P T- TI, V,Zn, Diss.Metals Fluoride,Sul pH	Mn,M (Sam	g,K,Na e as To	otals)	es	A								Fax 888.979.4469 www.trace-labs.com	
reement.		Received By					×	LLHg Radiums 22 Bicarb-Alk, 0			k		Analysis Requested	e ping	ġ	MeOH Lov	Soil Volatiles Preserved (circle if applicable):	Checked By:	Logged By:	Trace Use:	2110	Page_
	+	Date Time			0.31	C 20	11.T=Hq	Remarks		***						Low Level Lab	d (circle if applicable):		5	•	1 race ID No.	of 1

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

21J1032 Grand Haven Board of Light Project Manager: Jon Mink

Sample Log In Checklist

Date: $ 0-27-2 $ Time: $9^{\frac{1}{2}} \stackrel{?}{\Rightarrow} 0$ Logged by: DH Package Description:	Original Observation	orrected Temperature	9 (CF: +0.1°C)	IR-10 (CF: +0.1°C)	:0B12743 (CF: -0.4°C)	emp Blank	Client Sample
Cooler	o.	Š	IR-9	R-	20	Ter	ਹਿੱ
Package Temp °C	-1.7	-1.6		/			
Representative Sample Temp °C	1.8	1.9		1			1

	Representative Sample Temp C 1.5 1.7 1
ample Receipt	
No Received on ice or other coolant Ice still present upon receipt Custody seals present Yes Trace Courier Client Drop-off UPS	
mple Condition	
No N/A. All sample containers arrived unbroken Sufficient sample to run requested anal Correct chemical preservative added to	alyses
Chemical preservation verified, check E pH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs	
nain of Custody (COC)	*
All bottle labels agree with COC COC filled out properly COC signed by client	
otes:	
•	* * * * * * * * * * * * * * * * * * * *
	V
,	
orm 70-A.40 fective 10/2/21	TRACE Analytical Laboratorie

Turbidity: 10% or <1 pH: +/- 0.1

ORP: +/- 10 mV Dissolved Oxygen: 10% Spec. Conductivity: 3%

Temperature: 3% Stabilization Criteria:

Notes:

Specific

Dissolved Conductivity

11.00

1.00

00

(Celsius)

0

5

0 57

1

Temperature

Water Depth to

Reading Time

ORP (mV) Oxygen

(=

Turbidity(NTU)

0.0

모

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP Impoundment ID: Unit by NWS Depth to Point

Field Personnel:

Sample Tubing Depth: 2017

Purge Start Time: 10:55

Purge Rate:

Pump Used: Peristaltic

						i
	1					
		100000000000000000000000000000000000000				
			3			
		. ,				

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Spec. Conductivity: 3% Dissolved Oxygen: 10%

Temperature: 3% Stabilization Criteria:

Notes:

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Impoundment ID: Wint 1/2 by SG2

Purge Start Time: 14,55

Depth to Point:

Date:_

Field Personnel:

Purge Rate: Sample Tubing Depth: 20 台ナ

	1			_			r
рH	Turbidity(NTU)	ORP (mV)	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Depth to Water	Reading Time
8.39	3.T	100	9.87	1.63	12.13	1	どび
8.39 8.39 8.39	3.8 3.7	160	9.87 9.87 9.87	1.63 1.63	12.13 12.13 12.13)	15:15 15:18 15:21
8.39	3.7	100	9.87	1.63	12,13)	15:21
						*	
	-						

Pump Used: Peristaltic

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Plea	se Si	gn											Trace No.	Project Name:	*Results] <u>×</u>	Turnar	Email Address:	Office Phone:	City, State	Mailing Address:	Report To	Company	Report	2:	
	die		6		-			-			-	10-26-21	Date Collected		provided (1 Day	tandard,	ound Re	dress:	one:	City, State, Zip Code:	ddress:	Paul (Name: (Report Results To:		
		Released By	15:05	14:30	15:35	10:20	11:00	16:35	12:00	IJ: 35	13:55	1:45	Time Collected	MW Sampling	end of business day		Standard, 5-10 Days	Turnaround Requirements:			e.		Report To: Paul Cederquist	Frand Haven Bo	То:		Щ
In page riting this Official of Controls the planet polar and the fact that	10/10	Received By	MW-10	MW-9	MW-8	MW-7	MW-6	MW-5	MW-4	MW-3	MW-2	MW-1R	Client Sample ID	ng	*Results provided end of business day, requires prior approval. OI = Oil	SL = Sludge	S = Soil / Solid	Matrix Key:		Cell Phone:				Company Name: Grand Haven Board of Light & Power		SORATORIES, INC.	
	12/12/01	Date	~									\ \	Metals Field Filtered (Y / N)	Sampled By:		ge A=Air		Key:	Billing Email Address:	Phone Number:	City, State, Zip Code:	Billing Address (if different):	Contact Name:	PO#	Bill To:	Trace Analytical Laboratori 2241 Black Creek Road Muskegon, MI 49444-2673	CHAIN
4)	8326 2	Time	G									∀ 5 ×	Matrix Number of Containers Cool HCI HNO ₃ H ₂ SO ₄ NaOH	38) 18	g Water	d waste			dress:		Ode:	if different):				Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673	CHAIN-OF-CUSTODY RECORD
		Released By										×	H ₂ SO ₄ A Sales			7											RECORD
		Ву	1116									×	T- TI, V,Zn, Diss.Metals Fluoride,Su	(Sam	e as To											Phone 231.773.5998 Fax 888.979.4469 www.trace-labs.com	
		Receive	1 4 1								 	×	pH LLHg Radiums 22	26/228				Analysis Re		Sampli	7	Soil Vo	Checked By:	Logged By:	Trace	3 %	
		ceived By	4									×	Bicarb-Alk,	Carbo	nate-Al	k		Requested		Sampling Time:	MeOH Low	latiles Preserved (ad By:	1By: DA	race Use: 🧷	ZIJ[0;	Page_
		Date Tir	J 7.42	7.31	6.74	7.01	7.60	17.43	1-6-74	6.91	16.48	pH=7.%0	Remarks								Low Level Lab	Soil Volatiles Preserved (circle if applicable):				Trace ID No.	of 1
		Time	-		_		\sim	S	$\stackrel{\leftarrow}{-}$		∞°	0	Possible Heal	th Haz	ards?	-89-1					σ	۳					-

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

21J1034 San	nple Log In Checklist
Grand Haven Board of Light	Date: 10-27-21 g m
Project Manager: Jon Mink	ig 4
	Time: 9: 70 Logled phoservation: Coole(Coo
	Lime: 4.70 R-9 (CF: +0.1°C) R-10 (CF: +0.1°C)
	Package Description:
Progr.	
	Package Temp °C -1.7 -1.6
	Representative Sample Temp °C 1.8 1.9 V
Sample Receipt	
Yes No	
Received on ice or other coolant	
☐ ☐ Ice still present upon receipt ☐ ☐ Custody seals present ☐ ☐	Yes No Custody seals intact (if applicable)
	UPS Fed Ex US Mail Other
Sample Condition	
Yes No N/A	
All sample containers arrived unbro	ken and labeled
Sufficient sample to run requested a	
Correct chemical preservative added	d to samples See below
	ck EMD pH test strip used (if applicable)
✓ pH 0-2.5 (Lot: HC029115	
Air bubbles absent from VOAs	
Chain of Custody (COC)	
Chain of Custody (COC)	
Yes No	
COC filled out properly	
COC signed by client	
Notes:	
HNOs added to O2-E, O	3-E, 04-E, 05-E, 06-E, 10-E
at 10:00 on 10/27/21	
Na OH added to DH 10/37/2	
HNOz Preserved radiums 10	Parla (@ 13:11
The source indimines to	10 110,100
<u> </u>	
Form 70-A.40	TRACE Analytical Laboratories,
ffective 10/2/21	

Turbidity: 10% or <1 pH: +/- 0.1

ORP: +/- 10 mV Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3% Stabilization Criteria:

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW -1R

Depth to Water: 6.23

Date: 10. 26.21

Depth to Point: 18.2ft

Field Personnel: EB

Purge Start Time: 11:25

Purge Rate: __

7						
Reading Time		11. 20 11. 11. 11. 11.				
705+6+			-	2 5 60		
nepth to						
Water	75	7.51 7.51	1.8.1			
Temperature	<i>L</i>	رَ ا ا				1
(Celsius)	1.0	11.011.0	/ . ()			
Specific	1		G			
Conductivity	トガン	74 844 844 BA	アプレ		-	
Dissolved						
Oxygen	1.01	1.81	-0		-	
ORP (mV)						
	-25	، من	ر الا			
Turbidity(NTU)						3
	22.6	22.6 22.6 22.6	22.6			
PΗ	7.86	7.86 7.80 7.86	7.86			

Pump Ušed: Peristaltic

Notes:

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Pump Used: Peristaltic

Spec. Conductivity: 3%

Dissolved Oxygen: 10%

Stabilization Criteria:

Notes:

Temperature: 3%

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 2

Depth to Water: 14.71

Date: (()~ み(6・ よ)

Purge Start Time: 13:35 Depth to Point: 23.51'

Field Personnel: FB

Purge Rate:

pH /	Turbidity(NTU)		1	ity	ure	Depth to Water \S	Reading Time 13	
2	0	-129	0.0	4.12	M.17 14.17	15.21	4	
847 847 847	0.0 0.0 0.0	-129	0	4.12 4.12	11.17	15.23 15.23	3:47 13:50 13:52	
847	0.0	-129	0.0	4.12	1 14.17	15.23	13:52	
		1						
						-		

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Dissolved Oxygen: 10% Spec. Conductivity: 3% Stabilization Criteria:

Notes:

Temperature: 3%

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 3

Depth to Water: 1.90

Depth to Point: 20.5'

Purge Start Time: 12: 10

Field Personnel:

300ml/min

Purge Rate: _

į				10112				
	P	Turbidity(NTU)			Ϊţ	ומות		Reading Time Depth to
	- 4 - 6	5	19	かげ	3.96 3.96 3.96	15.86 15.86 15.86	12. 72	12:27
	6.91 6.91 6.91	6	1	2,14 2,14 2,14	3.96	15,86	12.72 12.72	12:27 12:30 12:38
•	<u>5</u>	<u>.</u>	1	2.14	3.96	15.86	12.72	12:38
	50 20 30							

Turbidity: 10% or <1 pH: +/- 0.1

ORP: +/- 10 mV Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3% Stabilization Criteria:

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 4

Depth to Water: _

Date: 10-26-21

Depth to Point: 18.01'

Field Personnel: EB

Purge Start Time: 11:40 Purge Rate: 300100/11/15

Reading Time	1	:			2		
	1.07	1.8.1	12:06				
Water	41.05	11.03	11.03				
Temperature (Celsius)	16.68	16.68 16.68	16.62				
Specific Conductivity	75 75 75) J	ر آ ا				
Dissolved		(
Oxygen	14,	. 47	84.				
ORP (mV)							
	-116	-116	1116				
Turbidity(NTU)							
	0,00,0	0.0	0.0				
护	117 117	7/1	11/2				
	6. 1	0. 7	6		5		

Pump Used: Peristaltic

Notes:

ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1

Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10%

Notes:

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 5

Depth to Water:

5

Dalle. 10 MG

Depth to Point: 11.5'

Purge Start Time: <u>| かり</u>

|<u>x</u>

Field Personnel: FB

Purge Rate: 300 ML/ N

рН	Turbidity(NTU)	ORP (mV)	Dissolved Oxygen	ίţ	ture		Reading Time
7.41	0.6	~148	.56	1.76	16.02	6.73 6.73 6.73	10:25
7.41 7.43 7.43	0.6 0.0	-148 -148	.56.56	1.76 1.76	6.01 60.01 60.01	6.73	10:25 10:27 10:30
7.43	0,0	148	.56	1.76	16.02	6.73	10:30
			is .				
		-					

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 6

Depth to Water:

: 10-26-2

Depth to Point: 16.55'

Purge Start Time: 10:40

Field Personnel:

Purge Rate: 30 ml/lm

Stabilization Criteria:
Temperature: 3%
Spec. Conductivity: 3%

ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1

Dissolved Oxygen: 10%

Notes:

takin at it a said			<u>14 - 14 - 17 - 1</u>				
рН	Turbidity(NTU)			ity	Temperature (Celsius)	Water	ime
7.60	V	18	57	2.06 2.06 2.06	17.59	9.31	10:50
7.60 7.60 7.60	, 4	-18	.57 .57	2.06	17.59 17.59 17.59	9.31 9.31	10:53 10:56
7.60	W	- 18	.57	2.66	17.59	9.2	10:56
	,						

Depth to Water

6.21

Reading Time

D: 15

(Celsius)

15,24

15.24 15.24

. J

Temperature

Specific

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 7

Depth to Water: 5,25

Date: 10 - 26-21

Depth to Point: 18.81'

Field Personnel:_

Purge Start Time: 10:00

Purge Rate: __

Tomposet 20/
050505011111111111111111111111111111111

Stabilization Criteria:

Notes:

멀

7.0

7.0

ORP (mV)

7

7

Turbidity(NTU)

5

Ľ

Oxygen

Dissolved Conductivity

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 8

Depth to Water: 4.04

Depth to Point: 11.85

Purge Start Time: 15:10

Purge Rate: _

Field Personnel:_

	i urbiaity(NTO)		Oxygen Oxygen	ity	iture	Depth to Water	Reading Time
6.74	0.0	-137 -137 -137	0.0	h08.	15.72 15.72 15.72	4.86	15:25
6.74 6.74 6.74	0.0 0.0 0.0	-137	0.0	208. 208. 408.	15.72	4.86 4.86 4.86	15:25 15:28 15:3
6.74	0,0	-137	0.0	. 805	15.72	4.8%	15:31
						· / (25

Stabilization Criteria: Temperature: 3%

Notes:

Dissolved Oxygen: 10% Spec. Conductivity: 3%

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Dissolved Oxygen: 10% ORP: +/- 10 mV

Spec. Conductivity: 3%

Temperature: 3%

Stabilization Criteria:

Notes:

Turbidity: 10% or <1 pH: +/- 0.1

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 9

Depth to Water: 8.49

Date: 10-26-21

Depth to Point: 14.9

Purge Start Time: 14' 10

Purge Rate: _

Field Personnel:

P	_	0	00	CN	S 7	50	70
	Turbidity(NTU)	RP (mV)	Dissolved Oxygen	~			Reading Time
7.31	アン	-9	. 56	1.25	16.12	9.31	14:20 14:24
7.31 7.31 7.31	5.4 5.4	-9	56 .56 .56	1.25 1.25 1.25	16.12 16.13 16.13	931	
7.31	5.4	9	. 56	 り 。	اله. \ع	.3/	14.77
-							

Spec. Conductivity: 3%
Dissolved Oxygen: 10%
ORP: +/- 10 mV
Turbidity: 10% or <1
pH: +/- 0.1

Stabilization Criteria:

Notes:

Temperature: 3%

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 10

Depth to Water: 5.32

Date: 10. 26.21

Depth to Point: 13.00

Purge Start Time: 14:45

Section Constitution Constituti

Field Personnel:

Purge Rate: 300 und min

ORP (mV) Oxygen Specific (Celsius) Water Depth to 모 Turbidity(NTU) Dissolved Conductivity Reading Time Temperature 6.07 198 SS:h1 16.66 7.42 28 25 6.07 14:58 198 861. 15:01 25 0.00 2

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

November 09, 2021

Mr. Paul Cederquist Grand Haven Board of Light and Power-Monthly MWs 1700 Eaton Drive Grand Haven, MI 49417

RE: Trace Project

21J1157

Client Project

Surface Water Sampling

Dear Mr. Cederquist:

Enclosed are your analytical results. The results of this report relate only to the samples listed in the body of this report.

All reports were examined through Trace's validation process to ensure that requirements for quality and completeness were satisfied. All reported analytical results were obtained in accordance with the methods referenced on the reports. Every practical effort was made to meet the reporting limit specifications for this work, however, some results may have raised reporting limits to correct for percent solids.

For clients that require NELAP Accreditation, Trace certifies that these test results meet all requirements of the NELAP Standard, except for those analytes with a "N" notation. These analytes have not been evaluated by NELAP at Trace's discretion and will not be reported unless requested by client.

If you have questions concerning this report, please contact me at 231.773.5998 or by email at jmink@trace-labs.com.

Sincerely,

Jon Mink Senior Project Manager Enclosures

NJDEP Accreditation No. MI008

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

SAMPLE SUMMARY

Trace Project ID:

21J1157

Client Project ID:

Surface Water Sampling

Trace ID	Sample ID	Matrix	Collected By	Date Collected	Date Received
21J1157-01	SW-SG-1	Surface Water	TRACE-EB/TB	10/28/21 10:15	10/28/21 15:58
21J1157-02	SW-N-SG-2	Surface Water	TRACE-EB/TB	10/28/21 09:10	10/28/21 15:58
21J1157-03	SW-SE-MW-7	Surface Water	TRACE-EB/TB	10/28/21 12:05	10/28/21 15:58
21J1157-04	SW-NE-MW-10	Surface Water	TRACE-EB/TB	10/28/21 10:30	10/28/21 15:58

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

AN EXPLANATION OF TERMS AND SYMBOLS WHICH MAY OCCUR IN THIS REPORT

DEFINITIONS

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

MS Matrix Spike

MSD Matrix Spike Duplicate
RPD Relative Percent Difference

DUP Matrix Duplicate

RDL Reporting Detection Limit
MCL Maximum Contamination Limit
TIC Tentatively Identified Compound

<, ND or U Indicates the compound was analyzed for but not detected

Indicates a result that exceeds its associated MCL or Surrogate control limits
 Indicates that the laboratory is not accredited by NELAP for this compound

NA Indicates that the compound is not available.

NOTE: Samples for volatiles that have been extracted with a water miscible solvent were corrected for the

total volume of the solvent/water mixture.

Solid matrices Method Blanks are at 100% solids as such results are the same wet or dry.

DATA QUALIFIERS

Trace ID: T116265-DUP1	
Analysis: SM 2540 C-11	
Total Dissolved Solids	Note 623 : The relative percent difference between the sample and sample duplicate is out of control. The sample result should be considered estimated.
Trace ID: T116384-MSD1	
Analysis: EPA 6010D	
Calcium	Note 207: The RPD between the MS and the MSD was out of control. Because both spike recoveries were in control, no data require qualification.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Vanadium

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-01 Matrix: Surface Water Date Collected: 10/28/21 10:15 Sample ID: SW-SG-1 Date Received: 10/28/21 15:58 Field pH: 8.46 **PARAMETERS** RESULTS UNITS DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116283 Mercury 2.2 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116267 0.0018 Beryllium <0.0018 mg/L 1 11/01/21 mrh 11/02/21 ckd Boron 0.053 mg/L 0.045 1 11/01/21 mrh 11/02/21 ckd Calcium 72 mg/L 0.45 1 11/01/21 mrh 11/02/21 ckd 11/01/21 mrh 11/02/21 Iron 0.61 mg/L 0.18 1 ckd 11/02/21 Lithium 0.0070 mg/L 0.0090 1 11/01/21 mrh ckd J, N Magnesium 22 mg/L 0.18 1 11/01/21 mrh 11/02/21 ckd 11/01/21 11/02/21 Potassium 4.6 mg/L 0.90 mrh ckd 1 1 Sodium 24 mg/L 0.45 11/01/21 mrh 11/02/21 ckd N <0.018 mg/L 0.018 11/01/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116267 Antimony <0.00027 mg/L 0.00027 1 11/01/21 11/04/21 mrh acs Arsenic 0.0014 mg/L 0.00090 1 11/01/21 mrh 11/04/21 acs 0.057 mg/L 0.0090 11/01/21 11/04/21 Barium 1 mrh acs Cadmium <0.00090 mg/L 0.00090 1 11/01/21 mrh 11/04/21 acs Chromium 0.0016 mg/L 0.00081 1 11/01/21 mrh 11/04/21 acs Cobalt <0.0014 mg/L 0.0014 11/01/21 mrh 11/04/21 acs 0.0022 mg/L 0.0036 1 11/01/21 11/04/21 Copper mrh acs J Lead 0.00086 mg/L 0.0018 1 11/01/21 mrh 11/04/21 J acs 11/01/21 11/04/21 Manganese 0.046 mg/L 0.022 1 mrh acs Molybdenum 0.0013 mg/L 0.00036 1 11/01/21 11/04/21 N mrh acs 11/04/21 Nickel 0.0020 mg/L 0.0045 1 11/01/21 mrh acs J. Selenium <0.0018 mg/L 0.0018 11/01/21 11/04/21 mrh acs <0.00090 mg/L 11/04/21 Silver 0.00090 1 11/01/21 mrh acs Thallium <0.00090 mg/L 0.00090 1 11/01/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00072

0.0017 mg/L

11/01/21

11/04/21

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-01 Sample ID: SW-SG-1	Matrix: Surface Water		Collected: 10/28 Received: 10/28		Field pH: 8.46				
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	ВҮ	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: SM 2340 B-11									
Batch: [CALC]	"								
Hardness as CaCO3	270 mg/L	0.74	1	11/01/21		11/02/21	ckd	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T116384									
Beryllium	<0.0010 mg/L	0.0010	1	11/03/21	ckd	11/04/21	ckd		
Boron	0.047 mg/L	0.050	1	11/03/21	ckd	11/04/21	ckd	J	
Calcium	69 mg/L	0.50	1	11/03/21	ckd	11/04/21	ckd		
Iron	0.058 mg/L	0.10	1	11/03/21	ckd	11/04/21	ckd	J	
Lithium	0.0033 mg/L	0.010	1	11/03/21	ckd	11/04/21	ckd	J, N	
Magnesium	21 mg/L	0.20	1	11/03/21	ckd	11/04/21	ckd		
Potassium	4.0 mg/L	1.0	1	11/03/21	ckd	11/04/21	ckd		
Sodium	22 mg/L	0.50	1	11/03/21	ckd	11/04/21	ckd	N	
Zinc	0.0018 mg/L	0.020	1	11/03/21	ckd	11/04/21	ckd	J	
Analysis Method: EPA 6020B Batch: T116167									
Antimony	0.00035 mg/L	0.00020	1	11/08/21	ckd	11/08/21	ckd		
Arsenic	0.0013 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Barium	0.051 mg/L	0.00060	1	11/08/21	ckd	11/08/21	ckd		
Cadmium	<0.0010 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Chromium	<0.00080 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		
Cobalt	0.00017 mg/L	0.0016	1	11/08/21	ckd	11/08/21	ckd	J	
Copper	0.0011 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		
Lead	0.00011 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	J	
Manganese	0.012 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Molybdenum	0.0012 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	N	
Nickel	0.0012 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Selenium	<0.00087 mg/L	0.00087	1	11/08/21	ckd	11/08/21	ckd		
Silver	<0.000040 mg/L	0.000040	1	11/08/21	ckd	11/08/21	ckd		
Thallium	<0.00017 mg/L	0.00017	1	11/08/21	ckd	11/08/21	ckd		

CERTIFICATE OF ANALYSIS

0.00080

0.00053 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

J

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-01 Matrix: Surface Water Date Collected: 10/28/21 10:15

Sample ID: SW-SG-1 Date Received: 10/28/21 15:58 Field pH: 8.46

PARAMETERS RESULTS UNITS DILUTION PREPARED BY ANALYZED ΒY NOTES MCL RDL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116228

Fluoride 0.094 mg/L 0.10 10/29/21 5 ans 10/29/21 ans J Chloride 43 mg/L 0.75 5 10/29/21 10/29/21 ans Sulfate as SO4 34 mg/L 3.0 5 10/29/21 10/29/21 ans ans Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 220 mg/L 10 1 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <10 mg/L 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116265

Total Dissolved Solids 320 mg/L 40 11/01/21 mr 11/02/21 mr

Date Collected: 10/28/21 09:10

Date Received: 10/28/21 15:58

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Field pH: 7.57

ANALYTICAL RESULTS

Matrix: Surface Water

<0.0016 mg/L

0.0031 mg/L

0.00086 mg/L

0.055 mg/L

0.0010 mg/L

<0.0050 mg/L

<0.0020 mg/L

<0.0010 mg/L

<0.0010 mg/L

0.00061 mg/L

Trace Project ID: 21J1157

Trace ID: 21J1157-02

Cobalt

Copper

Manganese

Molybdenum

Lead

Nickel

Silver

Selenium

Thallium

Vanadium

Sample ID: SW-N-SG-2

Client Project ID: Surface Water Sampling

PARAMETERS RESULTS UNITS DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116283 Mercury 7.5 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116267 Beryllium <0.0020 mg/L 0.0020 1 11/01/21 mrh 11/02/21 ckd Boron 0.13 mg/L 0.050 1 11/01/21 mrh 11/02/21 ckd Calcium 59 mg/L 0.50 1 11/01/21 mrh 11/02/21 ckd 0.20 11/01/21 mrh 11/02/21 Iron 0.41 mg/L 1 ckd 11/02/21 Lithium 0.011 mg/L 0.010 1 11/01/21 mrh ckd Ν Magnesium 22 mg/L 0.20 1 11/01/21 mrh 11/02/21 ckd 11/01/21 11/02/21 Potassium 4.6 mg/L 1.0 mrh ckd 1 1 Sodium 28 mg/L 0.50 11/01/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 11/01/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116267 Antimony 0.00030 11/01/21 <0.00030 mg/L 1 11/04/21 mrh acs Arsenic 0.0010 mg/L 0.0010 1 11/01/21 mrh 11/04/21 acs 0.068 mg/L 0.010 11/01/21 11/04/21 Barium 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 11/01/21 mrh 11/04/21 acs Chromium 0.0021 mg/L 0.00090 1 11/01/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.0016

0.0040

0.0020

0.025

0.00040

0.0050

0.0020

0.0010

0.0010

0.00080

1

1

1

1

1

1

1

11/01/21

11/01/21

11/01/21

11/01/21

11/01/21

11/01/21

11/01/21

11/01/21

11/01/21

11/01/21

mrh

mrh

mrh

mrh

mrh

mrh

mrh

mrh

mrh

11/04/21

11/04/21

11/04/21

11/04/21

11/04/21

11/04/21

11/04/21

11/04/21

11/04/21

11/04/21

acs

J

J

N

J

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Vanadium

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-02 Matrix: Surface Water Date Collected: 10/28/21 09:10 Sample ID: SW-N-SG-2 Date Received: 10/28/21 15:58 Field pH: 7.57 **PARAMETERS** RESULTS UNITS DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 240 mg/L 0.82 11/01/21 11/02/21 Ν ckd METALS, DISSOLVED Analysis Method: EPA 6010D Batch: T116384 Beryllium <0.0010 mg/L 0.0010 11/03/21 ckd 11/04/21 ckd 0.12 mg/L 0.050 11/03/21 11/04/21 Boron 1 ckd ckd Calcium 59 mg/L 0.50 1 11/03/21 ckd 11/04/21 ckd Iron 0.14 mg/L 0.10 1 11/03/21 ckd 11/04/21 ckd Lithium 0.0073 mg/L 0.010 11/03/21 11/04/21 J, N 1 ckd ckd 11/03/21 11/04/21 Magnesium 21 mg/L 0.20 1 ckd ckd Potassium 4.3 mg/L 1.0 1 11/03/21 ckd 11/04/21 ckd Sodium 26 mg/L 0.50 1 11/03/21 ckd 11/04/21 ckd N 11/04/21 Zinc 0.00092 mg/L 0.020 1 11/03/21 J ckd ckd Analysis Method: EPA 6020B Batch: T116167 11/08/21 **Antimony** 0.00029 mg/L 0.00020 1 11/08/21 ckd ckd Arsenic 0.00091 mg/L 0.0010 1 11/08/21 ckd 11/08/21 ckd J **Barium** 0.066 mg/L 0.00060 1 11/08/21 ckd 11/08/21 ckd Cadmium <0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd <0.00080 mg/L 0.00080 11/08/21 11/08/21 Chromium 1 ckd ckd Cobalt 0.00015 mg/L 0.0016 1 11/08/21 ckd 11/08/21 ckd J 0.00034 mg/L 0.00080 11/08/21 ckd 11/08/21 Copper ckd 1 11/08/21 11/08/21 Lead 0.000098 mg/L 0.00040 ckd ckd J. 0.048 mg/L 0.00040 11/08/21 11/08/21 Manganese 1 ckd ckd Molybdenum 0.0011 mg/L 0.00040 11/08/21 11/08/21 ckd ckd Ν 0.0014 mg/L 0.00040 1 11/08/21 ckd 11/08/21 Nickel ckd <0.00087 mg/L 11/08/21 Selenium 0.00087 1 11/08/21 ckd ckd Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00017 mg/L Thallium 0.00017 1 11/08/21 ckd 11/08/21 ckd

CERTIFICATE OF ANALYSIS

0.00080

0.00038 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

J

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ΒY

ANALYTICAL RESULTS

RDL

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-02 Sample ID: SW-N-SG-2

Matrix: Surface Water

RESULTS UNITS

Date Collected: 10/28/21 09:10

Date Received: 10/28/21 15:58

DILUTION

PREPARED

Field pH: 7.57

BY ANALYZED

NOTES MCL

METALS, DISSOLVED

PARAMETERS

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116228

Fluoride 0.14 mg/L 0.10 10/29/21 10/29/21 5 ans ans Chloride 52 mg/L 1.5 10 11/02/21 11/02/21 jma jma Sulfate as SO4 3.0 10/29/21 10/29/21 <3.0 mg/L 5 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 210 mg/L 10 1 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <10 mg/L 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116265

Total Dissolved Solids 340 mg/L 40 4 11/01/21 mr 11/02/21 mr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-03 Matrix: Surface Water Date Collected: 10/28/21 12:05 Sample ID: SW-SE-MW-7 Date Received: 10/28/21 15:58 Field pH: 7.80 **PARAMETERS** RESULTS UNITS DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116283 Mercury 3.0 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116267 Beryllium <0.0020 mg/L 0.0020 1 11/01/21 mrh 11/02/21 ckd Boron 0.049 mg/L 0.050 1 11/01/21 mrh 11/02/21 ckd J Calcium 71 mg/L 0.50 1 11/01/21 mrh 11/02/21 ckd 0.20 11/01/21 11/02/21 Iron 0.99 mg/L 1 mrh ckd 11/01/21 11/02/21 Lithium <0.010 mg/L 0.010 1 mrh ckd Ν Magnesium 21 mg/L 0.20 1 11/01/21 mrh 11/02/21 ckd 11/01/21 11/02/21 Potassium 4.7 mg/L 1.0 mrh 1 ckd 1 Sodium 23 mg/L 0.50 11/01/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 11/01/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116267 Antimony 0.00030 11/01/21 <0.00030 mg/L 1 11/04/21 mrh acs Arsenic 0.0017 mg/L 0.0010 1 11/01/21 mrh 11/04/21 acs 0.058 mg/L 0.010 11/01/21 11/04/21 Barium 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 11/01/21 mrh 11/04/21 acs Chromium 0.0026 mg/L 0.00090 1 11/01/21 mrh 11/04/21 acs Cobalt <0.0016 mg/L 0.0016 11/01/21 mrh 11/04/21 acs 0.0033 mg/L 0.0040 1 11/01/21 11/04/21 Copper mrh acs J Lead 0.0021 mg/L 0.0020 1 11/01/21 mrh 11/04/21 acs 0.071 mg/L 11/01/21 11/04/21 Manganese 0.025 1 mrh acs Molybdenum 0.0013 mg/L 0.00040 1 11/01/21 11/04/21 Ν mrh acs 11/04/21 Nickel 0.0025 mg/L 0.0050 1 11/01/21 mrh acs J. Selenium <0.0020 mg/L 0.0020 11/01/21 11/04/21 mrh acs <0.0010 mg/L 0.0010 11/04/21 Silver 1 11/01/21 mrh acs Thallium <0.0010 mg/L 0.0010 1 11/01/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

11/01/21

11/04/21

acs

0.0023 mg/L

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-03 Matrix: Surface Water Date Collected: 10/28/21 12:05 Sample ID: SW-SE-MW-7 Date Received: 10/28/21 15:58 Field pH: 7.80 **PARAMETERS** RESULTS UNITS DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 270 mg/L 0.82 11/01/21 11/02/21 Ν ckd **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T116384 Beryllium <0.0010 mg/L 0.0010 11/03/21 ckd 11/04/21 ckd 0.050 11/03/21 11/04/21 Boron 0.045 mg/L 1 ckd ckd J Calcium 70 mg/L 0.50 1 11/03/21 ckd 11/04/21 ckd Iron 0.067 mg/L 0.10 1 11/03/21 ckd 11/04/21 ckd J Lithium 0.0034 mg/L 0.010 11/03/21 ckd 11/04/21 1 ckd J. N 11/03/21 11/04/21 Magnesium 21 mg/L 0.20 1 ckd ckd Potassium 4.1 mg/L 1.0 1 11/03/21 ckd 11/04/21 ckd Sodium 21 mg/L 0.50 1 11/03/21 ckd 11/04/21 ckd N 11/04/21 Zinc 0.0016 mg/L 0.020 1 11/03/21 J ckd ckd Analysis Method: EPA 6020B Batch: T116167 11/08/21 **Antimony** 0.00023 mg/L 0.00020 1 11/08/21 ckd ckd Arsenic 0.0013 mg/L 0.0010 1 11/08/21 ckd 11/08/21 ckd **Barium** 0.051 mg/L 0.00060 1 11/08/21 ckd 11/08/21 ckd Cadmium <0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd <0.00080 mg/L 0.00080 11/08/21 11/08/21 Chromium 1 ckd ckd Cobalt 0.00018 mg/L 0.0016 1 11/08/21 ckd 11/08/21 ckd J 0.0013 mg/L 0.00080 11/08/21 ckd 11/08/21 Copper 0.000089 mg/L 0.00040 1 11/08/21 11/08/21 Lead ckd ckd J 0.022 mg/L 0.00040 11/08/21 11/08/21 Manganese 1 ckd ckd Molybdenum 0.0012 mg/L 0.00040 11/08/21 11/08/21 ckd ckd Ν 0.0013 mg/L 0.00040 1 11/08/21 ckd 11/08/21 Nickel ckd <0.00087 mg/L 11/08/21 11/08/21 Selenium 0.00087 ckd ckd Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00017 mg/L Thallium 0.00017 1 11/08/21 ckd 11/08/21 ckd

CERTIFICATE OF ANALYSIS

0.00080

0.00054 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

J

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

RDL

0.10

0.75

3.0

10

10

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-03

Sample ID: SW-SE-MW-7

Matrix: Surface Water

Date Collected: 10/28/21 12:05

Date Received: 10/28/21 15:58

Field pH: 7.80

PARAMETERS

RESULTS UNITS

0.093 mg/L

41 mg/L

32 mg/L

DILUTION

PREPARED

10/29/21

10/29/21

10/29/21

11/03/21

11/03/21

ans

ans

ans

ans

ans

mr

BY ANALYZED

10/29/21

10/29/21

10/29/21

11/04/21

11/04/21

BY NOTES

MCL

METALS, DISSOLVED

WET CHEMISTRY

Fluoride

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116228

Chloride Sulfate as SO4

ŀ

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 Carbonate Alkalinity as CaCO3 at pH 8.2

Carbonate Aikaining as Cacco at pri o.

Analysis Method: SM 2540 C-11

Batch: T116265

Total Dissolved Solids

330 mg/L

220 mg/L

<10 mg/L

38

3.846154

5

5

5

1

11/01/21

11/02/21

mr

ans

ans

ans

ans

J

Ν

Ν

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-04 Sample ID: SW-NE-MW-10	Matrix: Surface Water		Date Collected: 10/28/21 10:30 Date Received: 10/28/21 15:58			eld pH: 7.89			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: EPA 1631E Batch: T116283									
Mercury	8.8 ng/L	0.50	1	11/01/21	ckd	11/02/21	ckd	N	
Analysis Method: EPA 6010D Batch: T116267									
Beryllium	<0.0020 mg/L	0.0020	1	11/01/21	mrh	11/02/21	ckd		
Boron	0.20 mg/L	0.050	1	11/01/21	mrh	11/02/21	ckd		
Calcium	62 mg/L	0.50	1	11/01/21	mrh	11/02/21	ckd		
Iron	0.25 mg/L	0.20	1	11/01/21	mrh	11/02/21	ckd		
Lithium	0.015 mg/L	0.010	1	11/01/21	mrh	11/02/21	ckd	N	
Magnesium	24 mg/L	0.20	1	11/01/21	mrh	11/02/21	ckd		
Potassium	4.7 mg/L	1.0	1	11/01/21	mrh	11/02/21	ckd		
Sodium	29 mg/L	0.50	1	11/01/21	mrh	11/02/21	ckd	N	
Zinc	<0.020 mg/L	0.020	1	11/01/21	mrh	11/02/21	ckd		
Analysis Method: EPA 6020B Batch: T116267									
Antimony	<0.00030 mg/L	0.00030	1	11/01/21	mrh	11/04/21	acs		
Arsenic	0.00091 mg/L	0.0010	1	11/01/21	mrh	11/04/21	acs	J	
Barium	0.067 mg/L	0.010	1	11/01/21	mrh	11/04/21	acs		
Cadmium	<0.0010 mg/L	0.0010	1	11/01/21	mrh	11/04/21	acs		
Chromium	0.0017 mg/L	0.00090	1	11/01/21	mrh	11/04/21	acs		
Cobalt	<0.0016 mg/L	0.0016	1	11/01/21	mrh	11/04/21	acs		
Copper	<0.0040 mg/L	0.0040	1	11/01/21	mrh	11/04/21	acs		
Lead	<0.0020 mg/L	0.0020	1	11/01/21	mrh	11/04/21	acs		
Manganese	0.10 mg/L	0.025	1	11/01/21	mrh	11/04/21	acs		
Molybdenum	0.0010 mg/L	0.00040	1	11/01/21	mrh	11/04/21	acs	N	
Nickel	<0.0050 mg/L	0.0050	1	11/01/21	mrh	11/04/21	acs		
Selenium	<0.0020 mg/L	0.0020	1	11/01/21	mrh	11/04/21	acs		
Silver	<0.0010 mg/L	0.0010	1	11/01/21	mrh	11/04/21	acs		
Thallium	<0.0010 mg/L	0.0010	1	11/01/21	mrh	11/04/21	acs		

CERTIFICATE OF ANALYSIS

0.00080

0.00086 mg/L

11/01/21

11/04/21

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-04 Sample ID: SW-NE-MW-10	Matrix: Surface Water		Date Collected: 10/28/21 10:30 Date Received: 10/28/21 15:58			ld pH: 7.89	Field pH: 7.89		
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	250 mg/L	0.82	1	11/01/21		11/02/21	ckd	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T116384									
Beryllium	<0.0010 mg/L	0.0010	1	11/03/21	ckd	11/04/21	ckd		
Boron	0.18 mg/L	0.050	1	11/03/21	ckd	11/04/21	ckd		
Calcium	56 mg/L	0.50	1	11/03/21	ckd	11/04/21	ckd		
Iron	0.077 mg/L	0.10	1	11/03/21	ckd	11/04/21	ckd	J	
Lithium	0.010 mg/L	0.010	1	11/03/21	ckd	11/04/21	ckd	N	
Magnesium	21 mg/L	0.20	1	11/03/21	ckd	11/04/21	ckd		
Potassium	4.4 mg/L	1.0	1	11/03/21	ckd	11/04/21	ckd		
Sodium	27 mg/L	0.50	1	11/03/21	ckd	11/04/21	ckd	N	
Zinc	<0.020 mg/L	0.020	1	11/03/21	ckd	11/04/21	ckd		
Analysis Method: EPA 6020B Batch: T116167									
Antimony	0.00032 mg/L	0.00020	1	11/08/21	ckd	11/08/21	ckd		
Arsenic	0.00097 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd	J	
Barium	0.059 mg/L	0.00060	1	11/08/21	ckd	11/08/21	ckd		
Cadmium	<0.0010 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Chromium	0.00043 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd	J	
Cobalt	0.00013 mg/L	0.0016	1	11/08/21	ckd	11/08/21	ckd	J	
Copper	0.00056 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd	J	
Lead	0.00013 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	J	
Manganese	0.024 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Molybdenum	0.00094 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	N	
Nickel	0.0013 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Selenium	<0.00087 mg/L	0.00087	1	11/08/21	ckd	11/08/21	ckd		
Silver	<0.000040 mg/L	0.000040	1	11/08/21	ckd	11/08/21	ckd		
Thallium	<0.00017 mg/L	0.00017	1	11/08/21	ckd	11/08/21	ckd		

CERTIFICATE OF ANALYSIS

0.00080

0.00031 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

J

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-04 Matrix: Surface Water Date Collected: 10/28/21 10:30

Sample ID: SW-NE-MW-10 Date Received: 10/28/21 15:58 Field pH: 7.89

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116228

Fluoride 0.12 mg/L 0.10 10/29/21 10/29/21 5 ans ans Chloride 52 mg/L 1.5 10 11/02/21 11/02/21 jma jma Sulfate as SO4 31 mg/L 3.0 5 10/29/21 10/29/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 190 mg/L 10 1 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <10 mg/L 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116265

Total Dissolved Solids 300 mg/L 40 4 11/01/21 mr 11/02/21 mr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

QUALITY CONTROL RESULTS

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: T116283 Analysis Description: Mercury, Total, Low Level

QC Batch Method: EPA 1631E Analysis Method: EPA 1631E Analysis Method: EPA 1631E

METHOD BLANK: T116283-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/l	<0.20	0.20	

METHOD BLANK: T116283-BLK2

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/L	<0.20	0.20	

METHOD BLANK: T116283-BLK3

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/L	<0.20	0.20	

LABORATORY CONTROL SAMPLE: T116283-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Mercury	ng/L	25.0	23.4	94	77-123	

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: T116267 Analysis Description: Beryllium, Total
QC Batch Method: EPA 3015 Microwave Assisted Digestions Analysis Method: EPA 6010D

for Liquids

METHOD BLANK: T116267-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Boron	mg/L	<0.050	0.050	
Beryllium	mg/L	<0.0020	0.0020	
Calcium	mg/L	0.17	0.50	J
Iron	mg/L	<0.20	0.20	
Potassium	mg/L	0.18	1.0	J
Lithium	mg/L	<0.010	0.010	
Magnesium	mg/L	0.057	0.20	J
Sodium	mg/L	0.39	0.50	J

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T116267-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Zinc	mg/L	<0.020	0.020	

LABORATORY CONTROL SAMPLE: T116267-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	0.889	0.857	96	80-120	
Beryllium	mg/L	0.111	0.110	99	80-120	
Calcium	mg/L	8.89	8.88	100	80-120	
Iron	mg/L	8.89	9.16	103	80-120	
Potassium	mg/L	8.89	9.15	103	80-120	
Lithium	mg/L	0.889	0.887	100	80-120	
Magnesium	mg/L	8.89	9.28	104	80-120	
Sodium	mg/L	8.89	9.42	106	80-120	
Zinc	mg/L	0.889	0.921	104	80-120	

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: T116384 Analysis Description: Zinc, Dissolved
QC Batch Method: Analysis Method: EPA 6010D

METHOD BLANK: T116384-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Boron	mg/L	<0.050	0.050	
Beryllium	mg/L	<0.0010	0.0010	
Calcium	mg/L	<0.50	0.50	
Iron	mg/L	<0.10	0.10	
Potassium	mg/L	0.029	1.0	J
Lithium	mg/L	<0.010	0.010	
Magnesium	mg/L	<0.20	0.20	
Sodium	mg/L	<0.50	0.50	
Zinc	mg/L	<0.020	0.020	

LABORATORY CONTROL SAMPLE: T116384-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	1.00	0.932	93	80-120	
Beryllium	mg/L	0.0500	0.0519	104	80-120	
Calcium	mg/L	10.0	10.0	100	80-120	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T116384-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Iron	mg/L	10.0	10.1	101	80-120	
Potassium	mg/L	10.0	9.86	99	80-120	
Lithium	mg/L	0.500	0.493	99	80-120	
Magnesium	mg/L	10.0	10.0	100	80-120	
Sodium	mg/L	10.0	9.67	97	80-120	
Zinc	mg/L	1.00	1.01	101	80-120	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116384-MSD1

Original: 21J1157-01

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Boron	mg/L	0.0467	1.00	0.978	0.972	93	93	75-125	0.7	20	
Beryllium	mg/L	0	0.0500	0.0533	0.0522	107	104	75-125	2	20	
Calcium	mg/L	69.2	10.0	80.6	77.8	114	86	75-125	28	20	207
Iron	mg/L	0.0584	10.0	10.2	10.0	101	100	75-125	1	20	
Potassium	mg/L	4.00	10.0	14.1	14.0	101	100	75-125	1	20	
Lithium	mg/L	0.00333	0.500	0.499	0.493	99	98	75-125	1	20	
Magnesium	mg/L	20.8	10.0	31.2	30.2	104	94	75-125	10	20	
Sodium	mg/L	21.5	10.0	31.3	31.1	98	96	75-125	2	20	
Zinc	mg/L	0.00178	1.00	0.985	0.980	98	98	75-125	0.5	20	

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: T116167 QC Batch Method: Analysis Description: Chromium, Dissolved

Analysis Method: EPA 6020B

METHOD BLANK: T116167-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Silver	mg/L	0.000026	0.000040	J
Arsenic	mg/L	<0.0010	0.0010	
Barium	mg/L	<0.00060	0.00060	
Cadmium	mg/L	<0.00020	0.00020	
Cobalt	mg/L	<0.0016	0.0016	
Chromium	mg/L	<0.00080	0.00080	
Copper	mg/L	<0.00080	0.00080	
Manganese	mg/L	<0.00040	0.00040	
Molybdenum	mg/L	<0.00040	0.00040	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T116167-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Nickel	mg/L	<0.00040	0.00040	
Lead	mg/L	<0.00040	0.00040	
Antimony	mg/L	0.00017	0.00020	J
Selenium	mg/L	<0.00087	0.00087	
Thallium	mg/L	<0.00017	0.00017	
Vanadium	mg/L	<0.00080	0.00080	

LABORATORY CONTROL SAMPLE: T116167-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Silver	mg/L	0.0600	0.0612	102	80-120	
Arsenic	mg/L	0.0600	0.0630	105	80-120	
Barium	mg/L	0.0600	0.0588	98	80-120	
Cadmium	mg/L	0.0600	0.0613	102	80-120	
Cobalt	mg/L	0.0600	0.0604	101	80-120	
Chromium	mg/L	0.0600	0.0629	105	80-120	
Copper	mg/L	0.0600	0.0610	102	80-120	
Manganese	mg/L	0.0600	0.0615	102	80-120	
Molybdenum	mg/L	0.0600	0.0588	98	80-120	
Nickel	mg/L	0.0600	0.0602	100	80-120	
Lead	mg/L	0.0600	0.0616	103	80-120	
Antimony	mg/L	0.0600	0.0577	96	80-120	
Selenium	mg/L	0.0600	0.0630	105	80-120	
Thallium	mg/L	0.0600	0.0617	103	80-120	
Vanadium	mg/L	0.0600	0.0581	97	80-120	

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: T116267

QC Batch Method: EPA 3015 Microwave Assisted Digestions

for Liquids

Analysis Description: Nickel, Total Analysis Method: EPA 6020B

METHOD BLANK: T116267-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Silver	mg/L	<0.0010	0.0010	
Arsenic	mg/L	<0.0010	0.0010	
Barium	mg/L	<0.010	0.010	
Cadmium	mg/L	<0.0010	0.0010	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T116267-BLK1

Parameter	Units	Blank	Reporting	Note
raiailletei	Offits	Result	Limit	Note
Cobalt	mg/L	<0.0016	0.0016	
Chromium	mg/L	<0.00090	0.00090	
Copper	mg/L	<0.0040	0.0040	
Manganese	mg/L	<0.025	0.025	
Molybdenum	mg/L	<0.00040	0.00040	
Nickel	mg/L	<0.0050	0.0050	
Lead	mg/L	<0.0020	0.0020	
Antimony	mg/L	<0.00030	0.00030	
Selenium	mg/L	<0.0020	0.0020	
Thallium	mg/L	<0.0010	0.0010	
Vanadium	mg/L	<0.00080	0.00080	

LABORATORY CONTROL SAMPLE: T116267-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Silver	mg/L	0.0278	0.0329	118	80-120	
Arsenic	mg/L	0.0556	0.0602	108	80-120	
Barium	mg/L	0.889	0.994	112	80-120	
Cadmium	mg/L	0.0278	0.0307	111	80-120	
Cobalt	mg/L	0.889	0.923	104	80-120	
Chromium	mg/L	0.0278	0.0303	109	80-120	
Copper	mg/L	0.890	0.882	99	80-120	
Manganese	mg/L	0.887	0.918	104	80-120	
Molybdenum	mg/L	0.889	0.945	106	80-120	
Nickel	mg/L	0.889	0.869	98	80-120	
Lead	mg/L	0.0556	0.0542	98	80-120	
Antimony	mg/L	0.0556	0.0634	114	80-120	
Selenium	mg/L	0.0556	0.0584	105	80-120	
Thallium	mg/L	0.0556	0.0552	99	80-120	
Vanadium	mg/L	0.889	0.974	110	80-120	

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: [CALC] Analysis Description: Hardness (Metals)
QC Batch Method: Analysis Method: SM 2340 B-11

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

QC Batch: T116228

QC Batch Method: IC Prep W

Analysis Description: Chloride

Analysis Method: EPA 300.0 Rev. 2.1

METHOD BLANK: T116228-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Chloride	mg/L	<0.15	0.15	
Fluoride	mg/L	<0.020	0.020	
Sulfate as SO4	mg/L	<0.60	0.60	

LABORATORY CONTROL SAMPLE: T116228-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Chloride	mg/L	5.00	5.16	103	90-110	
Fluoride	mg/L	1.00	1.03	103	90-110	
Sulfate as SO4	mg/L	5.00	4.89	98	90-110	

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: T116313

QC Batch Method: IC Prep W

Analysis Description: Chloride

Analysis Method: EPA 300.0 Rev. 2.1

METHOD BLANK: T116313-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Chloride	ma/l	<0.15	0.15	

LABORATORY CONTROL SAMPLE: T116313-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Chloride	mg/L	5.00	4.57	91	90-110	_

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: T116366
QC Batch Method: SM 2320 B-11

Analysis Description: Alkalinity, Carbonate

Analysis Method: SM 2320 B-11

LABORATORY CONTROL SAMPLE: T116366-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Bicarbonate Alkalinity as CaCO3 at pH 4.5	mg/L	100	97.3	97	88-112	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T116366-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Carbonate Alkalinity as CaCO3 at pH 8.2	mg/L	100	97.3	97	88-112	

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: T116265

QC Batch Method: SM 2540 C-11

Analysis Description: Total Dissolved Solids
Analysis Method: SM 2540 C-11

METHOD BLANK: T116265-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Total Dissolved Solids	mg/L	9.0	10	J

LABORATORY CONTROL SAMPLE: T116265-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Total Dissolved Solids	ma/L	500	527	105	80-120	

SAMPLE DUPLICATE: T116265-DUP1 Original: 21J1157-01

Parameter Total Dissolved Solids	Units mg/L	Result 320	Result 368	RPD	RPD 10	Notes 623	_
		Original	DUP	DDD	Max	Militari	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Plea	se Sig	n				1	71	2	7	16860	Trace Date No. Collected	Project Name:	1 Day* *Results provide	3 Day*	Turnaround Requirements: XI Standard 5-10 Days	Email Address:	Office Phone:	City, State, Zip Code:	Mailing Address:	Report To: Paul Cederquist	Company Nam	Report Results To:			
	M	, l		-	-		<u></u>	13	2	_	cted Co.	and the same of the	ted end o	9	Requi			Code:	99	ul Cede	e: Gran	ults To			
		Released By				UC 3U	.27	12:05	91.19	2	Time Collected	Surface \	f busines	ij	rement Davs					rquist	d Have				L
In executing this Chain of Custody, the client acknowledges the terms as set forth at www.trace-labs.com/terms-of-agreement.		By Received By					SW-NE-MW-10	SW-SE-MW-7	SW-N-SG-2	SW-SG-1	Client Sample ID	Water Sampling	1 Day* SL = Sludge 'Results provided end of business day, requires prior approval. OI = Oil	W = Water	ts: Matrix Key: S = Soil / Solid		Cell Phone:				Company Name: Grand Haven Board of Light & Power		CASORATORIES, INC.	Constitution of the Consti	
ndv the client ac	dedoil	, Date,									Metals Field	Sampled By:	A = Air D = Drinking Water		d WI = Wipes	Billing Email Address:	Phone Number:	City, State, Zip Code:	Billing Address (if different):	Contact Name:	PO#	Bill To:	2241 Black Creek Road Muskegon, MI 49444-2673	Trace Analytical Laboratories, Inc.	
knowle	1	+		-	+		۷ W	¥	×	≺ ≤	Filtered (Y / N	1/1	ing Wa	uid Wa	D ₂	ddress	a	Code:	(if diff				eek F	a La	
daes	1553	Time			+		5	5	5	5	Number of Containers	100	ater	ste					erent):				Road 14-26	borat	
the ten	2)	_			+		×	×	×	×	Cool												73	ories	
rms a		ļ					×	×	×	×	HCI Preservation H ₂ SO ₄ ation	ω												nc.	- !
S S S S S S S S S S S S S S S S S S S		ŀ																							
5		_R		+	+	ير ا		Į		\times	Other T-B,Ca,Fe	Sh As	Ba Be C	d Cr	П										
T WWW		Released By	$\dashv \dashv$	+	+	\vdash	4			\times	T- Co,Cu,				-								ĕ ₽	P	
trace		By -		+	+		1	_	-	X	T- TI, V,Zr				1								x 888 w.tra	one	
lahs		-	\dashv	+	+					×	Diss.Meta	_		als)	-								3.979 10e-la	231.7	
m/te		-		-	+	1	N N			$\stackrel{\frown}{\times}$	Fluoride,S				,								Fax 888.979.4469 www.trace-labs.com	Phone 231.773.5998	
	+	\dashv		_		+++	_		waren	$\stackrel{\frown}{\times}$	pH				٦.								om 9	998	
gane-		1		_	+			None and	_	×					Anal							1			
nama		Rec	\dashv		+		6		نز_	X	Radiums	226/228			Analysis Requested		Sar	Γ	Soi	S,	5	쿫			
		Received By			-		0			X	Bicarb-Alk		11075 001000		- Reg		Sampling Time:	МеОН	Vola	cked	Logged By:	race Use:			
		By	\dashv		+	++'	100			+	1 2.23.27.11	, -3,50			-lest		Time	임	tiles P	By:	Ϋ́	Jse:	6)	
		-		-	+	++			\vdash	-	-			-	- [음		15		reser	_	Land		C		c I
		\perp												_				Low Level	ved (c	区	Y	2		Ггас	اً
	+	Date				3	98 7=Ha	pH=7.86	PH=7.5	pH=8.4(Remarks							Level Lab	Soil Volatiles Preserved (dircle if applicable):		2	_	3	Trace ID No.	
		Time					0	96	21	6	Possible He	alth ⊔a-	arde?		+			1 8	Ÿ,						

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1		PΗ	Turbidity(NTU)	ORP (mV)	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Reading Time		Surface Water ID : <u>ルー気ラ</u> み	Trace Ana	
or <1		757	0.0	6,	0.02	. 472	9.43	9:00	Purge Start Time: 중국사동	0: N-S5-0	lytical La	
		7.57	0.0	6	60.03	·472	9.93	9:03	ne: 8:45	4	boratori	
Pump Used: Peristaltic	2	7.57	0.0	6	10.02	472	9.93	9:06	Purge Rate: SOS 470/ INVILA		Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form	
											rements Form $\mathbb{R}/\mathcal{T}\mathbb{S}$	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1	pΗ	bidity(NTU)	ORP (mV)	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Reading Time		Surface Water ID : 56 -	Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form Client: GHBLP Date: 10-28-21 Field Personnel: EB/TB
teria: % ity: 3% en: 10%	8.46	72.4	196	7.91	.581	11.28	80:01	Purge Start Time: 9:55	: 56-1	lytical La
	3.46	22.4	136	7.91	185.	11.28	10:11	\$.50 \$.50 \$.50 \$.50 \$.50 \$.50 \$.50 \$.50	J	boratorie
Notes:	8.46	12,4	196	7.91	.581	11.28	16: 13	Purg		S: Low Flow W
Notes: Pump Used: Peristaltic								Purge Rate: <u>Soo</u> r		ow Well I
altic						1		Soom Clusion		Purging F
								2		Field Measure
					-					suremen
									,	ts Form
				7 8						

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Stabil Temp Spec. Disso ORP: Turbii pH:+	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Turbi.	ORP (mV)	Dissolved Oxygen	Specific Conduct	Tempera (Celsius)	Readi		Surfac	Tra
Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1		Turbidity(NTU)	mV)	٥	Specific Conductivity	Temperature (Celsius)	Reading Time	-	ce Water ID	Trace Anal
eria: 6 17: 3% 17: 10%	7.89		53	10.05	.463	10.20	10:20	Purge Start Time: 10:05	Surface Water ID: NE-MW-10	ytical La
	7.89	14.9	25	10.05	.463	10.20	10:23	e: 10:05	2-10	boratorie
Notes: Pump Used: Peristaltic	7.89	14.9	5	(0, 05	.463	16.30	16:26	Purge Rate:		Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form
ristaltic								Sooul Inin	i	ell Purging Fi
								,		Field Measureme
										ements Fo
										ä

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Client: GHBLP	072 16.72 16.73 16	Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1		Turbidity(NTU)	ORP (mV)	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Reading Time		Surface Water ID	Client: GHBLP	Trace Ana
Date: 10-28-21 Date	Date: 10.28.31 Field Measur Date: 10.28.31 Field Personnel: 15. 11.58 12.01 10.73 10.73 10.75 9.75 9.75 9.75 Notes: Notes: Pump Used: Peristaltic	teria: % ity: 3% n: 10%	7.86	0	52	9.75	.476	10.72	11:55	ourge Start Tin	: SE-MU		lytical La
Pump Used: Peristaltic	Purge Rate:		7.80	10.1	57	9.75	,476		11:58	ne: 11.40	;		boratori
	Field Personnel:	Notes: Pump Used: Peristaltic	%	[0,1	S.	9,75	,476	16.72	(2:0)		·	Date: 10-28-21	es: Low Flow Well Pur
ements Form 5/ TR													

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

roject Manager: Jon Mink		8
	Date: 10/29/21 5	erature
	Time: 937 Logged by: DW Package Description:	
<u> </u>	Package Description:	Corrected Temp IR-9 (CF: +0.1°C) IR-10 (CF: +0.1°C 20812743 (CF: -CF: -CF: -CF: -CF: -CF: -CF: -CF: -
		Corrected Tem IR-9 (CF: +0.1° IR-10 (CF: +0.1 20B12743 (CF: Temp Blank Client Sample
	Package Temp °C - 0.4 Representative Sample Temp °C 5.2	-0.3 V
Sample Receipt Yes / No		
Received on ice or other coolant Country Coustody seals present Courier Client Drop-off UPS	- The state with applicable)	Other
Sample Condition		e e
All sample containers arrived unbroken Sufficient sample to run requested analy Correct chemical preservative added to	yses	•
Samples preserved at Trace Chemical preservation verified, check EN pH 0-2.5 (Lot: HC029115)	MD pH test strip used (if applicable)	
	Company Company (197)	Other
Chemical preservation verified, check END pH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC)	MD pH test strip used (if applicable)	Other
Chemical preservation verified, check END PH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No All bottle labels agree with COC	MD pH test strip used (if applicable)	□ Other
Chemical preservation verified, check END PH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No	MD pH test strip used (if applicable)	□ Other
Chemical preservation verified, check END PH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No All bottle labels agree with COC COC filled out properly COC signed by client	MD pH test strip used (if applicable) PH 11.0-13.0 (Lot: HC022540)	□ Other
Chemical preservation verified, check END pH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No All bottle labels agree with COC COC filled out properly	MD pH test strip used (if applicable) PH 11.0-13.0 (Lot: HC022540)	□ Other
Chemical preservation verified, check END PH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No All bottle labels agree with COC COC filled out properly COC signed by client	MD pH test strip used (if applicable) PH 11.0-13.0 (Lot: HC022540)	Other
Chemical preservation verified, check END PH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No All bottle labels agree with COC COC filled out properly COC signed by client	MD pH test strip used (if applicable) PH 11.0-13.0 (Lot: HC022540)	Other
Chemical preservation verified, check END PH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No All bottle labels agree with COC COC filled out properly COC signed by client	MD pH test strip used (if applicable) PH 11.0-13.0 (Lot: HC022540)	Other
Chemical preservation verified, check END PH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No All bottle labels agree with COC COC filled out properly COC signed by client	MD pH test strip used (if applicable) PH 11.0-13.0 (Lot: HC022540)	□ Other

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

November 30, 2021

Mr. Paul Cederquist Grand Haven Board of Light and Power-Monthly MWs 1700 Eaton Drive Grand Haven, MI 49417

RE: Trace Project 21J1157

Client Project Surface Water Sampling

Dear Mr. Cederquist:

Enclosed are your analytical results. The results of this report relate only to the samples listed in the body of this report.

All reports were examined through Trace's validation process to ensure that requirements for quality and completeness were satisfied. All reported analytical results were obtained in accordance with the methods referenced on the reports. Every practical effort was made to meet the reporting limit specifications for this work, however, some results may have raised reporting limits to correct for percent solids.

The results were obtained from Eurofins.

For clients that require NELAC Accreditation, Trace certifies that these test results meet all requirements of the NELAC Standard, except for those analytes with a "N" notation. These analytes have not been evaluated by NELAC at Trace's discretion and will not be reported unless requested by client.

If you have questions concerning this report, please contact me at 231.773.5998 or by email at jmink@trace-labs.com.

Sincerely,

Jon Mink

Senior Project Manager

Enclosures

NJDEP Accreditation No. MI008

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

SAMPLE SUMMARY

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID	Sample ID	Matrix	Collected By	Date Collected	Date Received
21J1157-01	SW-SG-1	Surface Water	TRACE-EB/TB	10/28/21 10:15	10/28/21 15:58
21J1157-02	SW-N-SG-2	Surface Water	TRACE-EB/TB	10/28/21 09:10	10/28/21 15:58
21J1157-03	SW-SE-MW-7	Surface Water	TRACE-EB/TB	10/28/21 12:05	10/28/21 15:58
21J1157-04	SW-NE-MW-10	Surface Water	TRACE-EB/TB	10/28/21 10:30	10/28/21 15:58

AN EXPLANATION OF TERMS AND SYMBOLS WHICH MAY OCCUR IN THIS REPORT

DEFINITIONS

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

MS Matrix Spike

MSD Matrix Spike Duplicate
RPD Relative Percent Difference

DUP Matrix Duplicate

RDL Reporting Detection Limit
MCL Maximum Contamination Limit
TIC Tentatively Identified Compound

<, ND or U Indicates the compound was analyzed for but not detected

* Indicates a result that exceeds its associated MCL or Surrogate control limits

N Indicates that the compound has not been evaluated by NELAC

NA Indicates that the compound is not available.

Environment Testing America

ANALYTICAL REPORT

Eurofins Eaton Analytical - South Bend 110 S Hill Street South Bend, IN 46617 Tel: (574)233-4777

Laboratory Job ID: 810-6473-1 Client Project/Site: Trace - 21J1157

Revision: 1

For:

Trace Analytical Laboratories 2241 Black Creek Road Muskegon, Michigan 49444

Attn: Jon Mink

Karew Fullner

Authorized for release by: 11/30/2021 11:40:43 AM

Karen Fullmer, Project Manager (574)233-4777

karen.fullmer@eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

8

- -

12

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	8
QC Association Summary	9
Lab Chronicle	10
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receipt Checklists	18

4

5

_

8

10

12

13

Definitions/Glossary

Client: Trace Analytical Laboratories Job ID: 810-6473-1

Project/Site: Trace - 21J1157

Qualifiers

Rad

Qualifier Qualifier Description

U Result is less than the sample detection limit.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

А

3

6

7

8

16

. .

12

13

Case Narrative

Client: Trace Analytical Laboratories

Project/Site: Trace - 21J1157

Job ID: 810-6473-1

Laboratory: Eurofins Eaton Analytical - South Bend

Narrative

Job Narrative 810-6473-1

Comments

No additional comments.

Revision

The report being provided is a revision of the original report sent on 11/18/2021. The report (revision 1) is being revised due to: Samples were logged in as drinking water by accident..

Receipt

The samples were received on 11/1/2021 9:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 12.4° C.

Receipt Exceptions

The Chain-of-Custody (COC) was incomplete as received and/or improperly completed. Bottles did not match coc at all and in-house coc was created. Client sent updated coc.

RAD

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 810-6473-1

Detection Summary

Client: Trace Analytical Laboratories Project/Site: Trace - 21J1157	Job ID: 810-6473-1
Client Sample ID: 21J1157/SW-SG-1	Lab Sample ID: 810-6473-1
No Detections.	
Client Sample ID: 21J1157/SW-N-SG-2	Lab Sample ID: 810-6473-2
No Detections.	
Client Sample ID: 21J1157/SW-SE-MW-7	Lab Sample ID: 810-6473-3
No Detections.	
Client Sample ID: 21J1157/SW-NE-MW-10	Lab Sample ID: 810-6473-4
No Detections.	

This Detection Summary does not include radiochemical test results.

Job ID: 810-6473-1

Client: Trace Analytical Laboratories Project/Site: Trace - 21J1157

Client Sample ID: 21J1157/SW-SG-1

Lab Sample ID: 810-6473-1 Date Collected: 10/28/21 10:15 **Matrix: Surface Water**

Date Received: 11/01/21 09:00

Method: 7500 Ra D - Radium 226 Radium 228 Combined

			Count	iotai						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil F
Combined Radium 226	0.000	U	0.80802		1.00	0.500	pCi/L		11/15/21 09:30	

+ 228

Method: SM7500 Ra B - Radium-226

			Count	Iotai					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Ra-226	-0.820	U	0.650		1.00	0.340 pCi/L	11/04/21 13:22	11/12/21 11:43	1

Method: SM7500 Ra D - Radium-228

			Count	Iotai						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	0.150	U	0.480		1.00	0.500	pCi/L	11/12/21 10:12	11/15/21 12:05	1

Client Sample ID: 21J1157/SW-N-SG-2

Date Collected: 10/28/21 09:10 Date Received: 11/01/21 09:00

Lab Sample ID: 810-6473-2

Matrix: Surface Water

Method: 7500 Ra D - Radium 226 Radium 228 Combined

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.000	U	0.76837		1.00	0.500	pCi/L		11/15/21 09:30	1

Method: SM7500 Ra B - Radium-226

			Count	iolai						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.0800	U	0.600		1.00	0.350	pCi/L	11/04/21 13:22	11/12/21 11:43	1

Method: SM7500 Ra D - Radium-228

ı				Count	Total						
				Uncert.	Uncert.						
	Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC U	nit	Prepared	Analyzed	Dil Fac
Į	Ra-228	-0.0800	U	0.480		1.00	0.500 pc	Ci/L	11/12/21 10:12	11/15/21 12:05	1

Client Sample ID: 21J1157/SW-SE-MW-7	Lab Sample ID: 810-6473-3
Date Collected: 10/28/21 12:05	Matrix: Surface Water
Date Received: 11/01/21 09:00	

	Method: 7500 Ra D - Radium 226 Radium	228	Combi	ned
ı		C	4	Tata

			Count	Total					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.670		0.83006		1.00	0.480 pCi/L		11/15/21 09:30	1

Eurofins Eaton Analytical - South Bend

Client Sample Results

Client: Trace Analytical Laboratories Job ID: 810-6473-1

Project/Site: Trace - 21J1157

Lab Sample ID: 810-6473-3 Client Sample ID: 21J1157/SW-SE-MW-7

Date Collected: 10/28/21 12:05 **Matrix: Surface Water** Date Received: 11/01/21 09:00

Method: SM7	500 Ra B - Radi	um-226								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-226	-0.470	U	0.670		1.00	0.330	pCi/L	11/04/21 13:22	11/12/21 11:43	1
_ Method: SM75	500 Ra D - Radi	um-228								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	0.670		0.490		1.00	0.480	pCi/L	11/12/21 10:12	11/15/21 12:05	1

Client Sample ID: 21J1157/SW-NE-MW-10 Lab Sample ID: 810-6473-4 **Matrix: Surface Water**

Date Collected: 10/28/21 10:30 Date Received: 11/01/21 09:00

Method: 7500 Ra D	- Radium	226 Radii	um 228 Co	mbined						
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.45		0.54489		1.00	0.380	pCi/L		11/15/21 09:30	1

Method: SM7500 F	la B - Radi	um-226								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.650		0.370		1.00	0.310	pCi/L	11/04/21 13:22	11/08/21 11:28	1

Method: SM750	0 Ra D - Radi	um-228								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	0.800		0.400		1.00	0.380	pCi/L	11/12/21 10:12	11/15/21 12:05	1

Client: Trace Analytical Laboratories

Project/Site: Trace - 21J1157

Job ID: 810-6473-1

Method: SM7500 Ra B - Radium-226

Lab Sample ID: MB 810-6604/1-A

Matrix: Drinking Water Analysis Batch: 7022

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 6604

Count Total MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Ra-226 0.5000 0.240 1.00 0.180 pCi/L 11/04/21 13:22 11/08/21 11:28

Lab Sample ID: LCS 810-6604/2-A

Matrix: Drinking Water Analysis Batch: 7022

Analyte

Ra-226

Analyte

Ra-228

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 6604

Total Spike LCS LCS Uncert. %Rec. Added Result Qual $(2\sigma + / -)$ RL**MDC** Unit %Rec Limits 8.73 1.00 90 - 110 9.470 0.190 pCi/L 108

RL

1.00

Method: SM7500 Ra D - Radium-228

-0.1600 U

Lab Sample ID: MB 810-7205/1-A

Matrix: Drinking Water Analysis Batch: 7351

Count Total MB MB Uncert. Uncert. Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$

Spike

0.430

Lab Sample ID: LCS 810-7205/2-A

Matrix: Drinking Water Analysis Batch: 7351

Client Sample ID: Lab Control Sample

11/12/21 10:12 11/15/21 12:18

Prepared

Client Sample ID: Method Blank

Analyzed

Prep Type: Total/NA Prep Batch: 7205

Prep Type: Total/NA

Prep Batch: 7205

Dil Fac

Total LCS LCS Uncert. %Rec.

MDC Unit

0.460 pCi/L

Added RL **MDC** Unit %Rec Limits **Analyte** Result Qual $(2\sigma + / -)$ Ra-228 8.83 7.490 1.00 0.520 pCi/L 85 80 - 120

QC Association Summary

Client: Trace Analytical Laboratories Job ID: 810-6473-1

Project/Site: Trace - 21J1157

Rad

Prep Batch: 6604

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
810-6473-1	21J1157/SW-SG-1	Total/NA	Surface Water	RAD Prep	
810-6473-2	21J1157/SW-N-SG-2	Total/NA	Surface Water	RAD Prep	
810-6473-3	21J1157/SW-SE-MW-7	Total/NA	Surface Water	RAD Prep	
810-6473-4	21J1157/SW-NE-MW-10	Total/NA	Surface Water	RAD Prep	
MB 810-6604/1-A	Method Blank	Total/NA	Drinking Water	RAD Prep	
LCS 810-6604/2-A	Lab Control Sample	Total/NA	Drinking Water	RAD Prep	

Prep Batch: 7205

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
810-6473-1	21J1157/SW-SG-1	Total/NA	Surface Water	RAD Prep	
810-6473-2	21J1157/SW-N-SG-2	Total/NA	Surface Water	RAD Prep	
810-6473-3	21J1157/SW-SE-MW-7	Total/NA	Surface Water	RAD Prep	
810-6473-4	21J1157/SW-NE-MW-10	Total/NA	Surface Water	RAD Prep	
MB 810-7205/1-A	Method Blank	Total/NA	Drinking Water	RAD Prep	
LCS 810-7205/2-A	Lab Control Sample	Total/NA	Drinking Water	RAD Prep	

Client: Trace Analytical Laboratories Project/Site: Trace - 21J1157

Client Sample ID: 21J1157/SW-SG-1

Date Collected: 10/28/21 10:15 Date Received: 11/01/21 09:00

Lab Sample ID: 810-6473-1

Matrix: Surface Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D		1	7295	11/15/21 09:30	JB	EA SB
Total/NA	Prep	RAD Prep			6604	11/04/21 13:22	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7224		JB	EA SB
					(Start)	11/12/21 11:43		
					(End)	11/12/21 12:13		
Total/NA	Prep	RAD Prep			7205	11/12/21 10:12	00	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7351		00	EA SB
					(Start)	11/15/21 12:05		
					(End)	11/15/21 15:05		

Client Sample ID: 21J1157/SW-N-SG-2 Lab Sample ID: 810-6473-2

Date Collected: 10/28/21 09:10 Date Received: 11/01/21 09:00

Matrix: Surface Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D		1	7295	11/15/21 09:30	JB	EA SB
Total/NA	Prep	RAD Prep			6604	11/04/21 13:22	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7224		JB	EA SB
					(Start)	11/12/21 11:43		
					(End)	11/12/21 12:13		
Total/NA	Prep	RAD Prep			7205	11/12/21 10:12	00	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7351		00	EA SB
					(Start)	11/15/21 12:05		
					(End)	11/15/21 15:05		

Client Sample ID: 21J1157/SW-SE-MW-7 Lab Sample ID: 810-6473-3 Date Collected: 10/28/21 12:05 **Matrix: Surface Water**

Date Received: 11/01/21 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D			7295	11/15/21 09:30	JB	EA SB
Total/NA	Prep	RAD Prep			6604	11/04/21 13:22	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7224		JB	EA SB
					(Start)	11/12/21 11:43		
					(End)	11/12/21 12:13		
Total/NA	Prep	RAD Prep			7205	11/12/21 10:12	00	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7351		00	EA SB
					(Start)	11/15/21 12:05		
					(End)	11/15/21 15:05		

Client Sample ID: 21J1157/SW-NE-MW-10 Lab Sample ID: 810-6473-4

Date Collected: 10/28/21 10:30 Date Received: 11/01/21 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D		1	7295	11/15/21 09:30	JB	EA SB

Eurofins Eaton Analytical - South Bend

Page 10 of 18

Matrix: Surface Water

Lab Chronicle

Client: Trace Analytical Laboratories Job ID: 810-6473-1

Project/Site: Trace - 21J1157

Client Sample ID: 21J1157/SW-NE-MW-10

Lab Sample ID: 810-6473-4 **Matrix: Surface Water** Date Collected: 10/28/21 10:30

Date Received: 11/01/21 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	RAD Prep			6604	11/04/21 13:22	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7022	11/08/21 11:28	JB	EA SB
Total/NA	Prep	RAD Prep			7205	11/12/21 10:12	00	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7351		00	EA SB
					(Start)	11/15/21 12:05		
					(End)	11/15/21 15:05		

Laboratory References:

EA SB = Eurofins Eaton Analytical - South Bend, 110 S Hill Street, South Bend, IN 46617, TEL (574)233-4777

Accreditation/Certification Summary

Client: Trace Analytical Laboratories Job ID: 810-6473-1

Project/Site: Trace - 21J1157

Laboratory: Eurofins Eaton Analytical - South Bend

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
Michigan		State	9926	03-22-22
the agency does not o	offer certification.		, , ,	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
7500 Ra D		Surface Water	Combined Radium 226 + 22	8
SM7500 Ra B	RAD Prep	Surface Water	Ra-226	
SM7500 Ra D	RAD Prep	Surface Water	Ra-228	

4

5

7

0

10

4.6

13

Method Summary

Client: Trace Analytical Laboratories

Project/Site: Trace - 21J1157

Job ID: 810-6473-1

Method	Method Description	Protocol	Laboratory
7500 Ra D	Radium 226 Radium 228 Combined	SM	EA SB
SM7500 Ra B	Radium-226	SM	EA SB
SM7500 Ra D	Radium-228	SM	EA SB
RAD Prep	Preparation, Radiologicals	None	EA SB

Protocol References:

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

EA SB = Eurofins Eaton Analytical - South Bend, 110 S Hill Street, South Bend, IN 46617, TEL (574)233-4777

2

4

5

6

9

10

11

13

Sample Summary

Client: Trace Analytical Laboratories

Project/Site: Trace - 21J1157

Lab Sample ID Client Sample ID Matrix Collected Received <u>10/28/21 10:15</u> <u>11/01/21 09:00</u> Surface Water 810-6473-1 21J1157/SW-SG-1 810-6473-2 21J1157/SW-N-SG-2 Surface Water 10/28/21 09:10 11/01/21 09:00 810-6473-3 21J1157/SW-SE-MW-7 Surface Water 10/28/21 12:05 11/01/21 09:00 10/28/21 10:30 11/01/21 09:00 810-6473-4 21J1157/SW-NE-MW-10 Surface Water

Job ID: 810-6473-1

3

4

5

8

3

12

13

8	eurofin	S

110 S. Hill Street South Bend, IN 46617 T: 1.800.332.4345

Order #

			Lato	n Analytic	cal			F: 1.574	.233.8207	Bate	ch #			_
www.EurofinsUS.com/Eaton					Cł	HAIN OF	CUSTODY REC	ORD		Pag	Α	of		_
Shaded area for	or EEA us	se only	100	TO 4 4 51 5 5 10						1		_ 0,		-
REPORT TO:				SAMPLER (Signature	±)		PWS ID #	STATE (sample origi	n) PROJECT NAME		PO#	-		
Jon Mink, Tim Brewer (mink@trace-lat Analytical Laboratories, Inc., 2241 Bla 773-5998								МІ						
BILL TO:					Yes	No	POPULATION SERVED	SOURCE WATER		21	J1157	SS		IME
Accounts Payable, Trace Analytical La Muskegon, MI 49444	boratories, In	nc., 2241 Black	Creek Rd ,	COMPLIANCE MONITORING								CONTAINERS	CODE	TURNAROUND TIME
LAB Number		COLLECTION	V	s	AMPLING SITE	i .	TEST	NAM5H ACC	Campterelonke	CHLO	RINATED		MATRIX C	NARO
	DATE	TIME	AM PA	А				PITACC	thrank	YES	NO	# OF	MA	T. R.
1	10/28/21	10:15	×	SW-SG-1			Radium 226/228	✓			×	1	sw	sw
2	10/28/21	9:10	×	SW-N-8G-2			Radium 226/228				×	1	sw	sw
3	10/28/21	12:05	x	SW-SE-MW-7			Radium 226/228	/			×	1	SW	SW
4	10/28/21	10:30	×	SW-NE-MW-10			Radium 226/228	V			ж	1	SW	SW
5														
6														
7														
8														
9														
10														
11					***									
12				1 1 1 2 2	18 51		11/00		ouch site		+			
13					1 2 1	الهيدا الكيدا الل		40/119	WW I SUC					
14								0 0		-	-			
RELINQUISHED BY:(Signature)		DATE	TIME	RECEIVED BY:(Sign	ature)	DATE	bium 226/1							
011		. 1	,	The state of the s	,		LAB COMMENTS	SERVES THE RIGHT TO RETURN L	NUSED PORTIONS OF NON-	AQUEOUS	SAMPLES TO	O CLIENT		
7/16		10/29/2	-											
RELINQUISHED BY:(Signature)		DATE	AM PA		ature)	DATE	AM PM							
, and the second of the second									(II	1				
			AM P				AM PM		1	13/	10-6-	250		
RELINQUISHED BY:(Signature)		DATE	TIME	RECEIVED FOR LABO	RATORY BY	DATE		N RECEIPT (check one):				-113	== 10	
				Sea	2001	11-1-21	0900 load	: Wet/Blue Ambient	12.4 °C Upon 1	Paraint		N/A		
		-	AM PN			1171011	AM PM	and the second of the second of the second		Salara E	ALLA ALLA	TVA		V. 11
MATRIX CODES:				ME (TAT) - SURCHARD	55									
DW-DRINKING WATER RW-REAGENT WATER		RV" = Rush Vi		5 working days) 0% ting days) 50%			e Verball (3 working days) 1009 te Written (3 working days) 1259							
GW-GROUND WATER EW-EXPOSURE WATER		RW" = Rush V				SP° = Weeken	•	MLL	Samples received unan than 48 hours holding to	nounced s	with less			
SW-SURFACE WATER PW-POOL WATER			,- /-			STAT" = Less			- may be subject to addit	ional char	ges.		_	
WW-WASTE WATER		· Please ca	II, expedit	ed service not available	for all testing				00 10 50405 4					
Comple each sign will be assisted as		a standard 5	E 4 04/-4	Continue Transport	7 - 6 1				06-LO-F0435 Issue 6	0 Effe	ctive Date	2016-0	/9-20	

Sample analysis will be provided according to the standard EEA/Water Services Terms, which are available upon request. Any other terms proposed by Customer are deemed material alterations and are rejected unless expressly agreed to in writing by

South Bend, IN

110 S Hill Street

Chain of Custody Record

W F.				
	eu	rot	ins	

	Sampler:			La	b PM:						Carrie	er Trackin	g No(s):		COC No:	
lient Information	Phone.			E-	Mail:						State	of Origin				
race											State	or Origin.			Page: Page 1 of	
mpany:			PWSID:					А	nalvs	is Re	aues	ted			Job #:	
dress:	Due Date Request	ed:						T			1				Preservation Cod	98:
y.	TAT Requested (da	ays):			11										A - HCL B - NaOH	M - Hexane N - None
ie, Zip:	Compliance Project	ct: A Yes	Δ Νο		-11										C - Zn Acetate D - Nitric Acid E - NaHSO4	O - AsNaO2 P - Na2O4S Q - Na2SO3
one.	PO #:					338									F - MeOH G - Amchlor H - Ascorbic Acid	R - Na2S2O3 S - H2SO4
ail.	WO #:				N O I	S C									I - Ice	T - TSP Dodecahydrat U - Acetone V - MCAA
ect Name.	Project #:				Sample (Yes or No)	64								, leading and	K - EDTA L - EDA	W - pH 4-5 Z - other (specify)
	SSOW#:				Samp	gee										
mple identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W-water, S-solid, O-waste/oli	ald Filtered	Rad		p	H	Ac	C	ept	abl	Total Number of	Special Inc	AA1
		><	Preservation		-										Special ins	tructions/Note:
2151-01						1						1		1		
02						✓								1		
03						1						1			,	
V 04					1	14						1				
						+	\perp	-			\sqcup					
					-11	++	-	+	-	-	\vdash	+				
				_ 11	1	200	+	+	+	+-		+-	-			
<u>Liters F</u>	1000	IVE	IQ F	= 4	41	W	+	+	+	+		+				
Coc ismpleted by SS																
ssible Hazard Identification					Sa									e retain	ed longer than 1 m	onth)
Non-Hazard Flammable Skin Irritant Pois iverable Requested: I, II, III, IV, Other (specify)	son B Unkn	own	Radiological		Q,			o Client				al By La	b	Arcl	ive For	Months
		Dete										- 41 - 1 - 1				
oty Kit Relinquished by:	Date/Time	Date:	Īca	mpany	Time	Receiv	and hur	00			M		Shipment:			
				pariy			<	55	2	e	01	_	Date/Time:	21	0900	EEA
nquished by:	Date/Time:		Co	mpany		Receiv	ed by:)	0			Date/Time.		C	ompany
nquished by:	Date/Time		Co	mpany		Receiv	ed by:						Date/Time:		(R)	ompany
Custody Seals Intact: Custody Seal No.:						Cooler	Tempe	rature(s)	°C and 0	Other Ren	naiks I		10	400		

_

eurotins	eurofi	ns
----------	--------	----

Eaton Analytical

110 S. Hill Street South Bend, IN 46617 T: 1.800.332.4345

F: 1.574.233.8207

Order #

Batch #

www.EurofinsUS.com/Eaton CHAIN OF CUSTODY RECORD STATE (sample origin) PROJECT NAME PO# REPORT TO: SAMPLER (Signature) PWS ID# Jon Mink, Tim Brewer (jmink@trace-labs.com, tbrewer@trace-labs.com) Trace Analyitical Laboratories, Inc., 2241 Black Creek Rd., Muskegon, MI 49444 231-CONTAINERS SOURCE WATER 21J1163 POPULATION SERVED No BILL TO: Yes COMPLIANCE TURNAROUND MATRIX CODE MONITORING Accounts Payable, Trace Analytical Laboratories, Inc., 2241 Black Creek Rd., Muskegon, MI 49444 CHLORINATED COLLECTION LAB Number TEST NAME SAMPLE REMARKS 9 SAMPLING SITE YES NO DATE TIME AM PM 1 GW SW X Radium 226/228 10/26/21 14:00 Field Blank 1 GW SW ¥ Radium 226/228 10/26/21 16:05 Solinst Pump x 1 GW SW Radium 226/228 10/26/21 16:07 Master Flex Pump x 1 GW SW Radium 226/228 10/27/21 14:00 x Field Blank 1 GW x SW 10/27/21 15:30 Solinst Pump Radium 226/228 1 GW SW Radium 226/228 10/27/21 Master Flex Pump 15:35 GW 1 SW Field Blank Radium 226/228 10/28/21 14:00 1 GW SW Radium 226/228 10/28/21 14:20 Solinst Pump 1 GW SW Radium 226/228 10/28/21 14:25 Master Flex Pump RELINQUISHED BY: (Signature) RECEIVED BY: (Signature) DATE dium 226 LAB RESERVES THE RIGHT TO RETURN UNUSED PORTIONS OF NON-AQUEOUS SAMPLES TO CLIENT LAB COMMENTS AM PM RELINQUISHED BY: (Signature) DATE TIME RECEIVED BY: (Signature) DATE TIME AM PM RELINQUISHED BY:(Signature) RECEIVED FOR LABORATORY BY: DATE TIME DATE TIME AM PM AM PM **MATRIX CODES:** TURN-AROUND TIME (TAT) - SURCHARGES IV" = Immediate Verbal: (3 working days) 100% SW = Standard Written: (15 working days DW-DRINKING WATER RW-REAGENT WATER RV" = Rush Verbal: (5 working days) IW* =Immediate Written: (3 working days) 125% Samples received unannounced with less GW-GROUND WATER than 48 hours holding time remaining **EW-EXPOSURE WATER** SP* = Weekend, Holiday CALL RIM! = Rush Written: (5 working days) may be subject to additional charges. SW-SURFACE WATER STAT" = Less than 48 hours CALL PW-POOL WATER WW-WASTE WATER Please call, expedited service not available for all testing 06-LO-F0435 Issue 6.0 Effective Date: 2016-09-20

Sample analysis will be provided according to the standard EEA/Water Services Terms, which are available upon request. Any other terms proposed by Customer are deemed material alterations and are rejected unless expressly agreed to in writing by EEA.

Page 17 of 18

2

3

5

6

8

10

12

Login Sample Receipt Checklist

Client: Trace Analytical Laboratories Job Number: 810-6473-1

List Source: Eurofins Eaton Analytical - South Bend Login Number: 6473

List Number: 1

Creator: Spurgeon, Sheri

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
Samples were received on ice.	False	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	False	Refer to Job Narrative for details.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Samples do not require splitting or compositing.	True	
Container provided by EEA	True	

Ple	ease Sig				0.	.C.	_	10:38:21 10:	Trace Date Ti	Project Name: Surfa	*Results provided end of business day, requires prior approval	□ □ 3 Day*	Turnaround Requirements: X Standard, 5-10 Days	Email Address:	Office Phone:	City, State, Zip Code:	Mailing Address:	Report To: Paul Cederquist	Company Name: Grand Haven Board of Light & Power	Report Results To:	ARACTICAL T	
		Released By			0:30	12:05	16	10:15	Time Collected	ace Wate	business day,	-	ements:					rquist	Haven Boa			Н
In executing this Chain of C	D. M.	Received By			SW-NE-MW-10	SW-SE-MW-7	SW-N-SG-2	SW-SG-1	Client Sample ID	Surface Water Sampling		W = Water SL = Sludge	Matrix Key: S=Soil/Solid		Cell Phone:				ard of Light & Power		CRATCRIES, INC.	
In executing this Chain of Custody, the client acknowledges the terms as set forth at www.trace-labs.com/terms-of-agreement	10/20/1	, Date, Time			\ \ \ \ \ \ \ \	∀ W 5	Υ W 5	Y W 5	Metals Field Filtered (Y / N Malrix Number of Containers	Sampled By: 58		r LW = Liquid Waste ge A = Air		Billing Email Address:	Phone Number:	City, State, Zip Code:	Billing Address (if different):	Contact Name:	PO#	Bill To:	Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673	CHAIN-OF-COS LODY RECORD
ne terms as set for	A) 2)				×	×	×	×	Cool HCI HNO ₃ R ₂ SO ₄ NaOH Other	B											ries, Inc.	ו טטז אבטט
th at www.trace-lal		Released By			l X			×	T-B,Ca,Fe T- Co,Cu, T- TI, V,Zr	Pb, Li,I	Mo,Ni S	Se,Ag						3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			Phone 231.773.59 Fax 888.979.4469 www.trace-labs.co	
bs.com/terms-of-					¥ y			×	Diss.Meta Fluoride,S pH												Phone 231.773.5998 Fax 888.979.4469 www.trace-labs.com	
agreement.	20	Received By			8			×	LLHg Radiums 2 Bicarb-Alk		1000 00	lk	Analysis Requested		Sampling Time:	МеОН	Soil Volatiles	Checked By:	Logged By:	Trace Use:	2	
_													sted		me:	l Low Level	Soil Volatiles Preserved (dircle if applicable):	DH	2	e: 2	Trace ID No.	rage
		Date Time			pH= 1.89	08.7 =Hd	pH=7.57	PH=8.46	Remarks							vel Lab	le if applicable):		/]	J DNO.	

	75			0.5	0 8	() 1			s	0	-	
Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1	рН	Turbidity(NTU)	ORP (mV)	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Reading Time	_	Surface Water ID : M - S5-2	Client: GHBLP	Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form	
teria: % ity: 3% n: 10%	7.57	0.0	6,	0.00	. 472	9.93	9:00	Purge Start Time: ' ' ህ ፡ ዛ ነ	-55-N:		lytical Lat	
	7.57	0.0	6	60.01	.472	9.93	9:03	54.8	}		oratorie	
Notes:	7.57	0.0	6	16.02	472	9.93	9.06	Purge		Date: 16-28-21	s: Low Flo	
Notes: Pump Used: Peristaltic								Purge Rate: <u> </u>)	(E.8	ow Well P	
ö							,	500 m/m/m		Field	urging Fi	
								·		Field Personnel: EB/	eld Meas	
										EB/18	urements	
			-								Form	

Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1	PH	Turbidity(NTU)	ORP (mV)	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Reading Time		Surface Water ID : 56-	Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form Client: GHBLP Date: 10-28-21 Field Personnel: 18/18	
iteria: % (ity: 3% en: 10%	8.46	72.4	196	7.91	.581	11.28	80:01	Purge Start Time: 9:55	: 56-1	lytical Lak	
	8.46	22.4	196	7.91	185.	1.28	10:11	e: 6:28	J	ooratorie	
Notes:	8.46	12,4	196	7.91	.58	11.28	10: 13	Purge Rate:		s: Low Flow W	
Notes: Pump Used: Peristaltic										જ Well Pi	
ic.								Soom C/min		urging Fie	
										Field Measu	
										rements I	
										Form	

Sta Ten Spe Dis: OR! PH:	рН	Tur	ORI	Diss Oxy	Spe	Ten (Cel	Rea		Surf	Clie	Τr
Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1		Turbidity(NTU)	ORP (mV)	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Reading Time		face Water ID	Client: GHBLP	ace Anal
eria: ; ; ;; 3% 1; 10%	789	14.9	S	10.05	594	10.20	10:20	Purge Start Time: <u>\\\`\\</u>	Surface Water ID: NE-MW-10		ytical La
	 7.89	14.9	びい	10.05	.463	10.20	10:23	ne: 10:05	0-10		boratori
Notes: Pump Used: Peristaltic	7.89	14.9	S.	(0,05	.463	16, 20	16:26	_ Purge Rate:		Date: (0.28.21	Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form
								300ml/min		Field Personnel: にも	ging Field Measu
-										8/78	rements Form
			-								

Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1	PН	Conductivity Dissolved Oxygen ORP (mV)	Reading Time Temperature (Celsius) Specific	Trace Ar Client: GHBLP Surface Water
Criteria: 3% tivity: 3% gen: 10% 6 or <1	7.86 7.80	9.75 9.75 52 52 53 53		Trace Analytical Laborator Client: GHBLP Surface Water ID: SE-MW7 Purge Start Time: 11:46
Notes: Pump Used: Peristaltic	7.80	9.75	. 16. 2:	ies: Low Flow Wo
ttic				ell Purging Field Measur
				rements Form 多/ Tら

21J1157 Grand Haven Board of Light	
Project Manager: Jon Mink	le Log In Checklist
	Date: 10 29 21 Time: 9 37 Logged by: Polic Cieut Sample Corrected Temp Blank Client Sample Client Sample
	Package Temp °C
	Representative Sample Temp °C
Sample Receipt	Villas J. VV
Yes No Received on ice or other coolant Coolan	☑No Custody seals intact (if applicable) ☑Fed Ex ☑US Mail ☑Other
Sample Condition	, H
All sample containers arrived unbroken all Sufficient sample to run requested analystoric Correct chemical preservative added to samples preserved at Trace Chemical preservation verified, check EMI pH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No All bottle labels agree with COC COC filled out properly COC signed by client	ses amples
Notes:	
1101631	
Form 70-A.40	
Effective 10/2/21	TRACE Analytical Laboratories, Inc.

Phone: 231.773.5998 Fax: 888.979.4469 www.trace-labs.com

December 7, 2021

Paul Cederquist Grand Haven Board of Light and Power 1700 Eaton Drive Grand Haven, MI 49417

R.E. Missing Static Water Elevations for October

Paul,

Unfortunately do to a loss of the data sheets / notebook from the 25th of October not all of the measurements for static water elevations were available to be reported. All of the wells that were scheduled to be sampled had the results transferred to their respective sampling log sheets prior to starting sampling and were included in the spreadsheet. However those points that were measured but not sampled were only recorded on the missing log.

Trace has looked everywhere for the missing log but it unfortunately cannot be located.

Going forward we will be recording the field measurements into an excel spreadsheet as soon as the sampling event is completed.

Sorry for the inconvenience.

Sincerely,

Jon Mink Senior Project Manager

golder.com

Kent Walters Project No. GL21461064
Geologist March 8, 2022

APPENDIX C

2021 Annual Groundwater Monitoring & Corrective Action Report, Former JB Sims Generating Station

REPORT

2021 Annual Groundwater Monitoring & Corrective Action Report

Former JB Sims Generating Station

Submitted to:

Grand Haven Board of Light and Power

1231 N. Third St., Grand Haven, MI 49417

Submitted by:

Golder Associates Inc.

27200 Haggerty Road, Suite B-12 Farmington Hills, Michigan, USA 48331-5719 +1 248 295-0135 21461064 January 28, 2022 (Revised March 8, 2022)

Distribution List

Michigan Department of Environment, Great Lakes, and Energy

Grand Haven Board of Light and Power

Golder Associates Inc.

i

Summary

This 2021 Annual Groundwater Monitoring & Corrective Action Report for the Former JB Sims Generating Station (Site) coal combustion residuals (CCR) Units located at 1231 North Third Street in Grand Haven, Michigan provides the status of groundwater monitoring and corrective program through December 2021. The CCR Units at the Site include: (1) the inactive Units 1/2 Impoundment (inactive 1/2 Impoundment) and (2) the former Unit 3 A and B Bottom Ash impoundments (former 3A/B Impoundments).

Groundwater monitoring is performed by Trace Laboratories, Inc. (Trace) and reporting is prepared by Golder Associates USA Inc. (Golder) for the Site CCR Units in accordance with the United States Environmental Protection Agency (USEPA) CCR Rule published in the Code of Federal Regulations Title 40 Part 257 (40 CFR Part 257, Subpart D) dated April 17, 2015 and revised July 2018, 40 CFR § 257.90 through § 257.98 and State of Michigan enacted Public Act No. 640 of 2018 (PA 640) to amend the Natural Resources and Environmental Protection Act, also known as Part 115 of PA 451 of 1994, as amended (Part 115 amendment). As required in 40 CFR § 257.90(e) and the Part 115 amendment, this Annual Report describes the status of the groundwater monitoring program, summarizes key actions completed, describes any problems encountered, discusses actions to resolve the problems, and presents projected key activities for the upcoming year for the Site CCR Units.

The Site was a former coal-fired power generation facility which ceased operations in February 2020. The inactive 1/2 Impoundment ceased receiving CCR materials in 2012. In addition, the former 3A/B Impoundments ceased accepting CCR materials in July 2020 and were cleaned of CCR materials in December 2020. The Site is located on the southwestern portion of Harbor Island in Grand Haven, Michigan, and is operated by the Grand Haven Board of Light and Power. The portion of Harbor Island where the Site is situated is surrounded by the Grand River and South Channel of the Grand River which flow in a westerly direction toward Lake Michigan, which is about one mile west of the site.

Groundwater at the Site is currently monitored using two (2) groundwater monitoring systems comprised of a background well (for statistical purposes) and downgradient wells for each CCR Unit. The inactive 1/2 Impoundment's network currently consists of one (1) background (for statistical purposes) and eight (8) downgradient wells installed to meet federal and state monitoring requirements, while the former 3A/B Impoundments are monitored collectively, and their network consists of one (1) background (for statistical purposes) and four (4) downgradient wells installed to meet federal and state monitoring requirements. The monitoring well network for inactive 1/2 Impoundment is under review following agreement by the project team, the USEPA, and EGLE regarding the limits of the Impoundment. In addition, based on a recent groundwater flow study, the monitoring well network for the former 3A/B Impoundments may be expanded pending review of the background groundwater quality data to be collected in 2022. Based on current groundwater quality, an assessment monitoring program and assessment of corrective measures were initially established through notice April 10, 2018, and February 8, 2019, respectively. During the 2021 annual reporting period, the Site remains in assessment monitoring as Site closure, source control and corrective measures are being evaluated.

Groundwater elevation measurements were recorded from the site monitoring wells prior to each sampling event. In addition, field activities were implemented following the approved Work Plan – Piezometer Installation and Additional Data Collection (Golder, 2021). Details regarding the field activities is included in the summary below.

2021 Groundwater Monitoring Activities

- Groundwater monitoring sampling events for the two (2) interim groundwater monitoring networks were conducted in January, April, July, and October 2021. Groundwater samples were collected and analyzed for Appendix III and Appendix IV required monitoring parameters from each of the detection and assessment monitoring wells as well as additional state required monitoring constituents.
- Approved Work Plan Piezometer Installation and Additional Data Collection (Golder 2021).
 - Installation of twenty-two (22) piezometers
 - Well development of nineteen (19) of the twenty-two (22) piezometers
 - Three (3) piezometers were not developed based on the lack of confirmed bentonite seal during construction.
 - Installation of three (3) stilling wells
 - Completed aquifer performance testing at six (6) monitoring wells and four (4) piezometers.
 - Conducted four (4) water level gauging events between (October and December 2021)
 - Prepared a Field Summary Report with a summary of the data collected in accordance with the Work
 Plan Piezometer Installation and Additional Data Collection (Golder, 2021).
- Statistical Analyses were completed in 2021 using analytical data from the January, April, July, and October 2021 monitoring events. Statistical analysis is performed in accordance with the site's certified statistical analysis method. For the January, April, July, and October 2021 monitoring events, statistical analyses indicate statistically significant increases (SSIs) for Appendix III constituents above the statistical limits and statistically significant levels (SSLs) of Appendix IV constituents above the groundwater protection standards as summarized below.

Statistically Significant Increases (SSIs)						
Detection Monitoring Constituents	Inactive 1/2 Impoundment Network					
Boron	MW-1R					
Calcium	MW-1R, MW-5, and MW-6 (April and July only)					
Chloride	MW-1R, MW-5, MW-6, MW-8					
Fluoride	MW-1R, MW-5 (January and April only), MW-6 (January and April only), MW-8 (January only)					
Iron	MW-5 (January and April only) and MW-8 (January, April, and July only)					
рН	MW-1R (July only)					
Sulfate	MW-1R and MW-5					
Total Dissolved Solids	MW-1R, MW-5, and MW-6					
Detection Monitoring Constituents	Former 3A/B Impoundments Network					
Boron	MW-1R and MW-2					
Calcium	MW-1R, MW-2 (April and July only), MW-3, MW-4					
Chloride	MW-1R, MW-2, MW-3, and MW-4					
Fluoride	MW-1R, MW-2, MW-3 (January and April only), and MW-4 (January and April Only)					
Iron	MW-2 (July only) and MW-3 (January only)					
рН	MW-1R (July only)					
Sulfate	MW-1R, MW-3 (January, April and July only), and MW-4					
Total Dissolved Solids	MW-1R, MW-2, MW-3, and MW-4 (January, April, and October only)					

Statistically Significant I	Levels (SSLs) for the Inactive 1/2 Impoundment and the Former 3A/B Impoundments
Assessment Monitoring Constituents	CCR Federal Rule and State of Michigan PA 640 Sec. 11519b(2)
Arsenic	MW-5
Chromium	MW-2 (January and April only)
Cobalt	MW-1R (April and July only)
Fluoride	MW-1R, MW-2, and MW-10
Lithium	MW-1R, MW-2, MW-5, MW-6, MW-9, and MW-10
Assessment Monitoring Constituents	State of Michigan PA 640 Sec. 11519b(2) only
Boron	MW-1R, MW-2, and MW-10
Calcium	MW-3, MW-4, MW-5, and MW-9
Chloride	MW-1R, MW-3, MW-4, and MW-10
Sulfate	MW-1R, MW-3, and MW-4
Total Dissolved Solids	MW-1R, MW-2, MW-3, MW-4, MW-5 (July and October), MW-6 (April, July, and October), and MW-10

Alternate Source Demonstration – Golder previously submitted an alternate source demonstration (ASD) to address groundwater impacts reported in wells around the former 3A/B Impoundments. The ASD concluded that the source of groundwater impacts is not the former 3A/B Impoundments but rather is the result of ash fill and comingled waste placed on the island well before the Impoundments were constructed or the regulatory regimes adopted. However, EGLE has not approved the ASD, stating that since the groundwater impacts cannot be differentiated between potential impacts from the former 3A/B Impoundments and the historical ash fill and comingled waste with 100 percent certainty.

Assessment of Corrective Measures – The Site has initiated an assessment of corrective measures (ACM) in response to groundwater impacts at the Site. Under EGLE direction, prior to the submittal of the ACM report, GHBLP must develop an alternate Monitoring Well Network for the Site. One step to the process (further evaluation of the hydrogeologic complexities at the Site) was completed in 2021 and described in detail in Section 2.1. As the ACM report is prepared, the Site continues to evaluate corrective action alternatives to address groundwater impacts resulting from the inactive 1/2 Impoundment as well as the former 3A/B Impoundments. In accordance with 40 CFR § 257.98, a public hearing to present remedial alternatives will be scheduled before a final remedy selection is proposed.

The Site will continue routine groundwater monitoring and reporting. Reports will be posted to the website:

Environmental Compliance Reports - Grand Haven Board of Light & Power (ghblp.org).

Table of Contents

1.0	INTR	DDUCTION	2
	1.1	Site Description and Background	2
	1.2	Regional Geology and Hydrogeologic Setting	2
	1.3	Groundwater Monitoring Well Network	3
2.0	GRO	JNDWATER MONITORING ACTIVITIES	4
	2.1	Monitoring Well Installation and Maintenance	4
	2.2	Assessment Monitoring	4
	2.3	Additional Sampling	5
3.0	SAME	PLE METHODOLOGY & ANALYSIS	5
	3.1	Groundwater Level Measurement	5
	3.2	Groundwater Gradient and Flow Velocity	5
	3.3	Groundwater Sampling	6
	3.4	Laboratory Analyses	6
	3.5	Quality Assurance and Quality Control	7
4.0	STAT	ISTICAL ANALYSES	7
	4.1	Statistical Methodology	7
	4.1.1	Detection Monitoring Constituents	7
	4.1.2	Assessment Monitoring Statistics	8
	4.2	Statistical Analysis Results	10
	4.2.1	2021 Statistical Analyses	11
5.0	MONI	TORING PROGRAM STATUS	12
6.0	CON	CLUSIONS AND FUTURE ACTIONS	13
7 0	REFE	RENCES	14

TABLES

Table 1 Monitoring Well Network Summary

Table 2 Summary of Groundwater Elevations - 2021

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Groundwater Contour Map – January 25, 2021
Figure 4	Groundwater Contour Map – April 23, 2021
Figure 5	Groundwater Contour Map – July 30, 2021
Figure 6	Groundwater Contour Map – October 1, 2021
Figure 7	Groundwater Contour Map - October 25, 2021 (Fourth Quarter 2021 Monitoring Event)
Figure 8	Groundwater Contour Map – November 23, 2021
Figure 9	Groundwater Contour Map – December 17, 2021

APPENDICES

Appendix A Laboratory Analytical & Field Sampling Results
Appendix B Analytical Summary and Statistical Analysis

Certification

This 2021 Annual Groundwater Monitoring & Corrective Action Report, JB Sims Generating Station (Site) has been prepared in general accordance with the United States Environmental Protection Agency (USEPA) coal combustion residual (CCR) rule (40 Code of Federal Regulations [CFR] 257 Subpart D; published in 80 FR 21302-21501, April 17, 2015) under the direction of an Engineer licensed in the State of Michigan as well as a professional geologist with Golder Associates USA Inc. (Golder).

Golder Associates Inc.

Carolyn E. Powrozek, CPG

Senior Geologist

I hereby certify that this 2021 Annual Groundwater Monitoring & Corrective Action Report, JB Sims Generating Station CCR Units located at 1231 North Third Street in Grand Haven, Michigan, has been prepared to meet the requirements of the 40 CFR § 257.90(e).

ENGINEER

Golder Associates USA Inc.

Tiffany D. Johnson, PE

Michigan Registered Professional Engineer No. 6201049160

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates.sharepoint.com/sites/27317g/deliverables/200 reports/2021 annual report/2021 annual report/final 2021 annual gwmr ghbip.docx

1.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency (USEPA) coal combustion residual (CCR) rule (40 Code of Federal Regulations [CFR] 257 Subpart D; published in 80 FR 21302-21501, April 17, 2015) and the State of Michigan Public Act No. 640 of 2018 (PA 640) to amend the Natural Resources and Environmental Protection Act, also known as Part 115 of PA 451 of 1994, as amended (Part 115 amendment), this 2021 Annual Groundwater Monitoring and Corrective Action Report has been prepared to document groundwater monitoring activities conducted at the former JB Sims Generating Station (Site) CCR units. The CCR units include: (1) the inactive Units 1/2 Impoundment (inactive 1/2 Impoundment) and (2) the former Unit 3 Impoundments (former 3A/B Impoundments) (which have ceased accepting CCR material in July 2020). Groundwater monitoring and reporting for the CCR units is performed in accordance with the requirements of 40 CFR § 257.90 through § 257.98 and the Part 115 amendment. This report documents the activities completed to establish the groundwater monitoring programs and actions through the 2021 calendar year.

1.1 Site Description and Background

The Site is located on the southwestern portion of Harbor Island in Grand Haven, Michigan, and is operated by the Grand Haven Board of Light and Power (GHBLP). The Site is situated on Harbor Island with the Grand River and South Channel of the Grand River surrounding the island, which flow in a westerly direction toward Lake Michigan, which is about one mile west of the Site. Figure 1, Site Location Map, depicts the location of the Site relative to the surrounding area.

The Site is a former coal-fired power generation facility which ceased operations in February 2020. The inactive 1/2 Impoundment ceased receiving CCR materials in 2012. Although the former coal-fired power generation facility ceased operations in February 2020, the Site continued to use the now former 3A/B Impoundments to clean out the hoppers, vessels, etc. prior to demolition of the buildings. Following the clean out procedures, the Site ceased accepting CCR materials in the former 3A/B Impoundments in July 2020 and CCR materials were cleaned from the impoundments in December 2020. Figure 2, Site Plan depicts the general configuration of the former and inactive CCR units and site monitoring wells.

1.2 Regional Geology and Hydrogeologic Setting

The following paragraphs include a general description of regional geologic and hydrogeologic characteristics of formations that occur beneath the site. Information presented in this section is based on published literature, and Golder's experience working in this geologic terrain.

As described in the original Groundwater Monitoring System Certification, prepared by ERM dated November 2017 (ERM, 2017a), the Site is located in an area of glacial drift (consisting of fine to medium sand with occasional beds of gravel) which is underlain by Marshall Sandstone. The glacial drift is between 100 to 200 feet thick in the area.

The former 3A/B Impoundments were engineered clay lined above ground units built over a field of ash from Units 1 & 2. The inactive 1/2 Impoundment was a depression in the ground where sluiced ash was disposed. The site was also previously used as the city dump. Materials documented from the former dump consist of a layer of mixed debris which includes glass, wood, plastic, ceramic, concrete, hides, brick and metal within a matrix of dark-grey to black, fine grained sand. The extent of the historic trash dump is detailed in the ERM Report titled "Coal Ash Delineation Sampling Results, Grand Haven Board of Light & Power, Grand Haven, Michigan" dated February 8, 2016 (ERM, 2016).

Portions of Harbor Island were developed by creating land with the use of unconsolidated fill, beneficial use of historical ash fill, and municipal solid waste. Specifically, borings consist of a mixture of unconsolidated fine sand fill with intervals of silt and sand, historical ash fill, and municipal solid waste within the first 20 feet below ground surface (bgs). The fine sand fill was underlain by silt and clay to the bottom of each boring. The silt and clay represent the confining unit beneath the CCR units.

Groundwater was encountered between 5 and 15 feet bgs within the unconsolidated fill material, which consists of fine sand, ash, and municipal solid waste, located above the silt and clay unit. As described in the Groundwater Monitoring System Certification, (ERM, 2017b), sand in the uppermost aquifer assumes an effective porosity of 30 percent (%) and consists of poorly-graded fine sand with an estimated hydraulic conductivity of 27 feet per day and well-graded fine sand with an estimated hydraulic conductivity of 53 feet per day. Golder conducted site aquifer performance testing in September of 2021. The results of the aquifer performance testing provide additional data for updating the hydraulic conductivity. The recently calculated hydraulic conductivity for the areas west of the wetland is an average range of 0.19 ft per day to 242 ft per day. This wide range of variability is the result of the varying fill materials that form Harbor Island. In addition, a calculated hydraulic conductivity for the piezometers located on the eastern side of the wetland is an average 8.34 feet per day. A field summary report including the aquifer performance testing will be submitted under separate cover and is forth coming.

1.3 Groundwater Monitoring Well Network

Pursuant to 40 CFR § 257.91 as well as the Part 115 amendment, GHBLP installed a groundwater monitoring system within the uppermost aquifer for the CCR Units: (1) inactive 1/2 Impoundment and (2) former 3A/B Impoundments. The original Groundwater Monitoring System Certification by ERM, dated November 2017, was developed for the former 3A/B Impoundments, which consisted of 4 monitoring wells (1 upgradient and 3 downgradient monitoring wells). It was later determined that in accordance with 40 CFR § 257.90(a), inactive 1/2 Impoundment is subject to the groundwater monitoring and corrective action requirements listed under 40 CFR § 257.90 through § 257.98 and four additional monitoring wells were installed. Initially, a multi-unit monitoring system was considered for monitoring the Site. Since the construction of the inactive 1/2 Impoundment and former 3A/B Impoundments are different, and because closure of the CCR Units would be implemented following a separate schedule and design, it was determined at the time that a multi-unit monitoring system was not appropriate for the Site. Therefore, two groundwater monitoring networks are installed to monitor groundwater passing the CCR unit boundary of the inactive and former ash impoundments within the uppermost aquifer. Wells are located to serve as upgradient, background, and downgradient wells based on groundwater flow direction as determined by the groundwater contour maps (Figures 3-9, Groundwater Contour Map).

GHBLP, EPA, and EGLE discussed the boundary for the inactive 1/2 Impoundment on January 14, 2021. During that discussion, a revised boundary of the inactive 1/2 Impoundment was agreed upon that includes an area of sluiced ash disposal further east than the area identified in the October 14, 2019 CCR Impoundment Ash Delineation Report (Golder 2019a). The former northern NPDES outlet channel from the inactive 1/2 Impoundment was also agreed to be evaluated for potential inclusion of the revised boundary (Figure 3). As a result of this revised boundary established in 2021 and the hydrogeologic complexities at the Site, further evaluation of the monitoring well networks for both inactive 1/2 Impoundment and former 3A/B impoundments is ongoing. Specifically, piezometers and stilling wells were recently installed and a *Field Summary Report* with a summary of the data collected in accordance with the Work Plan – Piezometer Installation and Additional Data Collection (Golder, 2021) is forth coming. As such, statistical analysis results may change significantly based on a revised groundwater monitoring well network.

2.0 GROUNDWATER MONITORING ACTIVITIES

In accordance with 40 CFR § 257.90(e) and the Part 115 amendment, the following describes monitoring-related activities performed during the preceding year and discusses any change in status of the monitoring program. Groundwater sampling was performed in accordance with 40 CFR § 257.93 and the Part 115 amendment. Samples were collected from each well in the current certified monitoring system. The location of each of these monitoring wells is shown on Figure 2.

Groundwater sampling events were conducted in January, April, July, and October 2021. Results of sampling activities conducted in 2021 are presented in Appendix A, Analytical Results and Field Sampling Forms.

2.1 Monitoring Well Installation and Maintenance

In accordance with 40 CFR § 257.91, a groundwater monitoring system was installed that (1) consists of a sufficient number of wells based on the original delineation as well as updated as site conditions change and the delineation of the impoundments change, (2) installed at appropriate locations and depths to yield groundwater samples from the uppermost aquifer, and (3) meets the performance standards of 40 CFR § 257.91(a). In summary, monitoring well-related activities included the following:

- Visual inspection of well conditions prior to sampling, recording the site conditions, and performing exterior maintenance to perform sampling under safe and clean conditions.
- Additional Piezometer Installation and Additional Data Collection following an EPA/EGLE approved workplan (Golder, 2021).
 - Installation of twenty-two (22) piezometers
 - Well development of nineteen (19) of the twenty-two (22) piezometers
 - Installation of three (3) stilling wells
 - Completed aquifer performance testing at six (6) monitoring wells and four (4) piezometers.
 - Conducted four (4) water level measurement events between (October and December 2021, one of which was conducted during the fourth quarter sampling event, on October 25, 2021. The other three water level measurement events were conducted on October 1, November 23, and December 17, 2021. The Groundwater Contour Maps for the fourth quarter monitoring water level measurement only events are provided in Figures 6-9.
 - Prepare a Field Summary Report to document the installation of the additional site piezometers and field investigation efforts.

Following a review of the 2021 activities identified a proposed expanded groundwater monitoring network for the Units at GHBLP is anticipated in 2022.

2.2 Assessment Monitoring

Pursuant to 40 CFR § 257.94(e)(3), an assessment monitoring program has been established for the CCR units at the Site based on statistically significant levels originally documented in the 2017 Annual Groundwater Monitoring and Corrective Action Report, (Golder, 2018a). A notice of assessment monitoring was placed in the operation record on April 10, 2018 (Golder, 2018b).

As per the requirements of 40 CFR § 257.95 and the Michigan Part 115 Amendment, sampling, analyses and statistical evaluation of assessment monitoring constituents was performed for each sampling event in 2021. Results of the assessment monitoring are discussed in Section 4.0 and presented in Appendix B.

2.3 Additional Sampling

Surface water samples were collected at four locations: (1) SW-SG-1 (surface water sample near staff gauge SG-1), (2) SW-N-SG-2 (surface water sample north of staff gauge SG-2 in the channel of the Grand River north of the Plant), (3) SW-SE-MW-7 (surface water sample southeast of monitoring well MW-7), and (4) SW-NE-MW-10 (surface water sample northeast of monitoring well MW-10). Samples were collected in January, April, July, and October 2021.

Samples were also collected from within the inactive impoundments at two locations: (1) Unit 1/2 SG-3 (sample collected from within the boundary of the inactive 1/2 Impoundment near staff gauge SG-3) and (2) Unit 1/2 MW-5 (sample collected from within the boundary of the inactive 1/2 Impoundment near monitoring well MW-5). Samples were collected in January, April, July, and October 2021.

Additionally, site monitoring wells, impoundment water, and surface water samples were sampled for a subset of cations/anions to aid in geochemical evaluation of site groundwater. Results of these analyses are provided in Appendix A.

3.0 SAMPLE METHODOLOGY & ANALYSIS

Sampling events completed during 2021 for the CCR units at the Site represent both detection monitoring and assessment monitoring. The following sections discuss each of the sampling event conducted during 2021.

3.1 Groundwater Level Measurement

Prior to each sampling event, groundwater elevations were recorded from each well and staff gauge. Groundwater elevations are summarized in Table 2, 2021 Groundwater Elevation Summary. The elevation data were used to develop quarterly groundwater contour maps as well as three additional water level gauging events between October and December 2021 (Figures 3-9, Groundwater Contour Maps).

The additional water level gauging that has occurred over the past year has provided additional information regarding the potentiometric surface at the Site. Groundwater flow across the island is influenced by the elevation of the Grand River and the south channel. Localized flow is radially inward when river levels are high and radially outward when river levels are low. Localized flow direction and gradients across the Site property are also influenced by precipitation and surface infiltration, particularly in wetland areas. The fill material that has historically been placed on the island is variable across the site in both thickness and permeability resulting in variably infiltration rates from precipitation also affecting groundwater flow. As a result, because the inactive 1/2 Impoundment is in direct connection with the groundwater, it will have a faster infiltration rate than other areas of the island causing a mounding effect. In the area surrounding the inactive 1/2 Impoundment, the groundwater flow direction shifts from a radial outward to radial inward depending on precipitation. Overall, the regional general direction of groundwater flow across the Harbor Island is west to southwest towards Lake Michigan.

3.2 Groundwater Gradient and Flow Velocity

Groundwater flow rates at the site have been calculated based on hydraulic gradients, hydraulic conductivity, and an estimated effective porosity of the screened horizon as provided in the Groundwater Monitoring System Certification (ERM, 2017a). Based on the information provided by ERM, hydraulic conductivity ranges from 27 to 53 feet per day with an assumed effective porosity of 30 percent. As described above, the recently calculated hydraulic conductivity for the "filled areas" of the Site is an average range of 0.19 ft per day to 242 ft per day and is highly dependent on the fill materials at each location. This wide range of variability is the result of the varying

fill materials that form Harbor Island. In addition, a calculated hydraulic conductivity for the piezometers located on the eastern side of the wetland is an average 8.34 feet per day.

Horizontal flow velocity was calculated using the commonly-used derivative of Darcy's Law:

Specifically,

Using this equation, groundwater flow velocities are calculated for the site along the groundwater flow path of three well pairs (MW-01R/MW-03, MW-01R/PZ-13, and MW-01R/PZ-18). Groundwater flow velocity at the site ranges from 0.3 to 1,200 feet per year around the mounding observed around the substation. In addition, groundwater flow velocities were calculated along the groundwater flow path of three well pairs (PZ-12/PZ-27, PZ-27/PZ-25, and PZ-27/PZ-26) on the eastside of the wetland. Groundwater flow velocity at the site ranges from 0.01 to 7 feet per year on the eastside of the wetland. The calculated flow velocities are best estimates based on field data and default data for soils, and therefore, these velocities should not be taken as absolute values, but rather as estimated values that may vary with future data collected at the site. The field summary report will include the detailed aquifer performance testing. An updated Hydrogeologic Monitoring Plan (HMP) and Groundwater Monitoring System Certification will be submitted following the review of the background groundwater quality data.

3.3 Groundwater Sampling

Groundwater samples were collected in accordance with 40 CFR § 257.93(a) and the Part 115 amendment. Monitoring wells were purged and sampled using a peristaltic pump following low-flow sampling procedures. A multi parameter meter was used to monitor field parameters, namely: pH, temperature, conductivity, dissolved oxygen (DO), and oxidation-reduction potential (ORP), during well purging to verify stabilization prior to sampling. Turbidity is also recorded during purging using a field meter to verify stabilization. Groundwater samples were collected when the following general stabilization criteria were met:

- 0.2 standard units for pH
- 5% for specific conductance
- 0.2 milligrams per liter (mg/L) or 10% for DO > 0.5 mg/L (whichever is greater)
- Turbidity measurements less than 5 Nephelometric Turbidity Units (NTU)

Any deviation from stabilization criteria, if applicable, is identified on field sampling forms. Following well stabilization, unfiltered samples were collected directly into appropriately preserved laboratory supplied sample containers, placed in iced coolers, and submitted to the laboratory following standard chain-of-custody protocol. Field information forms as well as chain-of-custody records are included in Appendix A.

3.4 Laboratory Analyses

Groundwater samples collected for each monitoring event included both detection and assessment monitoring constituents pursuant to 40 CFR § 257.90 through 257.98 and Michigan Part 115 amendment. Analytical methods used for groundwater sample analysis are listed on the analytical laboratory reports included in Appendix A.

Laboratory analyses were performed by Trace Laboratories, Inc. (Trace) in Muskegon, Michigan with the radium laboratory analysis subcontracted to Eurofins, Eaton Analytical (Eurofins) in South Bend, Indiana. Groundwater data and chain of custody records for the monitoring events are presented in Appendix A.

3.5 Quality Assurance and Quality Control

Data validation generally consisted of reviewing sample integrity, holding times, laboratory method blanks, laboratory control samples, matrix spikes/matrix spike duplicate recoveries and relative percent differences, post digestions spikes, laboratory RPDs, and reporting limits. Following completion of the data review and validation, the data are acceptable for statistical analysis.

4.0 STATISTICAL ANALYSES

Statistical analysis of detection and assessment monitoring constituents was performed on samples collected from the certified groundwater monitoring network pursuant to 40 CFR § 257.93 and the Michigan Part 115 Amendment and following the appropriate certified statistical methodology. The statistical methodology used for the Site was developed in accordance with 40 CFR § 257.93(f) using methods presented in Statistical Analysis of Groundwater Data at RCRA Facilities, Unified Guidance, March 2009, EPA 530/R-09-007 (USEPA, 2009).

4.1 Statistical Methodology

The Sanitas[™] groundwater statistical software (Sanitas, 2014) was used to perform the statistical analyses on detection and assessment monitoring constituents in 2021. Sanitas[™] is a decision support software package that incorporates the statistical tests required of Subtitle C and D facilities by USEPA regulations. Although assessment monitoring has been implemented, statistical evaluation of detection monitoring constituents is performed to determine if constituents have returned to background conditions. Analysis of assessment monitoring constituents is performed to determine if the site requires corrective measures.

4.1.1 Detection Monitoring Constituents

Groundwater quality data was evaluated through use of interwell prediction limits for detection monitoring constituents. Using these methods, upgradient well data was pooled to establish a background statistical limit. Data are compared to the statistical limit to determine whether any concentrations exceed background levels. The selected statistical methodology uses an optional 1-of-2 verification resample plan. When an initial statistically significant increase (SSI) or questionable result occurs, a second sample may be collected to verify the initial result or determine if the result was an outlier.

If resampling is performed and the initial finding is not verified by resampling, the resampled value replaced the initial finding. When the resample confirms the initial finding, both values remain in the database and an SSI is declared. The following table provides a summary of the statistical methodology used at JB Sims for routine detection groundwater monitoring.

STATISTICAL METHODOLOGY SUMMARY								
Inactive 1/2	Background Wells	MW-07 (interim background location)						
Impoundment Monitoring Well	Downgradient Detection Monitoring Wells	MW-1R, MW-05, MW-06, MW-08 (pending further evaluation)						
Network	Assessment Monitoring Wells	MW-02, MW-03, MW-04, MW-09, and MW-10 (pending further evaluation)						

	STATISTICAL I	METHODOLOGY SUMMARY				
Former 3A/B	Background Wells	MW-07 (interim background location)				
Impoundments Monitoring Well	Downgradient Detection Monitoring Wells	MW-1R, MW-02, MW-03, and MW-04 (pending further evaluation)				
Network	Assessment Monitoring Wells	MW-09 (pending further evaluation)				
	Detection Monitoring (PA 640 Sec. 11511a(3)(c))	Boron, Calcium, Chloride, Fluoride, Iron, pH, Sulfate, and TDS				
CCR Monitoring Constituents	Assessment Monitoring (PA 640 Sec. 11519b(2) plus above listed Detection Monitoring)	Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Copper, combined Radium 226 + 228, Fluoride, Lead, Lithium, Nickel, Mercury, Molybdenum, Selenium, Silver, Thallium, Vanadium, and Zinc				
	Data Screening on Proposed Background	Evaluate outliers, trends, and seasonality when sufficient data are available				
	Statistical Limits	Interwell statistical limits will be applied on a constituent basis, depending on the appropriateness of the method as determined by the Analysis of Variance				
	Confidence Intervals	Used in Assessment and Corrective Action monitoring.				
Statistical Methodology	No Statistical Testing	Statistical testing is not required for constituents with 100% non-detects.				
	Verification Resample Plan (Optional)	 1-of-2 with minimum of 8 samples per well for interwell testing. Initial statistical exceedance warrants independent resampling within 90 days. If resample passes, well/constituents is not a confirmed SSI. If resample exceeds, well/constituents has a confirmed SSI. If no resample is collected, the original result is deem verified. 				

The following guidance is also applicable to the statistical analysis methods:

- Statistical analyses are not performed on analytes containing 100% non-detects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain less than or equal to 15% non-detects in background, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the practical quantitation limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, a non-detect adjustment such as the Kaplan-Meier or Regression on Order Statistics (ROS) method for adjustment of the mean and standard deviation will be used prior to constructing a parametric prediction limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

4.1.2 Assessment Monitoring Statistics

Following the above statistical methodology, groundwater protection standards (GWPS) have been established for statistical comparison of assessment monitoring constituents. Parametric tolerance limits were used to calculate background limits from pooled upgradient well data for assessment monitoring constituents with a target of 95% confidence and 95% coverage to determine the site-specific background level. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. These limits were used to identify the GWPS established under 40 CFR § 257.95(h).

As described in 40 CFR § 257.95(h)(1-3), the GWPS is:

- The maximum contaminant level (MCL) established under 40 CFR § 141.62 and § 141.66 of this title;
- Where an MCL has not been established, background concentration for the constituent established in accordance with 40 CFR § 257.91; or a rule specified limit (RSL) identified for Cobalt, Lead, Lithium, or Molybdenum; or
- Applicable Michigan Part 201 Generic Cleanup Criteria and Screening Levels
 - Ground Surface Water Interface (GSI) criteria is applicable
 - Drinking Water Criteria (residential and non-residential criteria) may not be an applicable criterion. It is Golder's opinion that since drinking water wells will not be installed at the site nor on the Island since there is known impacts on Harbor Island that the DWC does not apply. Plus, the City of Grand Haven has a city ordinance preventing drinking water wells on properties with historical impacts. In addition, GHBLP may file a restrictive covenant for the property if it is deemed appropriate.
 - Indoor Air Criteria, Ambient Air Criteria, Direct Contact Criteria, and Soil Saturation Concentration Screening Levels (Csat) is not applicable since GSI is more strict.
- Background level for constituents where the background concentration is higher than the MCL, RSL, or Michigan Part 201 screening levels.

Following the above rule requirements, GWPS have been established for statistical comparison of assessment monitoring constituents. Summary of Site-Specific Groundwater Protection Standards summarizes the background limit established at each monitoring well and the GWPS used for statistical comparison.

Confidence intervals were then constructed on downgradient wells for each of the assessment monitoring constituents using the GWPS as discussed above. Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard.

Interim Site-Specific Groundwater Protection Standards										
			S							
Analyte	Units [1]	RSL MCL		Michigan Part 201 GSI	Interim Site- Specific Background	Interim GWPS				
P	art 115 Det	ection Mo	nitoring Cor	nstituents (PA 64	40 Sec. 11511a(3)(c))					
Boron ^[3]	mg/L	N/R	N/R	7.2	16	16				
Calcium ^[3]	mg/L	N/R	N/R	N/R	200	200				
Chloride ^[3]	mg/L	N/R	N/R	150	15	150				
Fluoride [4]	mg/L	N/R	4	2.67	0.2254	2.67				
pH ^[3]	S.U.	N/R	N/R	6.5-9.0	5.9-8.6	6.5-9.0				
Iron ^[3]	mg/L	N/R	N/R	N/R	25.01	25.01				
Sulfate ^[3]	mg/L	N/R	N/R	370	84.74	370				
Total Dissolved Solids[3]	mg/L	N/R	N/R	500	867	867				

Interim Site-Specific Groundwater Protection Standards										
			S	creening Levels	[2]					
Analyte	Units [1]	RSL MCL Michigan Specific Sackground		Interim GWPS						
Federal CCR Rule Appendix IV Constituents and Part 115 Assessment Monitoring Constituents (PA 640 Sec. 11519b(2) plus Detection Monitoring Constituents)										
Antimony	mg/L	N/R	0.006	0.13	0.0016	0.006				
Arsenic	mg/L	N/R	0.01	0.01	0.0048	0.01				
Barium ^[4]	mg/L	N/R	2	1.2	0.52	1.2				
Beryllium	mg/L	N/R	0.004	0.031	0.002	0.004				
Cadmium [4]	mg/L	N/R	0.005	0.0025	0.0006	0.0025				
Chromium [4]	mg/L	N/R	0.1	0.011	0.0028	0.01				
Cobalt	mg/L	0.006	N/R	0.1	0.001	0.006				
Copper ^{[3][5]}	mg/L	N/R	1.3	0.020	0.0040	0.02				
Fluoride [4]	mg/L	N/R	4	2.67	0.2254	2.67				
Lead	mg/L	0.015	N/R	0.014	0.0029	0.014				
Lithium	mg/L	0.04	N/R	0.44	0.059	0.059				
Mercury	mg/L	N/R	0.002	0.0000013	0.00014	0.00014				
Molybdenum	mg/L	0.1	N/R	3.2	0.007	0.1				
Nickel ^{[3][5]}	mg/L	N/R	N/R	0.11	0.0022	0.11				
Radium (226 + 228)	pCi/L	N/R	5	N/R	2.12	5				
Selenium ^[4]	mg/L	N/R	0.05	0.005	0.002	0.005				
Silver ^{[3][5]}	mg/L	N/R	0.1	0.00006	0.001	0.001				
Thallium	mg/L	N/R	0.002	0.0037	0.001	0.002				
Vanadium ^[3]	mg/L	N/R	N/R	0.027	0.00089	0.027				
Zinc ^{[3][5]}	mg/L	N/R	5.0	0.27	0.021	0.27				

- [1] Units for each constituent: mg/L = milligram per liter, S.U. = standard units, pCi/L = picocuries per liter [2] N/R = no reported screening level.
- [3] State of Michigan only, not part of the Federal CCR Rule.
- [4] State of Michigan criteria is more strict than the applicable criteria for the Federal CCR Rule.
- [5] insufficient number of observations available for calculating site specific background using interwell tolerance limits, therefore interwell prediction limits is

Using the calculated GWPS as identified above, confidence intervals were then constructed on downgradient wells for each of the detection and assessment monitoring constituents. Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard and a statistically significant level (SSL) is declared.

Statistical Analysis Results 4.2

Analytical data from the four (4) monitoring events conducted in January, April, July, and October 2021 were statistically analyzed in accordance with the Statistical Analysis Plan (Golder, 2017).

Based on review of the detection monitoring statistical analysis presented in Appendix B, detection monitoring constituents have not returned to background levels and therefore assessment monitoring should continue pursuant to 40 CFR § 257.95(f).

4.2.1 2021 Statistical Analyses

Analytical data from the 2021 monitoring events at the Site have been statistically analyzed in accordance with the site's certified statistical analysis methods.

Review of the Sanitas™ results indicates that the following verified SSIs were identified in 2021:

Int	er-Well Prediction Limit Statistically Significant Increase Summary
Detection Monitoring Constituents	Inactive 1/2 Impoundment Network
Boron	MW-1R
Calcium	MW-1R, MW-5, and MW-6 (April and July only)
Chloride	MW-1R, MW-5, MW-6, MW-8
Fluoride	MW-1R, MW-5 (January and April only), MW-6 (January and April only), MW-8 (January only)
Iron	MW-5 (January and April only) and MW-8 (January, April, and July only)
рН	MW-1R (July only)
Sulfate	MW-1R and MW-5
Total Dissolved Solids	MW-1R, MW-5, and MW-6
Detection Monitoring Constituents	Former 3A/B Impoundments Network
Boron	MW-1R and MW-2
Calcium	MW-1R, MW-2 (April and July only), MW-3, MW-4
Chloride	MW-1R, MW-2, MW-3, and MW-4
Fluoride	MW-1R, MW-2, MW-3 (January and April only), and MW-4 (January and April Only)
Iron	MW-2 (July only) and MW-3 (January only)
pН	MW-1R (July only)
Sulfate	MW-1R, MW-3 (January, April and July only), and MW-4
Total Dissolved Solids	MW-1R, MW-2, MW-3, and MW-4 (January, April, and October only)

Pursuant to 40 CFR § 257.94(e), following determination of an SSI, the Site has implemented assessment monitoring per 40 CFR § 257.95.

Review of the Sanitas™ results indicates that the following SSLs were identified in 2021:

Statistically Significant L	Levels (SSLs) for the Inactive 1/2 Impoundment and the Former 3A/B Impoundments
Assessment Monitoring Constituents	CCR Federal Rule and State of Michigan PA 640 Sec. 11519b(2)
Arsenic	MW-5
Chromium	MW-2 (January and April only)
Cobalt	MW-1R (April and July only)
Fluoride	MW-1R, MW-2, and MW-10
Lithium	MW-1R, MW-2, MW-5, MW-6, MW-9, and MW-10
Assessment Monitoring Constituents	State of Michigan PA 640 Sec. 11519b(2) only
Boron	MW-1R, MW-2, and MW-10
Calcium	MW-3, MW-4, MW-5, and MW-9
Chloride	MW-1R, MW-3, MW-4, and MW-10
Sulfate	MW-1R, MW-3, and MW-4
Total Dissolved Solids	MW-1R, MW-2, MW-3, MW-4, MW-5 (July and October), MW-6 (April, July, and October) and MW-10

Pursuant to 40 CFR § 257.95(g)(3), following determination of an SSL, the Site implemented an assessment of corrective measures on February 8, 2019 (Golder, 2019b) per 40 CFR § 257.96.

5.0 MONITORING PROGRAM STATUS

In accordance with 40 CFR § 257.94(e), the Site continued detection and assessment monitoring in 2021.

Inactive 1/2 Impoundment

SSIs for Appendix III constituents continue to be identified. SSLs of assessment monitoring constituents were identified in the inactive 1/2 Impoundment groundwater monitoring network; specifically, at monitoring wells MW-1R, MW-5, MW-6, and MW-10. In accordance with 40 CFR § 257.95(g)(3), the Site has implemented an assessment of corrective measures for the groundwater monitoring network for inactive 1/2 Impoundment to further evaluate the identified constituents of concern.

Former 3A/B Impoundments

SSIs for Appendix III constituents continue to be identified. SSLs of assessment monitoring constituents were identified in the former 3A/B Impoundments groundwater monitoring network; specifically, at monitoring wells MW-1R, MW-2, MW-3, MW-4, and MW-9. In accordance with 40 CFR § 257.95(g)(3) and Michigan 640 § 11519b(2), the site has prepared an alternate source demonstration (Golder, 2020a) for the groundwater impacts observed in groundwater monitoring wells in the former 3A/B Impoundments' groundwater monitoring network. However, EGLE has not approved the ASD, stating that since the groundwater impacts cannot be differentiated between potential impacts from the former 3A/B Impoundments and the historical ash fill and comingled waste with 100 percent certainty. In response, GHBLP is continuing to refine the groundwater flow across the site in effort to present an alternate groundwater monitoring network to EGLE/EPA for consideration and approval before moving forward with an evaluation of corrective measures alternatives.

6.0 CONCLUSIONS AND FUTURE ACTIONS

GHBLP is working with EPA and EGLE to further evaluate the groundwater monitoring well network for the inactive 1/2 Impoundment based on the recent revisions to the boundary for the inactive 1/2 Impoundment. This report 2021 Annual Groundwater Monitoring and Corrective Action Report, JB Sims Generating Station has been prepared to fulfill the requirements of USEPA CCR rule 40 CFR 257 Subpart D.

Statistical evaluations of the groundwater monitoring data for the inactive 1/2 Impoundment and former 3 A/B Impoundments identified SSIs of detection monitoring constituents above prediction limits and SSLs of assessment monitoring constituents above the GWPS. Following guidelines presented in 40 CFR § 257.96, the Site has initiated an assessment of corrective measures for the groundwater monitoring networks. The objectives of the ACM will be to evaluate appropriate corrective actions to address the SSLs noted above the GWPS.

The most recent detection and assessment monitoring event was conducted in January 2022. The detection monitoring well network is currently being re-evaluated, alternate background monitoring wells are being considered, and statistical results are expected to change. As stated previously, a field summary report with a summary of the data collected in accordance with the Work Plan – Piezometer Installation and Additional Data Collection (Golder, 2021). GHBLP anticipates submitting a proposed expanded groundwater monitoring network in 2022.

7.0 REFERENCES

- ERM, 2016. *Coal Ash Delineation Sampling Results* for the Grand Haven Board of Light and Power. Environmental Resources Management Michigan, Inc. February 8, 2016.
- ERM, 2017a. Sampling and Analysis Plan for the Grand Haven Board of Light and Power. Environmental Resources Management Michigan, Inc. March 10, 2017.
- ERM, 2017b. *Groundwater Monitoring System Certification* for the Grand Haven Board of Light and Power, Environmental Resources Management Michigan, Inc. November 2017.
- Golder, 2017. Statistical Analysis Plan for the Grand Haven Board of Light and Power. Golder Associates Inc. October 17, 2017.
- Golder, 2018a. 2017 Annual Groundwater Monitoring and Corrective Action Report. Golder Associates Inc. January 30, 2018.
- Golder, 2018b. Notice of Establishing Assessment Groundwater Monitoring. Golder Associates Inc. April 10, 2018.
- Golder, 2019a. CCR Impoundment Ash Delineation at the JB Sims Generating Station, October 14, 2019.
- Golder, 2019b. Notice of Initiating Assessment of Corrective Measures. Golder Associates Inc. February 8, 2019.
- Golder, 2020a. Alternate Source Demonstration for the JB Sims Generating Station Unit 3 Impoundments, Golder Associates Inc. December 28, 2020.
- Golder, 2021. Work Plan Piezometer Installation and Additional Data Collection. June 22, 2021.
- PA451, 1995. State of Michigan enacted Natural Resources and Environmental Protection Act, Public Act No. 451 of 1994. State of Michigan. Effective March 30, 1995.
- PA640, 2018. State of Michigan enacted Public Act No. 640 of 2018 (PA 640) to amend the Natural Resources and Environmental Protection Act, also known as Part 115 of PA 451 of 1994, as amended (Part 115 amendment). State of Michigan. December 28, 2018.
- Sanitas, 2014. Groundwater Statistical Software. Sanitas Technologies, Shawnee, KS. 2014.
- State Waste Management Board, 2016. State Solid Waste Management Regulations (9VAC20-81 *et seq.*). January 2016.
- USEPA, 2001. Environmental Investigations Standard Operating Procedures and Quality Assurance Manual, United States Environmental Protection Agency. November 2001.
- USEPA, 2011. Data Validation Standard Operating Procedures. United States Environmental Protection Agency. September 2011.
- USEPA, 2001. Environmental Investigations Standard Operating Procedures and Quality Assurance Manual. United States Environmental Protection Agency. November 2001.
- USEPA, 2015. Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule/ [EPA-HQ-RCRA-2009-0640; FRL-9919-44-OSWER] (2015), Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II.

Environmental Protection Agency. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System.

- USEPA, 2016. *Disposal of Coal Combustion Residuals from Electric Utilities*; Amendment, Federal Register. Volume 81. No. 151. Friday August 5, 2016.
- USEPA, 2018. *Disposal of Coal Combustion Residuals from Electric Utilities*; Amendment, Federal Register. Volume 83. No. 146. Monday July 30, 2018.

TABLES AND FIGURES

Table 1 Monitoring Well Network
Table 2 Summary of Groundwater Elevations

Figure 1 Site Location Map Figure 2 Site Plan and Monitoring Well Location Map Figures 3-9 Groundwater Contour Maps

MONITORING WELL NETWORK SUMMARY

Grand Haven Board of Light and Power JB Sims Generating Station

Location Identification	Current Groundwater Monitoring Networks		Coor	Coordinates		Ground Surface	Top of Casing (Staff	Total Well Depth	Screen Interval	Comments
	Inactive 1/2 Impoundment	Former 3 A/B Impoundments	Northing	Easting	Installed	Installed Elevation (feet MSL)	Gauge) Elevation (feet MSL)	(Total Boring Depth)	(ft)	Comments
				Monit	oring Well	S			•	
MW-01R	Detection	Detection	578101.30	12624432.00	5/1/2020	585.73	588.45	10.00	5-10	
MW-02	Assessment	Detection	578241.91	12624222.64	1/18/2017	592.67	595.64	23.37	15-20	
MW-03	Assessment	Detection	578125.03	12624180.40	1/18/2017	590.42	593.08	20.34	12-17	
MW-04	Assessment	Detection	578003.96	12624165.24	1/18/2017	588.66	591.49	18.00	10-15	
MW-05	Detection	Piezometer	577970.06	12624634.16	5/22/2018	585.31	587.67	11.50	4-9	
MW-06	Detection	Piezometer	578229.40	12624525.24	5/22/2018	588.22	590.40	16.55	9-14	
MW-07	Detection	Detection/Background	577585.75	12625513.56	5/22/2018	583.65	586.49	18.80	11-16	
MW-08	Detection	Piezometer	578261.14	12625341.26	5/22/2018	582.74	585.40	11.85	4-9	
MW-09	Assessment	Assessment	578241.35	12624185.62	8/12/2019	586.80	589.65	12.00	7-12	
MW-10	Assessment	Piezometer	578367.40	12624470.20	8/12/2019	583.71	586.73	10.00	5-10	
				Pie	zometers					
PZ-11	Site-wide	e Water Levels	578236.87	12624377.19	8/19/2021	592.46	595.27	15 (40)	10-15	
PZ-12	Site-wide	e Water Levels	577987.57	12624312.28	8/17/2021	584.94	588.03	8 (40)	3-8	
PZ-13	Site-wide	e Water Levels	577623.94	12624190.94	8/17/2021	583.23	586.08	9 (34)	4-9	
PZ-14	Site-wide	e Water Levels	577191.85	12624160.04	8/16/2021	583.46	586.39	8 (35)	3-8	
PZ-15	Site-wide	e Water Levels	577062.51	12624730.23	8/25/2021	589.32	592.38	20 (40)	15-20	
PZ-16	Site-wide Water Levels		577273.65	12625194.83	8/25/2021	582.18	584.87	8 (35)	3-8	
PZ-17	Site-wide Water Levels		577652.81	12624744.16	8/17/2021	584.03	587.02	8 (40)	3-8	
PZ-18	Site-wide Water Levels		577919.12	12624742.18	8/18/2021	584.12	587.22	8 (34)	3-8	
PZ-19	Site-wide Water Levels		577938.05	12624957.16	8/20/2021	583.06	585.86	8 (25)	3-8	
PZ-20	Site-wide Water Levels		577722.50	12625131.40	8/18/2021	582.43	585.74	8 (34)	3-8	
PZ-21	Site-wide	e Water Levels	577941.39	12625280.33	8/30/2021	NA	583.32	9 (30)	4-9	Located in standing water
PZ-22	Site-wide	e Water Levels	578056.88	12625387.96	8/31/2021	NA	583.42	9 (22)	4-9	Located in standing water

MONITORING WELL NETWORK SUMMARY

Grand Haven Board of Light and Power JB Sims Generating Station

Location Identification	Current Groundwater Monitoring Networks		Coor	Coordinates		Ground Surface	Top of Casing (Staff	Total Well Depth	Screen Interval	Comments
	Inactive 1/2 Impoundment	Former 3 A/B Impoundments	Northing	Easting	Installed	(feet MSL)	Gauge) Elevation (feet MSL)	(Total Boring Depth)	(ft)	Comments
				Piezomet	ers - conti	nued				
PZ-23	Site-wide	Water Levels	577627.71	12625841.35	8/25/2021	584.39	587.21	9 (25)	4-9	
PZ-24	Site-wide	Water Levels	577884.70	12625979.33	8/24/2021	583.92	587.34	9 (30)	4-9	
PZ-25	Site-wide	Water Levels	577703.65	12626240.18	8/24/2021	583.46	586.37	8 (30)	3-8	
PZ-26	Site-wide	Water Levels	578114.39	12626145.22	8/23/2021	583.81	586.27	8 (30)	3-8	
PZ-27	Site-wide Water Levels		578303.89	12626551.81	8/23/2021	581.87	585.09	8 (40)	3-8	
PZ-28	Site-wide Water Levels		578314.93	12625722.71	8/23/2021	585.11	588.07	9 (29.5)	4-9	
PZ-29	Site-wide Water Levels		578138.08	12625241.56	8/30/2021	NA	583.49	9 (35)	4-9	Located in standing water
PZ-30	Site-wide Water Levels		578196.17	12624990.23	8/19/2021	583.02	585.80	8 (34)	3-8	
PZ-31	Site-wide Water Levels		578307.16	12624752.70	9/1/2021	582.56	585.85	8 (27)	3-8	
PZ-32	Site-wide Water Levels		578348.32	12624980.14	8/30/2021	583.08	586.26	8 (40)	3-8	
				Stat	ff Gauges					
SG-01	Site-wide	Water Levels	578234.49	12624159.06	8/12/2019	NA	585.10	NA	NA	Located in standing water
SG-02	Site-wide	Water Levels	578287.85	12624784.61	8/12/2019	NA	583.43	NA	NA	Located in standing water
SG-03	Site-wide	Water Levels	578201.99	12624858.11	8/12/2019	NA	584.37	NA	NA	Located in standing water
SG-04R	Site-wide	Water Levels	577966.13	12624647.67	6/9/2020	NA	585.04	NA	NA	Located in standing water
SG-05	Site-wide Water Levels		577717.81	12624888.51	8/12/2019	NA	584.83	NA	NA	Damaged in 2021
SG-06	Site-wide Water Levels		578227.56	12625365.56	8/12/2019	NA	584.88	NA	NA	Damaged in 2021
Stilling Wells										
STW-1	Site-wide Water Levels		578433.87	12625522.16	9/3/2021	NA	583.03	NA	NA	Located in standing water
STW-2	Site-wide	Water Levels	577340.30	12625423.18	9/2/2021	NA	583.47	NA	NA	Located in standing water
STW-3	Site-wide	Water Levels	577771.11	12624083.74	9/3/2021	NA	591.17	NA	NA	Located in standing water

Notes:

MSL = mean sea level. NA = Not available

TABLE 2.

Summary of Groundwater Elevations - 2021

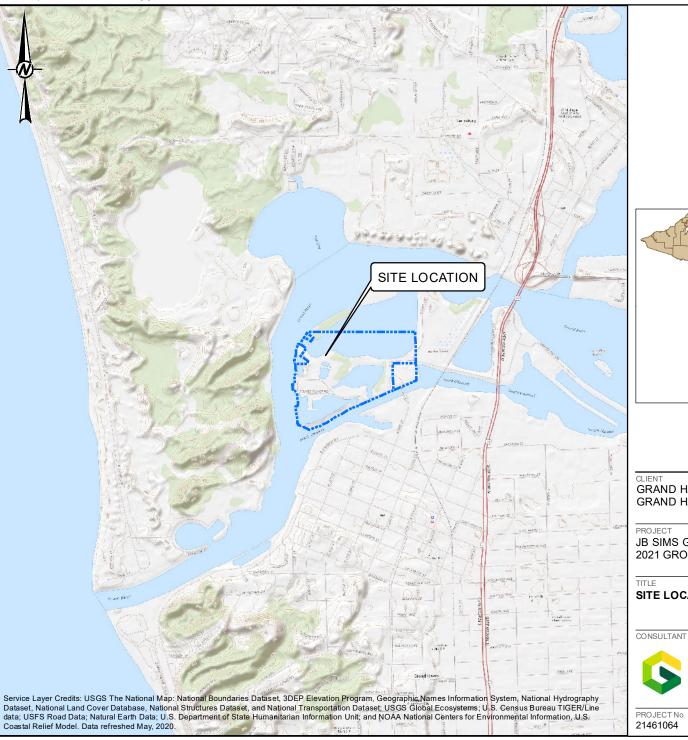
Page 1 of 2

Grand Haven Board of Light and Power - JB Sims Generating Station Grand Haven, Michigan

		2021 Groundwater Elevations						
Well ID	Top of Casing Elevation ¹	1/25/2021	4/23/2021	7/30/2021	10/1/2021	10/25/2021	11/23/2021	12/17/2021
Monitoring V	Vells							
MW-01R	588.45	582.62	582.02	582.29	582.24	582.01	582.30	582.35
MW-02	595.64	580.17	581.02	581.33	582.50	581.60	581.73	580.13
MW-03	593.08	581.53	581.08	580.41	582.67	582.31	582.52	581.87
MW-04	591.49	581.59	580.21	581.48	582.58	582.32	582.51	581.98
MW-05	587.67	582.30	581.70	582.00	582.24	582.16	582.44	582.46
MW-06	590.40	582.23	581.91	581.90	582.24	582.13	582.28	582.25
MW-07	586.49	581.54	581.07	581.54	582.76	582.37	582.60	582.00
MW-08	585.40	581.57	581.10	582.03	582.76	582.37	582.46	581.95
MW-09	589.65	581.58	581.16	581.38	583.04	582.27	582.56	581.29
MW-10	586.73	581.06	580.08	581.45	582.54	582.32	582.60	582.12
Piezometers								
PZ-11	595.27	No	t Yet Insta	lled	581.27	NM	581.27	581.52
PZ-12	588.03	No	t Yet Insta	lled	581.20	NM	581.18	581.75
PZ-13	586.08	No	t Yet Insta	lled	581.12	581.48	580.43	580.63
PZ-14	586.39	No	t Yet Insta	lled	581.07	581.69	580.75	580.99
PZ-15	592.38	No	t Yet Insta	lled	581.23	581.54	580.62	580.80
PZ-16	584.87	No	t Yet Insta	lled	581.01	581.20	580.23	580.39
PZ-17	587.02	No	t Yet Insta	lled	581.17	581.60	580.86	581.02
PZ-18	587.22	No	t Yet Insta	lled	581.07	581.60	580.71	580.81
PZ-19	585.86	No	t Yet Insta	lled	581.08	581.33	580.50	580.63
PZ-20	585.74	No	t Yet Insta	lled	580.96	581.21	580.44	580.43
PZ-21	583.32	No	t Yet Insta	lled	581.14	NM	NM	580.47
PZ-22	583.42	No	t Yet Insta	lled	581.07	NM	NM	580.52
PZ-23	587.21	No	t Yet Insta	lled	580.71	581.45	580.53	580.73
PZ-24	587.34	No	t Yet Insta	lled	580.73	581.21	580.70	581.03
PZ-25	586.37	No	t Yet Insta	lled	581.11	581.37	580.39	580.47
PZ-26	586.27	No	t Yet Insta	lled	580.75	581.67	580.80	581.13
PZ-27	585.09	No	t Yet Insta	lled	580.69	581.85	580.57	581.10
PZ-28	588.07	No	t Yet Insta	lled	581.12	581.37	580.29	580.39
PZ-29	583.49	No	t Yet Insta	lled	581.25	NM	580.41	580.66
PZ-30	585.80	No	t Yet Insta	lled	580.78	NM	580.52	580.85
PZ-31	585.85	No	t Yet Insta	lled	581.04	581.75	581.16	581.19
PZ-32	586.26	No	t Yet Insta	lled	581.01	581.31	580.67	580.81

Summary of Groundwater Elevations - 2021

Page 2 of 2


Grand Haven Board of Light and Power - JB Sims Generating Station Grand Haven, Michigan

		2021 Groundwate				Elevations	5	
Well ID	Top of Casing Elevation ¹	1/25/2021	4/23/2021	7/30/2021	10/1/2021	10/25/2021	11/23/2021	12/17/2021
Staff Gauges	i							
SG-01	585.10	NM	NM	582.62	NM	NM	NM	NM
SG-02	583.43	NM	582.11	582.19	581.99	NM	581.93	581.75
SG-03	584.37	NM	581.85	582.95	NM	NM	581.65	581.57
SG-04R	585.04	NM	NM	NM	581.66	NM	581.56	581.48
SG-05	584.83	NM	581.70	NM	NM	NM	NM	NM
SG-06	584.88	NM	NM	581.58	NM	NM	NM	NM
Stilling Wells								
STW-1	583.03	No	t Yet Insta	lled	581.15	NM	580.20	580.53
STW-2	583.47	No	Not Yet Installed		581.06	NM	580.12	580.17
STW-3	591.17	No	t Yet Insta	lled	581.07	NM	580.24	580.29

Notes:

- 1 Elevations based on Driesenga & Associates, Inc. Monitoring Well Survey, Dated 8-28-2019 and 6-17-2020.
- 2 Sampling events conducted by Trace Laboratories, Inc. (Trace)

GRAND HAVEN BOARD OF LIGHT AND POWER GRAND HAVEN, MICHIGAN

JB SIMS GENERATING STATION 2021 GROUNDWATER MONITORING

SITE LOCATION MAP

GOLDER MEMBER OF WSP

YYYY-MM-DD	2021-04-05	
PREPARED	DJC	
DESIGN	CEP	
REVIEW	CEP	
APPROVED	DLP	

FIGURE PROJECT No. 21461064 20141048F000-GIS.mxd

NOTES

1. HORIZONTAL COORDINATE SYSTEM BASED ON MICHIGAN STATE PLANE SOUTH, INTERNATIONAL FEET. VERTICAL DATUM IS NAVD 1988.

2. MONITORING WELLS AND STAFF GAUGES WERE SURVEYED BY DRIESENGA & ASSOCIATES, INC. ON AUGUST 28, 2019. MW-1R AND SG-4R WERE SURVEYED BY DRIESENGA & ASSOCIATES, INC. ON JUNE 17, 2020. PIEZOMTER AND STILLING WELLS WERE SURVEYED BY GOLDER ASSOCIATES ON OCTOBER 1, 2021.

3. SG-05* HAS BEEN REMOVED

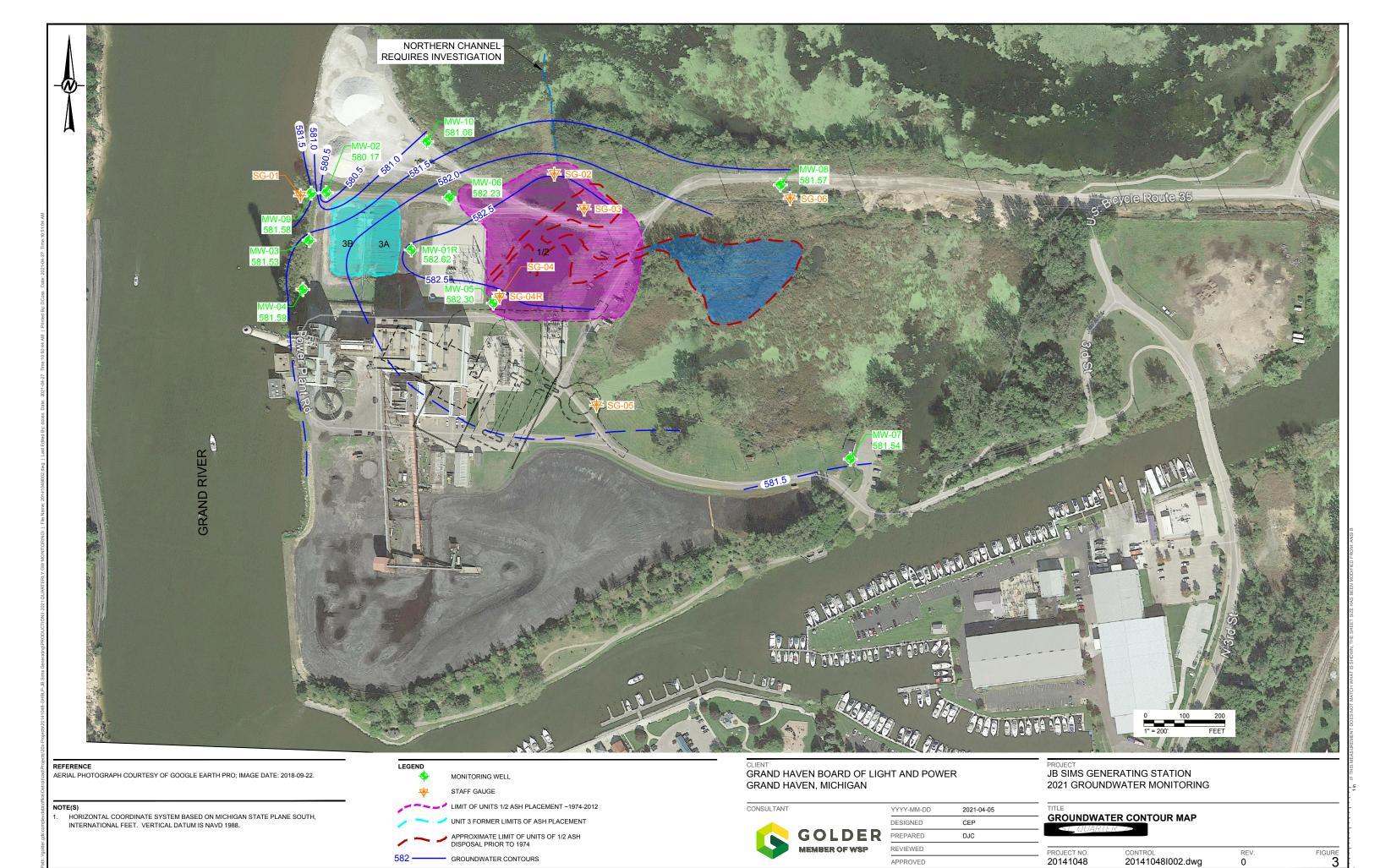
LEGEND

MONITORING WELL

STAFF GAUGE

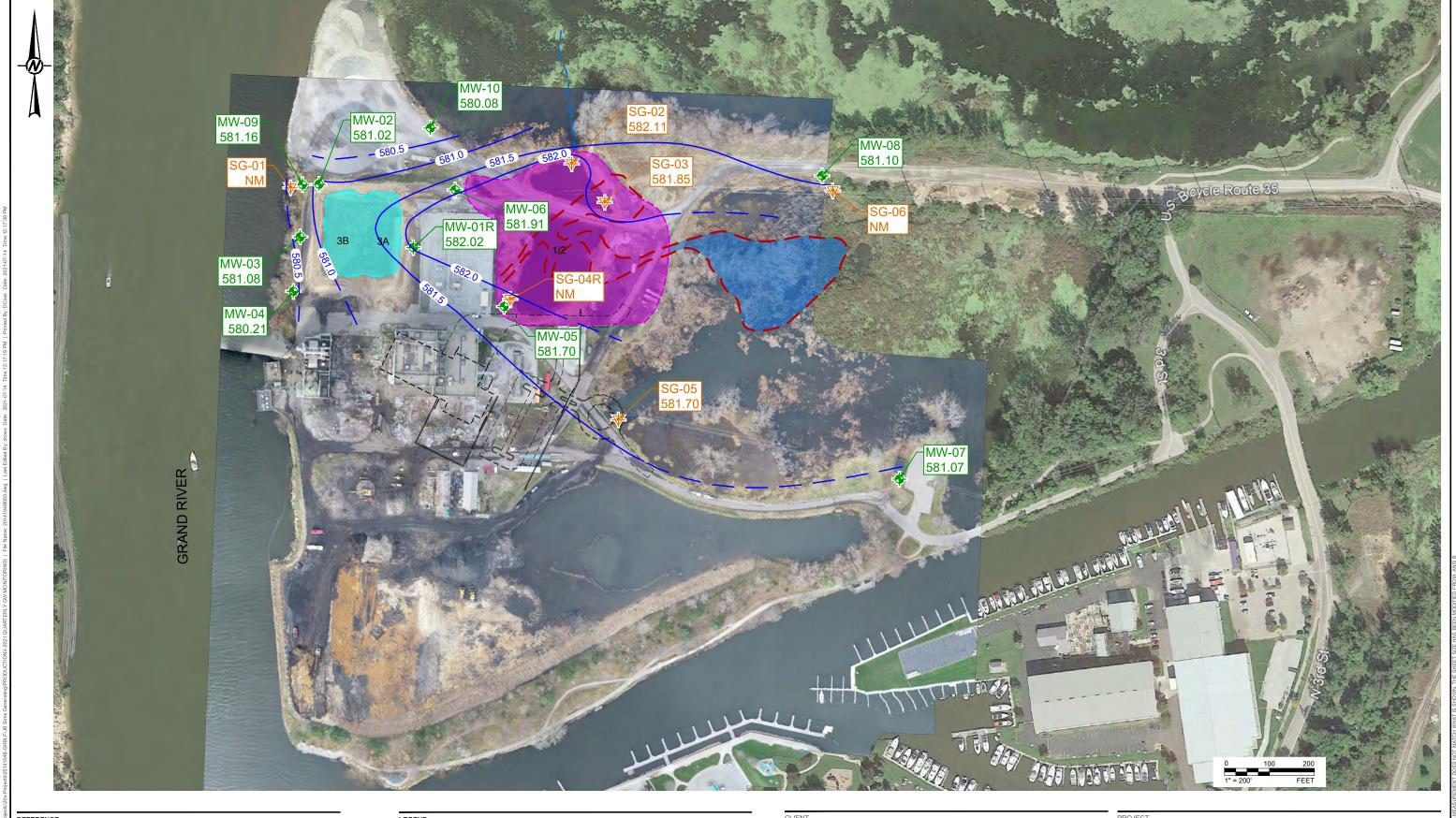
PIEZOMETER STILLING WELL GRAND HAVEN BOARD OF LIGHT AND POWER GRAND HAVEN, MICHIGAN

CONSULTANT



	YYYY-MM-DD	2021-10-08
	DESIGNED	CEP
2	PREPARED	DJC
	REVIEWED	CEP
	APPROVED	DLP

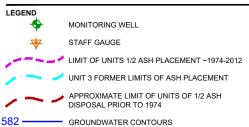
JB SIMS GENERATING STATION 2021 GROUNDWATER MONITORING


TITLE SITE PLAN

PROJECT NO CONTROL	21464427	21464427A001.dwg	0 0	FIGUR
	PROJECT NO.	CONTROL	REV.	FIGUR

APPROVED

GROUNDWATER CONTOURS



REFERENCE

AERIAL PHOTOGRAPH COURTESY OF GOOGLE EARTH PRO; IMAGE DATE: 2018-09-22.

NOTE(S)

HORIZONTAL COORDINATE SYSTEM BASED ON MICHIGAN STATE PLANE SOUTH, INTERNATIONAL FEET. VERTICAL DATUM IS NAVD 1988.

GRAND HAVEN BOARD OF LIGHT AND POWER GRAND HAVEN, MICHIGAN

CONSULTANT

	YYYY-MM-DD	2021-06-08	
	DESIGNED	CEP	
2	PREPARED	DJC	
	REVIEWED	CEP	
	APPROVED	DLP	

JB SIMS GENERATING STATION 2021 GROUNDWATER MONITORING

TITLE GROUNDWATER CONTOUR MAP

PROJECT NO.	CONTROL	REV.	FIGUE
20141048	20141048I003.dwg	0	

NOTE(S)

HORIZONTAL COORDINATE SYSTEM BASED ON MICHIGAN STATE PLANE SOUTH, INTERNATIONAL FEET. VERTICAL DATUM IS NAVD 1988.

STAFF GAUGES WERE NOT USED TO GENERATE GROUNDWATER CONTOURS, DUE TO RECENT FREEZE AND THAW. THE PREVIOUS SURVEY DATA IS NO LONGER ACCURATE. PIEZOMETERS AND STILLING WELLS WERE INSTALLED TO REPLACE STAFF GAUGES.

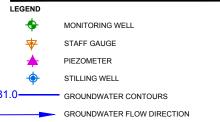
LEGEND MONITORING WELL STAFF GAUGE GROUNDWATER CONTOURS GRAND HAVEN BOARD OF LIGHT AND POWER GRAND HAVEN, MICHIGAN

CONSULTANT

	YYYY-MM-DD	2021-09-30	
	DESIGNED	CEP	
2	PREPARED	DJC	
	REVIEWED	CEP	
	APPROVED	DLP	

JB SIMS GENERATING STATION 2021 GROUNDWATER MONITORING

GROUNDWATER CONTOUR MAP


PROJECT NO.	CONTROL	REV.	FIGURE
21461064	20141048I004.dwg	0	5

NOTES

- IN HORIZONTAL COORDINATE SYSTEM BASED ON MICHIGAN STATE PLANE SOUTH,
 INTERNATIONAL FEET. VERTICAL DATUM IS NAVD 1988.

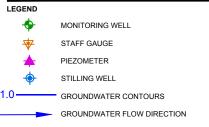
 2. MONITORING WELLS AND STAFF GAUGES WERE SURVEYED BY DRIESENGA & ASSOCIATES,
 INC. ON AUGUST 28, 2019. MW-1R AND SG-4R WERE SURVEYED BY DRIESENGA &
 ASSOCIATES, INC. ON JUNE 17, 2020. PIEZOMTER AND STILLING WELLS WERE SURVEYED
 BY GOLDER ASSOCIATES ON OCTOBER 1, 2021.
- 3. STAFF GAUGES WERE NOT INCLUDED IN EVALUATION OF GROUNDWATER CONTOURS.

GRAND HAVEN BOARD OF LIGHT AND POWER GRAND HAVEN, MICHIGAN

CONSULTANT

YYYY-MM-DD	2021-10-08	
DESIGNED	CEP	
PREPARED	DJC	
REVIEWED	CEP	
APPROVED	DLP	

JB SIMS GENERATING STATION 2021 GROUNDWATER MONITORING


GROUNDWATER ELEVATION MAP

PROJECT NO. 21464427 CONTROL 21464427A002.dwg FIGURE 6

NOTES

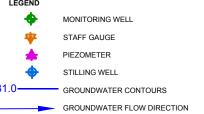
- 1. HORIZONTAL COORDINATE SYSTEM BASED ON MICHIGAN STATE PLANE SOUTH, INTERNATIONAL FEET. VERTICAL DATUM IS NAVD 1988.
 2. MONITORING WELLS AND STAFF GAUGES WERE SURVEYED BY DRIESENGA & ASSOCIATES, INC. ON AUGUST 28, 2019. MW-1R AND SG-4R WERE SURVEYED BY DRIESENGA & ASSOCIATES, INC. ON JUNE 17, 2020. PIEZOMTER AND STILLING WELLS WERE SURVEYED BY GOLDER ASSOCIATES ON OCTOBER 1, 2021.
 3. STAFF GAUGES WERE NOT INCLUDED IN EVALUATION OF GROUNDWATER CONTOURS.

GRAND HAVEN BOARD OF LIGHT AND POWER GRAND HAVEN, MICHIGAN

CONSULTANT

	YYYY-MM-DD	2022-01-07
	DESIGNED	CEP
)	PREPARED	DJC
	REVIEWED	CEP
	APPROVED	DLP

JB SIMS GENERATING STATION 2021 GROUNDWATER MONITORING


GROUNDWATER ELEVATION MAP
OCTOBER 25, 2021

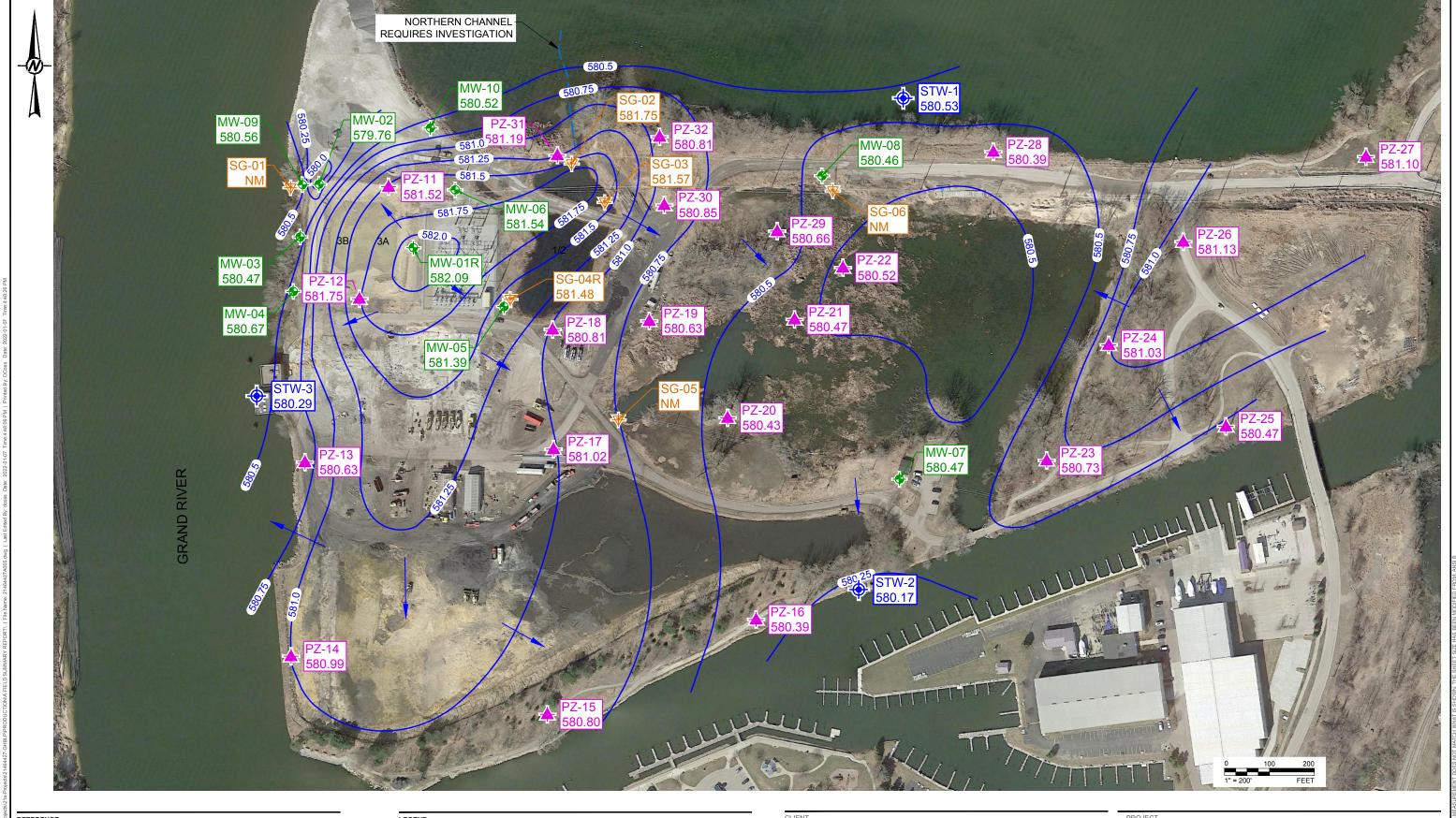
PROJECT NO. CONTROL 21464427 21464427A003.dwg	REV. FIGURE 7
---	---------------

NOTES

- 1. HORIZONTAL COORDINATE SYSTEM BASED ON MICHIGAN STATE PLANE SOUTH,
 INTERNATIONAL FEET. VERTICAL DATUM IS NAVD 1988.
 2. MONITORING WELLS AND STAFF GAUGES WERE SURVEYED BY DRIESENGA & ASSOCIATES,
 INC. ON AUGUST 28, 2019. MW-1R AND SG-4R WERE SURVEYED BY DRIESENGA &
 ASSOCIATES, INC. ON JUNE 17, 2020. PIEZOMTER AND STILLING WELLS WERE SURVEYED
 BY GOLDER ASSOCIATES ON OCTOBER 1, 2021.
 3. STAFF GAUGES WERE NOT INCLUDED IN EVALUATION OF GROUNDWATER CONTOURS.

GRAND HAVEN BOARD OF LIGHT AND POWER GRAND HAVEN, MICHIGAN

CONSULTANT



YYYY-MM-DD	2021-12-10	
DESIGNED	CEP	
PREPARED	DJC	
REVIEWED	CEP	
APPROVED	DLP	

JB SIMS GENERATING STATION 2021 GROUNDWATER MONITORING

GROUNDWATER ELEVATION MAP

PROJECT NO.	CONTROL	REV.	FIGURE
21464427	21464427A004.dwg	0	8

NOTES

- IN HORIZONTAL COORDINATE SYSTEM BASED ON MICHIGAN STATE PLANE SOUTH,
 INTERNATIONAL FEET. VERTICAL DATUM IS NAVD 1988.

 2. MONITORING WELLS AND STAFF GAUGES WERE SURVEYED BY DRIESENGA & ASSOCIATES,
 INC. ON AUGUST 28, 2019. MW-1R AND SG-4R WERE SURVEYED BY DRIESENGA &
 ASSOCIATES, INC. ON JUNE 17, 2020. PIEZOMTER AND STILLING WELLS WERE SURVEYED
 BY GOLDER ASSOCIATES ON OCTOBER 1, 2021.
- 3. STAFF GAUGES WERE NOT INCLUDED IN EVALUATION OF GROUNDWATER CONTOURS.

GRAND HAVEN BOARD OF LIGHT AND POWER GRAND HAVEN, MICHIGAN

CONSULTANT

YYYY-MM-DD	2022-01-07	
DESIGNED	CEP	
PREPARED	DJC	
REVIEWED	CEP	
APPROVED	DLP	

JB SIMS GENERATING STATION 2021 GROUNDWATER MONITORING

GROUNDWATER ELEVATION MAP DECEMBER 17, 2021

PROJECT NO. 21464427 CONTROL 21464427A005.dwg

FIGURE 9

APPENDIX A

Laboratory Analytical & Field Sampling Reports

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

February 12, 2021

Mr. Paul Cederquist Grand Haven Board of Light and Power-Monthly MWs 1700 Eaton Drive Grand Haven, MI 49417

Phone: 616-607-1292 Fax: (616) 842-3511

Trace Project

21A0660

Client Project Monitoring Wells Sampling - 1/25/21

Dear Mr. Cederquist:

Enclosed are your analytical results. The results of this report relate only to the samples listed in the body of this report.

All reports were examined through Trace's validation process to ensure that requirements for quality and completeness were satisfied. All reported analytical results were obtained in accordance with the methods referenced on the reports. Every practical effort was made to meet the reporting limit specifications for this work, however, some results may have raised reporting limits to correct for percent solids.

For clients that require NELAP Accreditation, Trace certifies that these test results meet all requirements of the NELAP Standard, except for those analytes with a "N" notation. These analytes have not been evaluated by NELAP at Trace's discretion and will not be reported unless requested by client.

If you have questions concerning this report, please contact me at 231.773.5998 or by email at jmink@trace-labs.com.

Sincerely,

Jon Mink Senior Project Manager **Enclosures**

NJDEP Accreditation No. MI008

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

SAMPLE SUMMARY

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

Trace ID	Sample ID	Matrix	Collected By	Date Collected	Date Received
21A0660-01	MW-1R	Ground Water	eb	01/25/21 09:10	01/25/21 15:47
21A0660-02	MW-2	Ground Water	eb	01/25/21 09:40	01/25/21 15:47
21A0660-03	MW-3	Ground Water	eb	01/25/21 10:25	01/25/21 15:47
21A0660-04	MW-4	Ground Water	eb	01/25/21 11:10	01/25/21 15:47
21A0660-05	MW-5	Ground Water	eb	01/25/21 07:50	01/25/21 15:47
21A0660-06	MW-6	Ground Water	eb	01/25/21 08:35	01/25/21 15:47
21A0660-07	MW-7	Ground Water	eb	01/25/21 07:20	01/25/21 15:47
21A0660-08	MW-8	Ground Water	eb	01/25/21 13:50	01/25/21 15:47
21A0660-09	MW-9	Ground Water	eb	01/25/21 12:55	01/25/21 15:47
21A0660-10	MW-10	Ground Water	eb	01/25/21 12:10	01/25/21 15:47

AN EXPLANATION OF TERMS AND SYMBOLS WHICH MAY OCCUR IN THIS REPORT

DEFINITIONS

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

MS Matrix Spike

MSD Matrix Spike Duplicate
RPD Relative Percent Difference

DUP Matrix Duplicate

RDL Reporting Detection Limit
MCL Maximum Contamination Limit
TIC Tentatively Identified Compound

<, ND or U Indicates the compound was analyzed for but not detected

Indicates a result that exceeds its associated MCL or Surrogate control limits
 Indicates that the laboratory is not accredited by NELAP for this compound

NA Indicates that the compound is not available.

NOTE: Samples for volatiles that have been extracted with a water miscible solvent were corrected for the

total volume of the solvent/water mixture.

Solid matrices Method Blanks are at 100% solids as such results are the same wet or dry.

DATA QUALIFIERS

ace ID: 21A0660-01	
Analysis: EPA 6020B	
	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Antimony	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Cadmium	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Lead	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Silver	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Thallium	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Analysis: SM 4500-H+ B-11	
рН	Note SITE: The analysis was performed on site at the time of sampling.

Trace ID: 21A0660-02

Analysis: EPA 6020B

Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.

Analysis: SM 4500-H+ B-11

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

рН	Note SITE: The analysis was performed on site at the time of sampling.
Гrace ID: 21A0660-03	
Analysis: EPA 6020B	
	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Antimony	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Cadmium	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Lead	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Molybdenum	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Silver	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Thallium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Analysis: SM 4500-H+ B-11	
рН	Note SITE: The analysis was performed on site at the time of sampling.
Trace ID: 21A0660-04	
Analysis: EPA 6020B	
	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Analysis: SM 4500-H+ B-11	
рН	Note SITE : The analysis was performed on site at the time of sampling.
Ггасе ID: 21A0660-05	
Analysis: EPA 6020B	
	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Analysis: SM 4500-H+ B-11	
рН	Note SITE: The analysis was performed on site at the time of sampling.
Trace ID: 21A0660-06	
Analysis: EPA 6020B	
Silver	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Analysis: SM 4500-H+ B-11	
pH	Note SITE: The analysis was performed on site at the time of sampling.

Trace ID: 21A0660-07 *Analysis: EPA 6020B*

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

		Note 402.5: The reporting limit was raised due to a dilution required because of
		sample matrix interference with the internal standards.
<u>Analysis</u>	: SM 4500-H+ B-11	
pН		Note SITE: The analysis was performed on site at the time of sampling.
Trace ID:	21A0660-08	
Analysis	: EPA 6020B	
		Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Analysis	: SM 4500-H+ B-11	
рН		Note SITE : The analysis was performed on site at the time of sampling.
Trace ID:	21A0660-09	
Analysis	: EPA 6020B	
		Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Analysis	: SM 4500-H+ B-11	
рН		Note SITE : The analysis was performed on site at the time of sampling.
Trace ID:	21A0660-10	
Analysis	: EPA 6020B	
		Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Analysis	: SM 4500-H+ B-11	
рН		Note SITE : The analysis was performed on site at the time of sampling.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

Trace ID: 21A0660-01 Matrix: Ground Water Date Collected: 01/25/21 09:10 Sample ID: MW-1R Date Received: 01/25/21 15:47 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 7470A Batch: T106718 Mercury <0.00020 mg/L 0.00020 01/27/21 dlo 01/28/21 Ν **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T106757 0.50 02/01/21 02/02/21 Mercury 9.4 ng/L dc dc Ν Analysis Method: EPA 6010D Batch: T106789 0.0020 02/05/21 Beryllium <0.0020 mg/L 1 01/28/21 dlo rl Boron 110 mg/L 0.50 10 01/28/21 dlo 02/05/21 rl Calcium 370 mg/L 5.0 10 01/28/21 dlo 02/05/21 rl Iron 3.7 mg/L 0.20 1 01/28/21 dlo 02/05/21 rl Lithium 2.4 mg/L 0.010 1 01/28/21 dlo 02/05/21 rl Ν 01/28/21 02/05/21 Magnesium 150 mg/L 2.0 10 dlo rl 02/05/21 Potassium 66 mg/L 10 10 01/28/21 dlo rl Sodium 390 mg/L 5.0 10 01/28/21 dlo 02/05/21 rl N <0.020 mg/L 0.020 01/28/21 dlo 02/05/21 rl Zinc Analysis Method: EPA 6020B Batch: T106789 <0.0015 mg/L 0.0015 5 01/28/21 02/01/21 402.5 Antimony dlo dc Arsenic 0.0032 mg/L 0.0010 1 01/28/21 dlo 02/02/21 dc Barium 0.22 mg/L 0.050 5 01/28/21 dlo 02/01/21 dc Cadmium <0.0050 mg/L 0.0050 5 01/28/21 dlo 02/01/21 dc 402 5 Chromium 0.0016 mg/L 0.00090 01/28/21 dlo 02/02/21 dc Cobalt 0.0035 mg/L 0.0016 1 01/28/21 dlo 02/02/21 dc <0.0050 mg/L 0.0050 01/28/21 02/02/21 Copper 1 dlo dc 02/01/21 Lead 0.0072 mg/L 0.010 5 01/28/21 dlo dc 402.5, J Manganese 0.50 mg/L 0.025 1 01/28/21 dlo 02/02/21 dc 0.0029 mg/L 01/28/21 02/02/21 Molybdenum 0.00040 N 1 dlo dc

CERTIFICATE OF ANALYSIS

0.0047 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

01/28/21

dlo

02/02/21

dc

J

0.0050

Nickel

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

Trace ID: 21A0660-01 Matrix: Ground Water Date Collected: 01/25/21 09:10 Sample ID: MW-1R Date Received: 01/25/21 15:47 **PARAMETERS** RESULTS UNITS DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL **RDL METALS, TOTAL** Selenium 0.0011 mg/L 0.0020 1 01/28/21 dlo 02/02/21 dc J Silver <0.0050 mg/L 0.0050 5 01/28/21 dlo 02/01/21 402.5 dc Thallium <0.0050 mg/L 0.0050 5 01/28/21 02/01/21 402.5 dlo dc Vanadium 0.0017 mg/L 0.00080 01/28/21 dlo 02/02/21 dc Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 1500 mg/L 8.2 10 01/28/21 02/05/21 Ν rl **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T106745 <0.0010 mg/L 0.0010 01/27/21 01/27/21 ckd Beryllium 1 ckd 01/27/21 **Boron** 88 mg/L 0.50 10 01/27/21 ckd ckd Calcium 400 mg/L 5.0 10 01/27/21 ckd 01/27/21 ckd 3.5 mg/L 01/27/21 Iron 0.10 1 01/27/21 ckd ckd Lithium 1.8 mg/L 0.10 10 01/27/21 ckd 01/27/21 ckd Ν Magnesium 140 mg/L 2.0 10 01/27/21 ckd 01/27/21 ckd 10 10 01/27/21 01/27/21 Potassium 57 mg/L ckd ckd Sodium 330 mg/L 5.0 10 01/27/21 ckd 01/27/21 ckd Ν 01/27/21 01/27/21 J Zinc 0.0022 mg/L 0.020 1 ckd ckd Analysis Method: EPA 6020B Batch: T106741 0.0012 mg/L 0.0010 5 01/27/21 01/28/21 Antimony ckd dc Arsenic 0.0027 mg/L 0.0050 5 01/27/21 ckd 01/28/21 dc J Barium 0.21 mg/L 0.0030 5 01/27/21 ckd 01/28/21 dc 5 Cadmium <0.0010 mg/L 0.0010 01/27/21 01/28/21 ckd dc <0.0040 mg/L 01/27/21 01/28/21 Chromium 0.0040 5 ckd dc 0.00066 mg/L 01/27/21 01/28/21 Cobalt 0.0080 5 ckd dc J Copper <0.0040 mg/L 0.0040 5 01/27/21 ckd 01/28/21 dc Lead 0.00049 mg/L 0.0020 5 01/27/21 ckd 01/28/21 dc 0.59 mg/L 0.0020 5 01/27/21 ckd 01/28/21 dc Manganese

CERTIFICATE OF ANALYSIS

0.0020

0.0029 mg/L

5

01/27/21

ckd

01/28/21

N

dc

Molybdenum

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Date Collected: 01/25/21 09:10

Date Received: 01/25/21 15:47

Trace Project ID: 21A0660

Trace ID: 21A0660-01

Sample ID: MW-1R

Client Project ID: Monitoring Wells Sampling - 1/25/21

Matrix: Ground Water

1100 mg/L

1000 mg/L

<50 mg/L

3000 mg/L

PARAMETERS RESULTS UNITS DILUTION **PREPARED** BY ANALYZED BY NOTES MCL RDL **METALS, DISSOLVED** Nickel 0.0021 mg/L 0.0020 5 01/27/21 ckd 01/28/21 dc Selenium 0.0014 mg/L 0.0044 5 01/27/21 01/28/21 ckd dc <0.00020 mg/L 5 Silver 0.00020 01/27/21 01/28/21 ckd dc Thallium <0.00087 mg/L 0.00087 5 01/27/21 ckd 01/28/21 02/02/21 Vanadium 0.0017 mg/L 0.00080 1 01/27/21 ckd dc **WET CHEMISTRY** Analysis Method: EPA 300.0 Rev. 2.1 Batch: T106685 Fluoride 9.9 mg/L 0.10 5 01/26/21 01/26/21 ans ans Chloride 260 mg/L 10 100 01/26/21 01/26/21 ans ans

60

50

50

40

100

10

10

01/26/21

01/28/21

01/28/21

01/26/21

ans

cm

cm

rg

01/26/21

01/28/21

01/28/21

01/26/21

ans

cm

cm

rg

N

Ν

Analysis Method: SM 4500-H+ B-11

Batch: T105995

Sulfate as SO4

Analysis Method: SM 2320 B-11

Batch: T106775

Analysis Method: SM 2540 C-11

Batch: T106690

Total Dissolved Solids

Bicarbonate Alkalinity as CaCO3 at pH 4.5

Carbonate Alkalinity as CaCO3 at pH 8.2

pH 7.33 pH Units 1 01/25/21 jm 01/25/21 jm SITE, N

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

Trace ID: 21A0660-02 Matrix: Ground Water Date Collected: 01/25/21 09:40 Sample ID: MW-2 Date Received: 01/25/21 15:47 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 7470A Batch: T106718 Mercury <0.00020 mg/L 0.00020 01/27/21 dlo 01/28/21 Ν **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T106757 0.50 02/01/21 02/02/21 Mercury 3.4 ng/L dc dc Ν Analysis Method: EPA 6010D Batch: T106789 0.0020 02/05/21 Beryllium <0.0020 mg/L 1 01/28/21 dlo rl Boron 110 mg/L 0.50 10 01/28/21 dlo 02/05/21 rl Calcium 190 mg/L 5.0 10 01/28/21 dlo 02/05/21 rl Iron 21 mg/L 0.20 1 01/28/21 dlo 02/05/21 rl Lithium 1.4 mg/L 0.010 1 01/28/21 dlo 02/05/21 rl Ν 01/28/21 02/05/21 Magnesium 58 mg/L 2.0 10 dlo rl 02/05/21 Potassium 46 mg/L 10 10 01/28/21 dlo rl Sodium 290 mg/L 5.0 10 01/28/21 dlo 02/05/21 rl N <0.020 mg/L 0.020 01/28/21 dlo 02/05/21 rl Zinc Analysis Method: EPA 6020B Batch: T106789 <0.00030 mg/L 0.00030 01/28/21 02/02/21 Antimony 1 dlo dc Arsenic 0.0089 mg/L 0.0010 1 01/28/21 dlo 02/02/21 dc Barium 0.47 mg/L 0.010 1 01/28/21 dlo 02/02/21 dc Cadmium <0.0010 mg/L 0.0010 1 01/28/21 dlo 02/02/21 dc Chromium 0.027 mg/L 0.00090 01/28/21 dlo 02/02/21 dc Cobalt 0.0052 mg/L 0.0016 1 01/28/21 dlo 02/02/21 dc <0.0050 mg/L 0.0050 01/28/21 02/02/21 Copper 1 dlo dc 02/02/21 Lead 0.0013 mg/L 0.0020 1 01/28/21 dlo dc J 02/02/21 Manganese 0.53 mg/L 0.025 1 01/28/21 dlo dc 0.0054 mg/L 01/28/21 02/02/21 Molybdenum 0.00040 N 1 dlo dc

CERTIFICATE OF ANALYSIS

0.0050

0.017 mg/L

1

01/28/21

dlo

02/02/21

dc

Nickel

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

 Trace ID: 21A0660-02
 Matrix: Ground Water
 Date Collected: 01/25/21 09:40

 Sample ID: MW-2
 Date Received: 01/25/21 15:47

Sample ID: MW-2	Date Received: 01/25/21 15:47								
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Selenium	0.0018 mg/L	0.0020	1	01/28/21	dlo	02/02/21	dc	J	
Silver	<0.0010 mg/L	0.0010	1	01/28/21	dlo	02/02/21	dc		
Thallium	<0.0010 mg/L	0.0010	1	01/28/21	dlo	02/02/21	dc		
Vanadium	0.0027 mg/L	0.00080	1	01/28/21	dlo	02/02/21	dc		
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	720 mg/L	8.2	10	01/28/21		02/05/21	rl	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T106745									
Beryllium	<0.0010 mg/L	0.0010	1	01/27/21	ckd	01/27/21	ckd		
Boron	95 mg/L	0.50	10	01/27/21	ckd	01/27/21	ckd		
Calcium	190 mg/L	5.0	10	01/27/21	ckd	01/27/21	ckd		
Iron	21 mg/L	1.0	10	01/27/21	ckd	01/27/21	ckd		
Lithium	1.2 mg/L	0.10	10	01/27/21	ckd	01/27/21	ckd	N	
Magnesium	60 mg/L	2.0	10	01/27/21	ckd	01/27/21	ckd		
Potassium	43 mg/L	10	10	01/27/21	ckd	01/27/21	ckd		
Sodium	250 mg/L	5.0	10	01/27/21	ckd	01/27/21	ckd	N	
Zinc	0.0065 mg/L	0.020	1	01/27/21	ckd	01/27/21	ckd	J	
Analysis Method: EPA 6020B Batch: T106741									
Antimony	<0.0010 mg/L	0.0010	5	01/27/21	ckd	01/28/21	dc		
Arsenic	0.0096 mg/L	0.0050	5	01/27/21	ckd	01/28/21	dc		
Barium	0.48 mg/L	0.0030	5	01/27/21	ckd	01/28/21	dc		
Cadmium	<0.0010 mg/L	0.0010	5	01/27/21	ckd	01/28/21	dc		
Chromium	0.015 mg/L	0.00080	1	01/27/21	ckd	01/28/21	dc		
Cobalt	0.0037 mg/L	0.0016	1	01/27/21	ckd	01/28/21	dc		
Copper	0.00067 mg/L	0.00080	1	01/27/21	ckd	01/28/21	dc	J	
Lead	0.0013 mg/L	0.0020	5	01/27/21	ckd	01/28/21	dc	J	
Manganese	0.52 mg/L	0.00040	1	01/27/21	ckd	01/28/21	dc		
Molybdenum	0.0057 mg/L	0.0020	5	01/27/21	ckd	01/28/21	dc	N	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

 Trace ID: 21A0660-02
 Matrix: Ground Water
 Date Collected: 01/25/21 09:40

 Sample ID: MW-2
 Date Received: 01/25/21 15:47

Sample ID: MW-2	Date Received: 01/25/21 15:47								
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, DISSOLVED									
Nickel	0.016 mg/L	0.00040	1	01/27/21	ckd	01/28/21	dc		
Selenium	0.0017 mg/L	0.0044	5	01/27/21	ckd	01/28/21	dc	J	
Silver	<0.00020 mg/L	0.00020	5	01/27/21	ckd	01/28/21	dc		
Thallium	<0.00087 mg/L	0.00087	5	01/27/21	ckd	01/28/21	dc		
Vanadium	0.0019 mg/L	0.00080	1	01/27/21	ckd	02/02/21	dc		
WET CHEMISTRY									
Analysis Method: EPA 300.0 Rev. 2.1 Batch: T106685									
Fluoride	9.4 mg/L	0.10	5	01/26/21	ans	01/26/21	ans		
Chloride	140 mg/L	2.5	25	01/26/21	ans	01/26/21	ans		
Sulfate as SO4	1.9 mg/L	3.0	5	01/26/21	ans	01/26/21	ans	J	
Analysis Method: SM 2320 B-11 Batch: T106775									
Bicarbonate Alkalinity as CaCO3 at pH 4.5	2200 mg/L	50	10	01/28/21	cm	01/28/21	cm	N	
Carbonate Alkalinity as CaCO3 at pH 8.2	<50 mg/L	50	10	01/28/21	cm	01/28/21	cm	N	
Analysis Method: SM 2540 C-11 Batch: T106860									
Total Dissolved Solids	1600 mg/L	50	5	02/01/21	acs	02/01/21	acs		
Analysis Method: SM 4500-H+ B-11 Batch: T105995									
pH	6.91 pH Units		1	01/25/21	jm	01/25/21	jm	SITE, N	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Nickel

Client Project ID: Monitoring Wells Sampling - 1/25/21

Trace ID: 21A0660-03 Matrix: Ground Water Date Collected: 01/25/21 10:25 Sample ID: MW-3 Date Received: 01/25/21 15:47 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 7470A Batch: T106718 Mercury <0.00020 mg/L 0.00020 01/27/21 dlo 01/28/21 Ν **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T106757 0.50 02/01/21 02/02/21 Mercury 1.4 ng/L dc dc Ν Analysis Method: EPA 6010D Batch: T106789 0.0020 01/28/21 02/05/21 Beryllium <0.0020 mg/L 1 dlo rl Boron 4.7 mg/L 0.050 1 01/28/21 dlo 02/05/21 rl Calcium 650 mg/L 50 100 01/28/21 dlo 02/05/21 rl Iron 28 mg/L 0.20 1 01/28/21 dlo 02/05/21 rl Lithium 0.061 mg/L 0.010 1 01/28/21 dlo 02/05/21 rl Ν 01/28/21 02/05/21 Magnesium 230 mg/L 2.0 10 dlo rl 1 02/05/21 Potassium 12 mg/L 1.0 01/28/21 dlo rl Sodium 130 mg/L 5.0 10 01/28/21 dlo 02/05/21 rl N <0.020 mg/L 0.020 01/28/21 dlo 02/05/21 rl Zinc Analysis Method: EPA 6020B Batch: T106789 0.0015 <0.0015 mg/L 5 01/28/21 02/01/21 402.5 Antimony dlo dc Arsenic 0.0015 mg/L 0.0010 1 01/28/21 dlo 02/02/21 dc Barium 0.23 mg/L 0.050 5 01/28/21 dlo 02/01/21 dc Cadmium <0.0050 mg/L 0.0050 5 01/28/21 dlo 02/01/21 dc 402.5 Chromium 0.0028 mg/L 0.00090 1 01/28/21 dlo 02/02/21 dc Cobalt <0.0016 mg/L 0.0016 1 01/28/21 dlo 02/02/21 dc <0.0050 mg/L 0.0050 01/28/21 02/02/21 Copper 1 dlo dc 01/28/21 02/01/21 Lead <0.010 mg/L 0.010 5 dlo dc 402.5 5 Manganese 5.5 mg/L 0.12 01/28/21 dlo 02/01/21 dc 02/01/21 Molybdenum <0.0020 mg/L 0.0020 5 01/28/21 dlo 402.5, N dc

CERTIFICATE OF ANALYSIS

0.0050

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

01/28/21

dlo

02/02/21

dc

<0.0050 mg/L

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

Trace ID: 21A0660-03 Matrix: Ground Water Date Collected: 01/25/21 10:25 Sample ID: MW-3 Date Received: 01/25/21 15:47 **PARAMETERS** RESULTS UNITS DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL **RDL METALS, TOTAL** Selenium <0.0020 mg/L 0.0020 1 01/28/21 dlo 02/02/21 dc Silver <0.0050 mg/L 0.0050 5 01/28/21 dlo 02/01/21 402.5 dc Thallium <0.0050 mg/L 0.0050 5 01/28/21 02/01/21 402.5 dlo dc Vanadium 0.00074 mg/L 0.00080 01/28/21 dlo 02/02/21 dc J Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 2500 mg/L 8.2 100 01/28/21 02/05/21 rl Ν **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T106745 01/27/21 Beryllium 0.00013 mg/L 0.0010 1 01/27/21 ckd J ckd **Boron** 5.9 mg/L 0.50 10 01/27/21 ckd 01/27/21 ckd Calcium 630 mg/L 5.0 10 01/27/21 ckd 01/27/21 ckd 01/27/21 Iron 28 mg/L 1.0 10 01/27/21 ckd ckd Lithium 0.051 mg/L 0.010 1 01/27/21 ckd 01/27/21 ckd Ν Magnesium 230 mg/L 2.0 10 01/27/21 ckd 01/27/21 ckd 01/27/21 01/27/21 **Potassium** 13 mg/L 1.0 1 ckd ckd Sodium 130 mg/L 5.0 10 01/27/21 ckd 01/27/21 ckd Ν 01/27/21 01/27/21 J Zinc 0.0043 mg/L 0.020 1 ckd ckd Analysis Method: EPA 6020B Batch: T106741 0.0010 5 01/27/21 01/28/21 <0.0010 mg/L Antimony ckd dc Arsenic 0.0027 mg/L 0.0050 5 01/27/21 ckd 01/28/21 dc J Barium 0.25 mg/L 0.0030 5 01/27/21 ckd 01/28/21 dc 5 Cadmium <0.0010 mg/L 0.0010 01/27/21 01/28/21 ckd dc Chromium 0.0027 mg/L 0.0040 5 01/27/21 ckd 01/28/21 dc J <0.0080 mg/L 5 01/27/21 01/28/21 Cobalt 0.0080 ckd dc Copper <0.0040 mg/L 0.0040 5 01/27/21 ckd 01/28/21 dc Lead 0.00023 mg/L 0.0020 5 01/27/21 ckd 01/28/21 dc J

CERTIFICATE OF ANALYSIS

0.0020

0.0020

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

5

5

01/27/21

01/27/21

ckd

ckd

01/28/21

01/28/21

dc

dc

Ν

Page 13 of 56

5.6 mg/L

<0.0020 mg/L

Manganese Molybdenum

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

 Trace ID: 21A0660-03
 Matrix: Ground Water
 Date Collected: 01/25/21 10:25

 Sample ID: MW-3
 Date Received: 01/25/21 15:47

Sample ID: MW-3	Date Received: 01/25/21 15:47								
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, DISSOLVED									
Nickel	0.0022 mg/L	0.0020	5	01/27/21	ckd	01/28/21	dc		
Selenium	<0.0044 mg/L	0.0044	5	01/27/21	ckd	01/28/21	dc		
Silver	<0.00020 mg/L	0.00020	5	01/27/21	ckd	01/28/21	dc		
Thallium	<0.00087 mg/L	0.00087	5	01/27/21	ckd	01/28/21	dc		
Vanadium	0.00077 mg/L	0.00080	1	01/27/21	ckd	02/02/21	dc	J	
WET CHEMISTRY									
Analysis Method: EPA 300.0 Rev. 2.1 Batch: T106685									
Fluoride	1.8 mg/L	0.10	5	01/26/21	ans	01/26/21	ans		
Chloride	290 mg/L	10	100	01/26/21	ans	01/26/21	ans		
Sulfate as SO4	1400 mg/L	60	100	01/26/21	ans	01/26/21	ans		
Analysis Method: SM 2320 B-11 Batch: T106775									
Bicarbonate Alkalinity as CaCO3 at pH 4.5	1000 mg/L	50	10	01/28/21	cm	01/28/21	cm	N	
Carbonate Alkalinity as CaCO3 at pH 8.2	<50 mg/L	50	10	01/28/21	cm	01/28/21	cm	N	
Analysis Method: SM 2540 C-11 Batch: T106860									
Total Dissolved Solids	3400 mg/L	50	5	02/01/21	acs	02/01/21	acs		
Analysis Method: SM 4500-H+ B-11 Batch: T105995									
рН	6.76 pH Units		1	01/25/21	jm	01/25/21	jm	SITE, N	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Nickel

Client Project ID: Monitoring Wells Sampling - 1/25/21

Trace ID: 21A0660-04 Matrix: Ground Water Date Collected: 01/25/21 11:10 Sample ID: MW-4 Date Received: 01/25/21 15:47 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 7470A Batch: T106718 Mercury <0.00020 mg/L 0.00020 01/27/21 dlo 01/28/21 Ν **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T106757 0.63 ng/L 0.50 02/01/21 02/02/21 Mercury dc dc Ν Analysis Method: EPA 6010D Batch: T106789 0.0020 02/05/21 Beryllium <0.0020 mg/L 1 01/28/21 dlo rl Boron 3.2 mg/L 0.050 1 01/28/21 dlo 02/05/21 rl Calcium 380 mg/L 5.0 10 01/28/21 dlo 02/05/21 rl Iron 8.3 mg/L 0.20 1 01/28/21 dlo 02/05/21 rl Lithium 0.032 mg/L 0.010 1 01/28/21 dlo 02/05/21 rl Ν 01/28/21 02/05/21 Magnesium 100 mg/L 2.0 10 dlo rl 1 02/05/21 Potassium 23 mg/L 1.0 01/28/21 dlo rl Sodium 78 mg/L 5.0 10 01/28/21 dlo 02/05/21 rl N <0.020 mg/L 0.020 01/28/21 dlo 02/05/21 rl Zinc Analysis Method: EPA 6020B Batch: T106789 <0.00030 mg/L 0.00030 01/28/21 02/02/21 Antimony 1 dlo dc Arsenic 0.0014 mg/L 0.0010 1 01/28/21 dlo 02/02/21 dc Barium 0.096 mg/L 0.010 1 01/28/21 dlo 02/02/21 dc Cadmium <0.0010 mg/L 0.0010 1 01/28/21 dlo 02/02/21 dc Chromium 0.0019 mg/L 0.00090 01/28/21 dlo 02/02/21 dc Cobalt <0.0016 mg/L 0.0016 1 01/28/21 dlo 02/02/21 dc <0.0050 mg/L 0.0050 01/28/21 02/02/21 Copper 1 dlo dc 01/28/21 02/02/21 Lead <0.0020 mg/L 0.0020 1 dlo dc 02/02/21 Manganese 0.89 mg/L 0.025 1 01/28/21 dlo dc 0.0011 mg/L 01/28/21 02/02/21 Molybdenum 0.00040 N 1 dlo dc

CERTIFICATE OF ANALYSIS

0.0050

0.017 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

01/28/21

dlo

02/02/21

dc

Page 15 of 56

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

 Trace ID: 21A0660-04
 Matrix: Ground Water
 Date Collected: 01/25/21 11:10

 Sample ID: MW-4
 Date Received: 01/25/21 15:47

Sample ID: MW-4		Date	Received: 01/25	Date Received: 01/25/21 15:47							
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL		
METALS, TOTAL											
Selenium	<0.0020 mg/L	0.0020	1	01/28/21	dlo	02/02/21	dc				
Silver	<0.0010 mg/L	0.0010	1	01/28/21	dlo	02/02/21	dc				
Thallium	<0.0010 mg/L	0.0010	1	01/28/21	dlo	02/02/21	dc				
Vanadium	0.00064 mg/L	0.00080	1	01/28/21	dlo	02/02/21	dc	J			
Analysis Method: SM 2340 B-11 Batch: [CALC]											
Hardness as CaCO3	1400 mg/L	8.2	10	01/28/21		02/05/21	ri	N			
METALS, DISSOLVED											
Analysis Method: EPA 6010D Batch: T106745											
Beryllium	0.000060 mg/L	0.0010	1	01/27/21	ckd	01/27/21	ckd	J			
Boron	3.6 mg/L	0.50	10	01/27/21	ckd	01/27/21	ckd				
Calcium	370 mg/L	5.0	10	01/27/21	ckd	01/27/21	ckd				
Iron	6.0 mg/L	0.10	1	01/27/21	ckd	01/27/21	ckd				
Lithium	0.029 mg/L	0.010	1	01/27/21	ckd	01/27/21	ckd	N			
Magnesium	100 mg/L	2.0	10	01/27/21	ckd	01/27/21	ckd				
Potassium	24 mg/L	1.0	1	01/27/21	ckd	01/27/21	ckd				
Sodium	74 mg/L	5.0	10	01/27/21	ckd	01/27/21	ckd	N			
Zinc	0.0017 mg/L	0.020	1	01/27/21	ckd	01/27/21	ckd	J			
Analysis Method: EPA 6020B Batch: T106741											
Antimony	<0.0010 mg/L	0.0010	5	01/27/21	ckd	01/28/21	dc				
Arsenic	0.0013 mg/L	0.0050	5	01/27/21	ckd	01/28/21	dc	J			
Barium	0.087 mg/L	0.0030	5	01/27/21	ckd	01/28/21	dc				
Cadmium	<0.0010 mg/L	0.0010	5	01/27/21	ckd	01/28/21	dc				
Chromium	0.0014 mg/L	0.00080	1	01/27/21	ckd	01/28/21	dc				
Cobalt	0.00017 mg/L	0.0016	1	01/27/21	ckd	01/28/21	dc	J			
Copper	<0.00080 mg/L	0.00080	1	01/27/21	ckd	01/28/21	dc				
Lead	0.00022 mg/L	0.0020	5	01/27/21	ckd	01/28/21	dc	J			
Manganese	0.84 mg/L	0.00040	1	01/27/21	ckd	01/28/21	dc				
Molybdenum	0.00093 mg/L	0.0020	5	01/27/21	ckd	01/28/21	dc	J, N			

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

 Trace ID: 21A0660-04
 Matrix: Ground Water
 Date Collected: 01/25/21 11:10

 Sample ID: MW-4
 Date Received: 01/25/21 15:47

Sample ID: MW-4	Date Received: 01/25/21 15:47								
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, DISSOLVED									
Nickel	0.016 mg/L	0.00040	1	01/27/21	ckd	01/28/21	dc		
Selenium	<0.0044 mg/L	0.0044	5	01/27/21	ckd	01/28/21	dc		
Silver	<0.00020 mg/L	0.00020	5	01/27/21	ckd	01/28/21	dc		
Thallium	<0.00087 mg/L	0.00087	5	01/27/21	ckd	01/28/21	dc		
Vanadium	0.00057 mg/L	0.00080	1	01/27/21	ckd	02/02/21	dc	J	
WET CHEMISTRY									
Analysis Method: EPA 300.0 Rev. 2.1 Batch: T106685									
Fluoride	1.2 mg/L	0.10	5	01/26/21	ans	01/26/21	ans		
Chloride	210 mg/L	10	100	01/26/21	ans	01/26/21	ans		
Sulfate as SO4	570 mg/L	60	100	01/26/21	ans	01/26/21	ans		
Analysis Method: SM 2320 B-11 Batch: T106775									
Bicarbonate Alkalinity as CaCO3 at pH 4.5	740 mg/L	50	10	01/28/21	cm	01/28/21	cm	N	
Carbonate Alkalinity as CaCO3 at pH 8.2	<50 mg/L	50	10	01/28/21	cm	01/28/21	cm	N	
Analysis Method: SM 2540 C-11 Batch: T106860									
Total Dissolved Solids	2200 mg/L	50	5	02/01/21	acs	02/01/21	acs		
Analysis Method: SM 4500-H+ B-11 Batch: T105995									
рН	7.17 pH Units		1	01/25/21	jm	01/25/21	jm	SITE, N	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

Trace ID: 21A0660-05 Matrix: Ground Water Date Collected: 01/25/21 07:50 Sample ID: MW-5 Date Received: 01/25/21 15:47 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 7470A Batch: T106718 Mercury <0.00020 mg/L 0.00020 01/27/21 dlo 01/28/21 Ν **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T106757 Mercury <0.50 ng/L 0.50 02/01/21 dc 02/02/21 dc Ν Analysis Method: EPA 6010D Batch: T106789 0.0020 02/05/21 Beryllium <0.0020 mg/L 1 01/28/21 dlo rl Boron 2.7 mg/L 0.050 1 01/28/21 dlo 02/05/21 rl Calcium 560 mg/L 50 100 01/28/21 dlo 02/05/21 rl Iron 37 mg/L 0.20 1 01/28/21 dlo 02/05/21 rl Lithium 0.095 mg/L 0.010 1 01/28/21 dlo 02/05/21 rl Ν 01/28/21 02/05/21 Magnesium 54 mg/L 2.0 10 dlo rl 1 02/05/21 Potassium 11 mg/L 1.0 01/28/21 dlo rl Sodium 31 mg/L 0.50 1 01/28/21 dlo 02/05/21 rl N <0.020 mg/L 0.020 01/28/21 dlo 02/05/21 rl Zinc Analysis Method: EPA 6020B Batch: T106789 <0.00030 mg/L 0.00030 01/28/21 02/02/21 Antimony 1 dlo dc Arsenic 0.098 mg/L 0.0010 1 01/28/21 dlo 02/02/21 dc Barium 0.060 mg/L 0.050 5 01/28/21 dlo 02/01/21 dc Cadmium <0.0010 mg/L 0.0010 1 01/28/21 dlo 02/02/21 dc Chromium <0.00090 mg/L 0.00090 1 01/28/21 dlo 02/02/21 dc Cobalt 0.0023 mg/L 0.0016 1 01/28/21 dlo 02/02/21 dc <0.0050 mg/L 0.0050 01/28/21 02/02/21 Copper 1 dlo dc 02/02/21 Lead <0.0020 mg/L 0.0020 1 01/28/21 dlo dc Manganese 2.6 mg/L 0.12 5 01/28/21 dlo 02/01/21 dc 0.0083 mg/L 01/28/21 02/02/21 Molybdenum 0.00040 N 1 dlo dc

CERTIFICATE OF ANALYSIS

0.0050

<0.0050 mg/L

01/28/21

dlo

1

02/02/21

dc

Nickel

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

Trace ID: 21A0660-05 Matrix: Ground Water Date Collected: 01/25/21 07:50 Sample ID: MW-5 Date Received: 01/25/21 15:47 **PARAMETERS** RESULTS UNITS DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL **RDL METALS, TOTAL** Selenium <0.0020 mg/L 0.0020 1 01/28/21 dlo 02/02/21 dc Silver <0.0010 mg/L 0.0010 01/28/21 dlo 02/02/21 1 dc <0.0010 mg/L 0.0010 1 01/28/21 02/02/21 Thallium dlo dc Vanadium <0.00080 mg/L 0.00080 01/28/21 dlo 02/02/21 Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 1600 mg/L 8.2 100 01/28/21 02/05/21 Ν rl **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T106745 <0.0010 mg/L 0.0010 1 01/27/21 01/27/21 ckd Beryllium ckd 01/27/21 01/27/21 **Boron** 2.7 mg/L 0.50 10 ckd ckd Calcium 560 mg/L 5.0 10 01/27/21 ckd 01/27/21 ckd 01/27/21 Iron 37 mg/L 1.0 10 01/27/21 ckd ckd Lithium 0.085 mg/L 0.010 1 01/27/21 ckd 01/27/21 ckd Ν Magnesium 53 mg/L 2.0 10 01/27/21 ckd 01/27/21 ckd 01/27/21 01/27/21 **Potassium** 12 mg/L 1.0 1 ckd ckd Sodium 24 mg/L 5.0 10 01/27/21 ckd 01/27/21 ckd Ν 01/27/21 01/27/21 J Zinc 0.0042 mg/L 0.020 1 ckd ckd Analysis Method: EPA 6020B Batch: T106741 0.0010 5 01/27/21 01/28/21 <0.0010 mg/L Antimony ckd dc Arsenic 0.085 mg/L 0.0050 5 01/27/21 ckd 01/28/21 dc Barium 0.066 mg/L 0.0030 5 01/27/21 ckd 01/28/21 dc 5 Cadmium <0.0010 mg/L 0.0010 01/27/21 01/28/21 ckd dc <0.0040 mg/L 01/27/21 01/28/21 Chromium 0.0040 5 ckd dc 0.0022 mg/L 0.0080 01/27/21 01/28/21 Cobalt 5 ckd dc J Copper <0.0040 mg/L 0.0040 5 01/27/21 ckd 01/28/21 dc

CERTIFICATE OF ANALYSIS

0.0020

0.0020

0.0020

5

5

5

01/27/21

01/27/21

01/27/21

ckd

ckd

ckd

01/28/21

01/28/21

01/28/21

dc

dc

dc

Ν

Page 19 of 56

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

<0.0020 mg/L

0.0082 mg/L

2.6 mg/L

Lead

Manganese Molybdenum

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

 Trace ID: 21A0660-05
 Matrix: Ground Water
 Date Collected: 01/25/21 07:50

 Sample ID: MW-5
 Date Received: 01/25/21 15:47

Sample ID: MW-5	Date Received: 01/25/21 15:47								
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, DISSOLVED									
Nickel	0.0016 mg/L	0.0020	5	01/27/21	ckd	01/28/21	dc	J	
Selenium	<0.0044 mg/L	0.0044	5	01/27/21	ckd	01/28/21	dc		
Silver	<0.00020 mg/L	0.00020	5	01/27/21	ckd	01/28/21	dc		
Thallium	<0.00087 mg/L	0.00087	5	01/27/21	ckd	01/28/21	dc		
Vanadium	0.00040 mg/L	0.00080	1	01/27/21	ckd	02/02/21	dc	J	
WET CHEMISTRY									
Analysis Method: EPA 300.0 Rev. 2.1 Batch: T106685									
Fluoride	3.7 mg/L	0.10	5	01/26/21	ans	01/26/21	ans		
Chloride	22 mg/L	0.50	5	01/26/21	ans	01/26/21	ans		
Sulfate as SO4	1000 mg/L	60	100	01/26/21	ans	01/26/21	ans		
Analysis Method: SM 2320 B-11 Batch: T106775									
Bicarbonate Alkalinity as CaCO3 at pH 4.5	670 mg/L	50	10	01/28/21	cm	01/28/21	cm	N	
Carbonate Alkalinity as CaCO3 at pH 8.2	<50 mg/L	50	10	01/28/21	cm	01/28/21	cm	N	
Analysis Method: SM 2540 C-11 Batch: T106860									
Total Dissolved Solids	2400 mg/L	50	5	02/01/21	acs	02/01/21	acs		
Analysis Method: SM 4500-H+ B-11 Batch: T105995									
рН	6.87 pH Units		1	01/25/21	jm	01/25/21	jm	SITE, N	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

Trace ID: 21A0660-06 Matrix: Ground Water Date Collected: 01/25/21 08:35 Sample ID: MW-6 Date Received: 01/25/21 15:47 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 7470A Batch: T106718 Mercury <0.00020 mg/L 0.00020 01/27/21 dlo 01/28/21 Ν **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T106757 33 ng/L 0.50 02/01/21 02/02/21 Mercury dc dc Ν Analysis Method: EPA 6010D Batch: T106789 0.0020 02/05/21 Beryllium <0.0020 mg/L 1 01/28/21 dlo rl Boron 11 mg/L 0.050 1 01/28/21 dlo 02/05/21 rl Calcium 170 mg/L 5.0 10 01/28/21 dlo 02/05/21 rl Iron 17 mg/L 0.20 1 01/28/21 dlo 02/05/21 rl Lithium 0.18 mg/L 0.010 1 01/28/21 dlo 02/05/21 rl Ν 01/28/21 02/05/21 Magnesium 85 mg/L 2.0 10 dlo rl 1 02/05/21 Potassium 33 mg/L 1.0 01/28/21 dlo rl Sodium 69 mg/L 5.0 10 01/28/21 dlo 02/05/21 rl N <0.020 mg/L 0.020 01/28/21 dlo 02/05/21 rl Zinc Analysis Method: EPA 6020B Batch: T106789 <0.00030 mg/L 0.00030 01/28/21 02/02/21 Antimony 1 dlo dc Arsenic 0.00092 mg/L 0.0010 1 01/28/21 dlo 02/02/21 dc J Barium 0.010 1 01/28/21 dlo 02/02/21 1.4 mg/L dc Cadmium <0.0010 mg/L 0.0010 1 01/28/21 dlo 02/02/21 dc Chromium 0.0014 mg/L 0.00090 01/28/21 dlo 02/02/21 dc Cobalt <0.0016 mg/L 0.0016 1 01/28/21 dlo 02/02/21 dc 02/02/21 0.0051 mg/L 0.0050 01/28/21 Copper 1 dlo dc 02/02/21 Lead 0.0016 mg/L 0.0020 1 01/28/21 dlo dc J 02/02/21 Manganese 0.35 mg/L 0.025 1 01/28/21 dlo dc 0.00061 mg/L 01/28/21 dlo 02/02/21 Molybdenum 0.00040 N 1 dc

CERTIFICATE OF ANALYSIS

0.0050

<0.0050 mg/L

1

01/28/21

dlo

02/02/21

dc

Nickel

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Date Collected: 01/25/21 08:35

Date Received: 01/25/21 15:47

01/27/21

01/27/21

01/27/21

01/27/21

01/27/21

01/27/21

01/27/21

01/27/21

01/27/21

01/27/21

01/27/21

ckd

1

5

5

5

5

1

1

1

5

1

5

01/27/21

01/28/21

01/28/21

01/28/21

01/28/21

01/28/21

01/28/21

01/28/21

01/28/21

01/28/21

01/28/21

J

J

J

J, N

ckd

dc

Trace Project ID: 21A0660

Trace ID: 21A0660-06

Sample ID: MW-6

Zinc

Antimony

Arsenic

Barium

Cadmium

Chromium

Cobalt

Copper

Manganese

Molybdenum

Lead

Analysis Method: EPA 6020B Batch: T106741

Client Project ID: Monitoring Wells Sampling - 1/25/21

Matrix: Ground Water

0.0019 mg/L

<0.0010 mg/L

0.00080 mg/L

<0.0010 mg/L

0.00089 mg/L

0.00027 mg/L

<0.00080 mg/L

<0.0020 mg/L

0.00054 mg/L

0.32 mg/L

1.3 mg/L

PARAMETERS RESULTS UNITS DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL **RDL METALS, TOTAL** Selenium <0.0020 mg/L 0.0020 1 01/28/21 dlo 02/02/21 dc Silver <0.0010 mg/L 0.0010 01/28/21 dlo 02/02/21 1 dc Thallium <0.0010 mg/L 0.0010 1 01/28/21 02/02/21 dlo dc Vanadium <0.00080 mg/L 0.00080 1 01/28/21 dlo 02/02/21 Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 01/28/21 770 mg/L 8.2 10 02/05/21 rl Ν **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T106745 Beryllium 0.000083 mg/L 01/27/21 01/27/21 0.0010 1 ckd J ckd **Boron** 9.6 mg/L 0.50 10 01/27/21 ckd 01/27/21 ckd Calcium 210 mg/L 5.0 10 01/27/21 ckd 01/27/21 ckd 01/27/21 Iron 15 mg/L 0.10 1 01/27/21 ckd ckd Lithium 0.18 mg/L 0.010 1 01/27/21 ckd 01/27/21 ckd Ν Magnesium 110 mg/L 2.0 10 01/27/21 ckd 01/27/21 ckd 10 01/27/21 01/27/21 **Potassium** 24 mg/L 10 ckd ckd Sodium 85 mg/L 5.0 10 01/27/21 ckd 01/27/21 ckd Ν

0.020

0.0010

0.0050

0.0030

0.0010

0.00080

0.0016

0.00080

0.0020

0.00040

0.0020

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

 Trace ID: 21A0660-06
 Matrix: Ground Water
 Date Collected: 01/25/21 08:35

 Sample ID: MW-6
 Date Received: 01/25/21 15:47

Sample ID: MW-6	Date Received: 01/25/21 15:47								
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, DISSOLVED									
Nickel	0.0012 mg/L	0.00040	1	01/27/21	ckd	01/28/21	dc		
Selenium	<0.0044 mg/L	0.0044	5	01/27/21	ckd	01/28/21	dc		
Silver	<0.00020 mg/L	0.00020	5	01/27/21	ckd	01/28/21	dc	402.5	
Thallium	<0.00087 mg/L	0.00087	5	01/27/21	ckd	01/28/21	dc		
Vanadium	0.00037 mg/L	0.00080	1	01/27/21	ckd	02/02/21	dc	J	
WET CHEMISTRY									
Analysis Method: EPA 300.0 Rev. 2.1 Batch: T106685									
Fluoride	1.6 mg/L	0.10	5	01/26/21	ans	01/26/21	ans		
Chloride	160 mg/L	2.5	25	01/26/21	ans	01/26/21	ans		
Sulfate as SO4	14 mg/L	3.0	5	01/26/21	ans	01/26/21	ans		
Analysis Method: SM 2320 B-11 Batch: T106775									
Bicarbonate Alkalinity as CaCO3 at pH 4.5	1100 mg/L	50	10	01/28/21	cm	01/28/21	cm	N	
Carbonate Alkalinity as CaCO3 at pH 8.2	<50 mg/L	50	10	01/28/21	cm	01/28/21	cm	N	
Analysis Method: SM 2540 C-11 Batch: T106690									
Total Dissolved Solids	1000 mg/L	40	4	01/26/21	rg	01/26/21	rg		
Analysis Method: SM 4500-H+ B-11 Batch: T105995									
рН	7.24 pH Units		1	01/25/21	jm	01/25/21	jm	SITE, N	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

Trace ID: 21A0660-07 Matrix: Ground Water Date Collected: 01/25/21 07:20 Sample ID: MW-7 Date Received: 01/25/21 15:47 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 7470A Batch: T106718 Mercury <0.00020 mg/L 0.00020 01/27/21 dlo 01/28/21 Ν **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T106757 0.51 ng/L 0.50 02/01/21 02/02/21 Mercury dc dc Ν Analysis Method: EPA 6010D Batch: T106789 0.0020 01/28/21 02/05/21 Beryllium <0.0020 mg/L 1 dlo rl Boron 16 mg/L 0.050 1 01/28/21 dlo 02/05/21 rl Calcium 140 mg/L 5.0 10 01/28/21 dlo 02/05/21 rl Iron 14 mg/L 0.20 1 01/28/21 dlo 02/05/21 rl <0.010 mg/L 02/05/21 Lithium 0.010 1 01/28/21 dlo rl Ν 01/28/21 02/05/21 Magnesium 36 mg/L 0.20 1 dlo rl 1 02/05/21 Potassium 5.0 mg/L 1.0 01/28/21 dlo rl Sodium 49 mg/L 5.0 10 01/28/21 dlo 02/05/21 rl N <0.020 mg/L 0.020 01/28/21 dlo 02/05/21 rl Zinc Analysis Method: EPA 6020B Batch: T106789 <0.00030 mg/L 0.00030 01/28/21 02/02/21 Antimony 1 dlo dc Arsenic 0.00060 mg/L 0.0010 1 01/28/21 dlo 02/02/21 dc J Barium 0.31 mg/L 0.010 1 01/28/21 dlo 02/02/21 dc Cadmium <0.0010 mg/L 0.0010 1 01/28/21 dlo 02/02/21 dc Chromium <0.00090 mg/L 0.00090 1 01/28/21 dlo 02/02/21 dc Cobalt 0.00069 mg/L 0.0016 1 01/28/21 dlo 02/02/21 dc J <0.0050 mg/L 0.0050 01/28/21 02/02/21 Copper 1 dlo dc 01/28/21 02/02/21 Lead <0.0020 mg/L 0.0020 1 dlo dc 02/02/21 Manganese 1.6 mg/L 0.025 1 01/28/21 dlo dc 0.00016 mg/L 01/28/21 dlo 02/02/21 Molybdenum 0.00040 1 dc J, N

CERTIFICATE OF ANALYSIS

0.0050

<0.0050 mg/L

1

01/28/21

dlo

02/02/21

dc

Nickel

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Cobalt

Copper

Manganese Molybdenum

Lead

Client Project ID: Monitoring Wells Sampling - 1/25/21

Trace ID: 21A0660-07 Matrix: Ground Water Date Collected: 01/25/21 07:20 Sample ID: MW-7 Date Received: 01/25/21 15:47 **PARAMETERS** RESULTS UNITS DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL **RDL METALS, TOTAL** Selenium <0.0020 mg/L 0.0020 1 01/28/21 dlo 02/02/21 dc Silver <0.0010 mg/L 0.0010 01/28/21 dlo 02/02/21 1 dc Thallium <0.0010 mg/L 0.0010 1 01/28/21 02/02/21 dlo dc Vanadium 0.00061 mg/L 0.00080 01/28/21 dlo 02/02/21 dc J Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 01/28/21 490 mg/L 0.82 10 02/05/21 Ν rl **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T106745 Beryllium <0.0010 mg/L 0.0010 1 01/27/21 01/27/21 ckd ckd 01/27/21 01/27/21 **Boron** 14 mg/L 0.50 10 ckd ckd Calcium 130 mg/L 5.0 10 01/27/21 ckd 01/27/21 ckd 01/27/21 Iron 10 mg/L 0.10 1 01/27/21 ckd ckd <0.010 mg/L 0.010 1 01/27/21 01/27/21 Lithium ckd ckd Ν Magnesium 35 mg/L 2.0 10 01/27/21 ckd 01/27/21 ckd 01/27/21 01/27/21 **Potassium** 5.2 mg/L 1.0 1 ckd ckd Sodium 47 mg/L 5.0 10 01/27/21 ckd 01/27/21 ckd Ν 01/27/21 01/27/21 J Zinc 0.0021 mg/L 0.020 1 ckd ckd Analysis Method: EPA 6020B Batch: T106741 0.0010 5 01/27/21 01/28/21 <0.0010 mg/L Antimony ckd dc Arsenic 0.00060 mg/L 0.0010 1 01/27/21 ckd 01/28/21 dc J Barium 0.28 mg/L 0.0030 5 01/27/21 ckd 01/28/21 dc 5 Cadmium <0.0010 mg/L 0.0010 01/27/21 01/28/21 ckd dc <0.00080 mg/L 0.00080 01/27/21 01/28/21 Chromium 1 ckd dc

CERTIFICATE OF ANALYSIS

0.0016

0.00080

0.0020

0.0020

0.00040

01/27/21

01/27/21

01/27/21

01/27/21

01/27/21

ckd

ckd

ckd

ckd

ckd

1

1

5

5

1

01/28/21

01/28/21

01/28/21

01/28/21

01/28/21

dc

dc

dc

dc

dc

J

J, N

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

0.00052 mg/L

<0.00080 mg/L

<0.0020 mg/L

0.00012 mg/L

1.8 mg/L

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

 Trace ID: 21A0660-07
 Matrix: Ground Water
 Date Collected: 01/25/21 07:20

 Sample ID: MW-7
 Date Received: 01/25/21 15:47

Sample ID: MW-7	Date Received: 01/25/21 15:47								
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	ВҮ	ANALYZED	BY	NOTES	MCL
METALS, DISSOLVED									
Nickel	0.00016 mg/L	0.00040	1	01/27/21	ckd	01/28/21	dc	J	
Selenium	<0.00087 mg/L	0.00087	1	01/27/21	ckd	01/28/21	dc		
Silver	<0.00020 mg/L	0.00020	5	01/27/21	ckd	01/28/21	dc		
Thallium	<0.00087 mg/L	0.00087	5	01/27/21	ckd	01/28/21	dc		
Vanadium	0.00046 mg/L	0.00080	1	01/27/21	ckd	02/02/21	dc	J	
WET CHEMISTRY									
Analysis Method: EPA 300.0 Rev. 2.1 Batch: T106685									
Fluoride	0.13 mg/L	0.10	5	01/26/21	ans	01/26/21	ans		
Chloride	14 mg/L	0.50	5	01/26/21	ans	01/26/21	ans		
Sulfate as SO4	26 mg/L	3.0	5	01/26/21	ans	01/26/21	ans		
Analysis Method: SM 2320 B-11 Batch: T106775									
Bicarbonate Alkalinity as CaCO3 at pH 4.5	650 mg/L	50	10	01/28/21	cm	01/28/21	cm	N	
Carbonate Alkalinity as CaCO3 at pH 8.2	<50 mg/L	50	10	01/28/21	cm	01/28/21	cm	N	
Analysis Method: SM 2540 C-11 Batch: T106690									
Total Dissolved Solids	480 mg/L	40	4	01/26/21	rg	01/26/21	rg		
Analysis Method: SM 4500-H+ B-11 Batch: T105995									
рН	6.72 pH Units		1	01/25/21	jm	01/25/21	jm	SITE, N	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

Trace ID: 21A0660-08 Matrix: Ground Water Date Collected: 01/25/21 13:50 Sample ID: MW-8 Date Received: 01/25/21 15:47 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 7470A Batch: T106718 Mercury <0.00020 mg/L 0.00020 01/27/21 dlo 01/28/21 Ν **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T106757 1.8 ng/L 0.50 02/01/21 02/02/21 Mercury dc dc Ν Analysis Method: EPA 6010D Batch: T106789 0.0020 02/05/21 Beryllium <0.0020 mg/L 1 01/28/21 dlo rl Boron 1.2 mg/L 0.050 1 01/28/21 dlo 02/05/21 rl Calcium 140 mg/L 5.0 10 01/28/21 dlo 02/05/21 rl Iron 31 mg/L 0.20 1 01/28/21 dlo 02/05/21 rl Lithium 0.026 mg/L 0.010 1 01/28/21 dlo 02/05/21 rl Ν 01/28/21 02/05/21 Magnesium 23 mg/L 0.20 1 dlo rl 1.0 1 02/05/21 Potassium 9.1 mg/L 01/28/21 dlo rl Sodium 26 mg/L 0.50 1 01/28/21 dlo 02/05/21 rl N <0.020 mg/L 0.020 01/28/21 dlo 02/05/21 rl Zinc Analysis Method: EPA 6020B Batch: T106789 <0.00030 mg/L 0.00030 01/28/21 02/02/21 Antimony 1 dlo dc Arsenic 0.0044 mg/L 0.0010 1 01/28/21 dlo 02/02/21 dc Barium 0.94 mg/L 1 01/28/21 dlo 02/02/21 0.010 dc Cadmium <0.0010 mg/L 0.0010 1 01/28/21 dlo 02/02/21 dc Chromium <0.00090 mg/L 0.00090 1 01/28/21 dlo 02/02/21 dc Cobalt <0.0016 mg/L 0.0016 1 01/28/21 dlo 02/02/21 dc <0.0050 mg/L 0.0050 01/28/21 02/02/21 Copper 1 dlo dc 01/28/21 02/02/21 Lead <0.0020 mg/L 0.0020 1 dlo dc 02/02/21 Manganese 1.3 mg/L 0.025 1 01/28/21 dlo dc 0.0037 mg/L 01/28/21 dlo 02/02/21 Molybdenum 0.00040 N 1 dc <0.0050 mg/L 0.0050 01/28/21 02/02/21 Nickel 1 dlo dc

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Date Collected: 01/25/21 13:50

Date Received: 01/25/21 15:47

Trace Project ID: 21A0660

Trace ID: 21A0660-08

Sample ID: MW-8

Client Project ID: Monitoring Wells Sampling - 1/25/21

Matrix: Ground Water

PARAMETERS RESULTS UNITS DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL **RDL METALS, TOTAL** Selenium <0.0020 mg/L 0.0020 1 01/28/21 dlo 02/02/21 dc Silver <0.0010 mg/L 0.0010 01/28/21 dlo 02/02/21 1 dc <0.0010 mg/L 0.0010 1 01/28/21 02/02/21 Thallium dlo dc Vanadium <0.00080 mg/L 0.00080 01/28/21 dlo 02/02/21 Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 440 mg/L 0.82 10 01/28/21 02/05/21 Ν rl **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T106745 <0.0010 mg/L 0.0010 1 01/27/21 01/27/21 ckd Beryllium ckd 01/27/21 01/27/21 **Boron** 1.2 mg/L 0.50 10 ckd ckd Calcium 130 mg/L 5.0 10 01/27/21 ckd 01/27/21 ckd 01/27/21 Iron 9.3 mg/L 0.10 1 01/27/21 ckd ckd Lithium 0.023 mg/L 0.010 1 01/27/21 ckd 01/27/21 ckd Ν Magnesium 23 mg/L 2.0 10 01/27/21 ckd 01/27/21 ckd 01/27/21 01/27/21 **Potassium** 9.1 mg/L 1.0 1 ckd ckd Sodium 22 mg/L 5.0 10 01/27/21 ckd 01/27/21 ckd Ν 01/27/21 01/27/21 J Zinc 0.0014 mg/L 0.020 1 ckd ckd

Analysis Method: EPA 6020B Batch: T106741 0.0010 5 01/27/21 01/28/21 <0.0010 mg/L Antimony ckd dc Arsenic 0.0020 mg/L 0.0010 1 01/27/21 ckd 01/28/21 dc Barium 0.67 mg/L 0.0030 5 01/27/21 ckd 01/28/21 dc Cadmium <0.0010 mg/L 0.0010 1 01/27/21 01/28/21 ckd dc <0.00080 mg/L 0.00080 01/27/21 01/28/21 Chromium 1 ckd dc 0.00025 mg/L 0.0016 01/27/21 01/28/21 Cobalt 1 ckd dc J 0.00011 mg/L 0.00080 1 01/27/21 01/28/21 J Copper ckd dc 01/28/21 Lead <0.0020 mg/L 0.0020 5 01/27/21 ckd dc 1.3 mg/L 0.00040 01/27/21 ckd 01/28/21 dc Manganese 1 Molybdenum 0.00040 01/28/21 0.0034 mg/L 1 01/27/21 Ν ckd dc

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

 Trace ID: 21A0660-08
 Matrix: Ground Water
 Date Collected: 01/25/21 13:50

 Sample ID: MW-8
 Date Received: 01/25/21 15:47

Sample ID: MW-8	Date Received: 01/25/21 15:47								
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, DISSOLVED									
Nickel	0.00095 mg/L	0.00040	1	01/27/21	ckd	01/28/21	dc		
Selenium	<0.00087 mg/L	0.00087	1	01/27/21	ckd	01/28/21	dc		
Silver	<0.000040 mg/L	0.000040	1	01/27/21	ckd	01/28/21	dc		
Thallium	<0.00087 mg/L	0.00087	5	01/27/21	ckd	01/28/21	dc		
Vanadium	<0.00080 mg/L	0.00080	1	01/27/21	ckd	02/02/21	dc		
WET CHEMISTRY									
Analysis Method: EPA 300.0 Rev. 2.1 Batch: T106685									
Fluoride	0.42 mg/L	0.10	5	01/26/21	ans	01/26/21	ans		
Chloride	40 mg/L	0.50	5	01/26/21	ans	01/26/21	ans		
Sulfate as SO4	7.9 mg/L	3.0	5	01/26/21	ans	01/26/21	ans		
Analysis Method: SM 2320 B-11 Batch: T106775									
Bicarbonate Alkalinity as CaCO3 at pH 4.5	480 mg/L	50	10	01/28/21	cm	01/28/21	cm	N	
Carbonate Alkalinity as CaCO3 at pH 8.2	<50 mg/L	50	10	01/28/21	cm	01/28/21	cm	N	
Analysis Method: SM 2540 C-11 Batch: T106690									
Total Dissolved Solids	420 mg/L	40	4	01/26/21	rg	01/26/21	rg		
Analysis Method: SM 4500-H+ B-11 Batch: T105995									
рН	7.11 pH Units		1	01/25/21	jm	01/25/21	jm	SITE, N	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Nickel

Client Project ID: Monitoring Wells Sampling - 1/25/21

Trace ID: 21A0660-09 Matrix: Ground Water Date Collected: 01/25/21 12:55 Sample ID: MW-9 Date Received: 01/25/21 15:47 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 7470A Batch: T106718 Mercury <0.00020 mg/L 0.00020 01/27/21 dlo 01/28/21 Ν **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T106757 0.70 ng/L 0.50 02/01/21 02/02/21 Mercury dc dc Ν Analysis Method: EPA 6010D Batch: T106789 0.0020 02/05/21 Beryllium <0.0020 mg/L 1 01/28/21 dlo rl Boron 3.9 mg/L 0.050 1 01/28/21 dlo 02/05/21 rl Calcium 250 mg/L 5.0 10 01/28/21 dlo 02/05/21 rl Iron 26 mg/L 0.20 1 01/28/21 dlo 02/05/21 rl Lithium 0.16 mg/L 0.010 1 01/28/21 dlo 02/05/21 rl Ν 01/28/21 02/05/21 Magnesium 38 mg/L 0.20 1 dlo rl 02/05/21 Potassium 13 mg/L 1.0 1 01/28/21 dlo rl Sodium 27 mg/L 0.50 1 01/28/21 dlo 02/05/21 rl N <0.020 mg/L 0.020 01/28/21 dlo 02/05/21 rl Zinc Analysis Method: EPA 6020B Batch: T106789 <0.00030 mg/L 0.00030 01/28/21 02/02/21 Antimony 1 dlo dc Arsenic 0.0040 mg/L 0.0010 1 01/28/21 dlo 02/02/21 dc Barium 0.91 mg/L 0.010 1 01/28/21 dlo 02/02/21 dc Cadmium <0.0010 mg/L 0.0010 1 01/28/21 dlo 02/02/21 dc Chromium 0.0022 mg/L 0.00090 01/28/21 dlo 02/02/21 dc Cobalt 0.0011 mg/L 0.0016 1 01/28/21 dlo 02/02/21 dc J <0.0050 mg/L 0.0050 01/28/21 02/02/21 Copper 1 dlo dc 01/28/21 02/02/21 Lead <0.0020 mg/L 0.0020 1 dlo dc 02/02/21 Manganese 0.73 mg/L 0.025 1 01/28/21 dlo dc 0.025 mg/L 01/28/21 02/02/21 Molybdenum 0.00040 1 dlo dc Ν

CERTIFICATE OF ANALYSIS

0.0050

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

01/28/21

dlo

02/02/21

dc

J

0.0036 mg/L

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

 Trace ID: 21A0660-09
 Matrix: Ground Water
 Date Collected: 01/25/21 12:55

 Sample ID: MW-9
 Date Received: 01/25/21 15:47

Sample ID: MW-9	Date Received: 01/25/21 15:47								
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Selenium	<0.0020 mg/L	0.0020	1	01/28/21	dlo	02/02/21	dc		
Silver	<0.0010 mg/L	0.0010	1	01/28/21	dlo	02/02/21	dc		
Thallium	<0.0010 mg/L	0.0010	1	01/28/21	dlo	02/02/21	dc		
Vanadium	<0.00080 mg/L	0.00080	1	01/28/21	dlo	02/02/21	dc		
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	790 mg/L	0.82	10	01/28/21		02/05/21	rl	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T106745									
Beryllium	<0.0010 mg/L	0.0010	1	01/27/21	ckd	01/27/21	ckd		
Boron	3.7 mg/L	0.50	10	01/27/21	ckd	01/27/21	ckd		
Calcium	250 mg/L	5.0	10	01/27/21	ckd	01/27/21	ckd		
Iron	9.7 mg/L	0.10	1	01/27/21	ckd	01/27/21	ckd		
Lithium	0.16 mg/L	0.010	1	01/27/21	ckd	01/27/21	ckd	N	
Magnesium	38 mg/L	2.0	10	01/27/21	ckd	01/27/21	ckd		
Potassium	13 mg/L	1.0	1	01/27/21	ckd	01/27/21	ckd		
Sodium	23 mg/L	5.0	10	01/27/21	ckd	01/27/21	ckd	N	
Zinc	0.0014 mg/L	0.020	1	01/27/21	ckd	01/27/21	ckd	J	
Analysis Method: EPA 6020B Batch: T106741									
Antimony	0.00046 mg/L	0.0010	5	01/27/21	ckd	01/28/21	dc	J	
Arsenic	0.0025 mg/L	0.0010	1	01/27/21	ckd	01/28/21	dc		
Barium	2.1 mg/L	0.0030	5	01/27/21	ckd	01/28/21	dc		
Cadmium	<0.0010 mg/L	0.0010	5	01/27/21	ckd	01/28/21	dc		
Chromium	0.00069 mg/L	0.00080	1	01/27/21	ckd	01/28/21	dc	J	
Cobalt	0.00089 mg/L	0.0016	1	01/27/21	ckd	01/28/21	dc	J	
Copper	<0.00080 mg/L	0.00080	1	01/27/21	ckd	01/28/21	dc		
Lead	0.0011 mg/L	0.0020	5	01/27/21	ckd	01/28/21	dc	J	
Manganese	0.75 mg/L	0.00040	1	01/27/21	ckd	01/28/21	dc		
Molybdenum	0.023 mg/L	0.0020	5	01/27/21	ckd	01/28/21	dc	N	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

 Trace ID: 21A0660-09
 Matrix: Ground Water
 Date Collected: 01/25/21 12:55

 Sample ID: MW-9
 Date Received: 01/25/21 15:47

Sample ID: MW-9	Date Received: 01/25/21 15:47								
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, DISSOLVED									
Nickel	0.0029 mg/L	0.00040	1	01/27/21	ckd	01/28/21	dc		
Selenium	0.00050 mg/L	0.00087	1	01/27/21	ckd	01/28/21	dc	J	
Silver	<0.00020 mg/L	0.00020	5	01/27/21	ckd	01/28/21	dc		
Thallium	<0.00087 mg/L	0.00087	5	01/27/21	ckd	01/28/21	dc		
Vanadium	<0.00080 mg/L	0.00080	1	01/27/21	ckd	02/02/21	dc		
WET CHEMISTRY									
Analysis Method: EPA 300.0 Rev. 2.1 Batch: T106685									
Fluoride	2.2 mg/L	0.10	5	01/26/21	ans	01/26/21	ans		
Chloride	11 mg/L	0.50	5	01/26/21	ans	01/26/21	ans		
Sulfate as SO4	180 mg/L	15	25	01/26/21	ans	01/26/21	ans		
Analysis Method: SM 2320 B-11 Batch: T106775									
Bicarbonate Alkalinity as CaCO3 at pH 4.5	710 mg/L	50	10	01/28/21	cm	01/28/21	cm	N	
Carbonate Alkalinity as CaCO3 at pH 8.2	<50 mg/L	50	10	01/28/21	cm	01/28/21	cm	N	
Analysis Method: SM 2540 C-11 Batch: T106690									
Total Dissolved Solids	780 mg/L	40	4	01/26/21	rg	01/26/21	rg		
Analysis Method: SM 4500-H+ B-11 Batch: T105995									
рН	6.93 pH Units		1	01/25/21	jm	01/25/21	jm	SITE, N	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Nickel

Client Project ID: Monitoring Wells Sampling - 1/25/21

Trace ID: 21A0660-10 Matrix: Ground Water Date Collected: 01/25/21 12:10 Sample ID: MW-10 Date Received: 01/25/21 15:47 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 7470A Batch: T106718 Mercury <0.00020 mg/L 0.00020 01/27/21 dlo 01/28/21 Ν **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T106757 0.50 02/01/21 02/02/21 Mercury 1.4 ng/L dc dc Ν Analysis Method: EPA 6010D Batch: T106789 0.0020 01/28/21 02/05/21 Beryllium <0.0020 mg/L 1 dlo rl Boron 41 mg/L 0.50 10 01/28/21 dlo 02/05/21 rl Calcium 130 mg/L 5.0 10 01/28/21 dlo 02/05/21 rl Iron 12 mg/L 0.20 1 01/28/21 dlo 02/05/21 rl Lithium 1.5 mg/L 0.010 1 01/28/21 dlo 02/05/21 rl Ν 01/28/21 02/05/21 Magnesium 71 mg/L 2.0 10 dlo rl 02/05/21 Potassium 39 mg/L 10 10 01/28/21 dlo rl Sodium 330 mg/L 5.0 10 01/28/21 dlo 02/05/21 rl N <0.020 mg/L 0.020 01/28/21 dlo 02/05/21 rl Zinc Analysis Method: EPA 6020B Batch: T106789 <0.00030 mg/L 0.00030 01/28/21 02/02/21 Antimony 1 dlo dc Arsenic 0.00078 mg/L 0.0010 1 01/28/21 dlo 02/02/21 dc J Barium 0.010 1 01/28/21 dlo 02/02/21 1.3 mg/L dc Cadmium <0.0010 mg/L 0.0010 1 01/28/21 dlo 02/02/21 dc Chromium 0.0068 mg/L 0.00090 01/28/21 dlo 02/02/21 dc Cobalt 0.00073 mg/L 0.0016 1 01/28/21 dlo 02/02/21 dc J <0.0050 mg/L 0.0050 01/28/21 02/02/21 Copper 1 dlo dc 02/02/21 Lead 0.0024 mg/L 0.0020 1 01/28/21 dlo dc 02/02/21 Manganese 0.40 mg/L 0.025 1 01/28/21 dlo dc 0.017 mg/L 0.00040 01/28/21 dlo 02/02/21 Molybdenum N 1 dc

CERTIFICATE OF ANALYSIS

0.0050

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

01/28/21

dlo

02/02/21

dc

<0.0050 mg/L

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

 Trace ID: 21A0660-10
 Matrix: Ground Water
 Date Collected: 01/25/21 12:10

 Sample ID: MW-10
 Date Received: 01/25/21 15:47

Sample ID: MW-10	Date Received: 01/25/21 15:47								
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Selenium	<0.0020 mg/L	0.0020	1	01/28/21	dlo	02/02/21	dc		
Silver	<0.0010 mg/L	0.0010	1	01/28/21	dlo	02/02/21	dc		
Thallium	<0.0010 mg/L	0.0010	1	01/28/21	dlo	02/02/21	dc		
Vanadium	0.00091 mg/L	0.00080	1	01/28/21	dlo	02/02/21	dc		
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	630 mg/L	8.2	10	01/28/21		02/05/21	rl	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T106745									
Beryllium	<0.0010 mg/L	0.0010	1	01/27/21	ckd	01/27/21	ckd		
Boron	39 mg/L	0.50	10	01/27/21	ckd	01/27/21	ckd		
Calcium	130 mg/L	5.0	10	01/27/21	ckd	01/27/21	ckd		
Iron	1.2 mg/L	0.10	1	01/27/21	ckd	01/27/21	ckd		
Lithium	1.3 mg/L	0.10	10	01/27/21	ckd	01/27/21	ckd	N	
Magnesium	68 mg/L	2.0	10	01/27/21	ckd	01/27/21	ckd		
Potassium	38 mg/L	10	10	01/27/21	ckd	01/27/21	ckd		
Sodium	300 mg/L	5.0	10	01/27/21	ckd	01/27/21	ckd	N	
Zinc	0.0010 mg/L	0.020	1	01/27/21	ckd	01/27/21	ckd	J	
Analysis Method: EPA 6020B Batch: T106741									
Antimony	<0.0010 mg/L	0.0010	5	01/27/21	ckd	01/28/21	dc		
Arsenic	0.00065 mg/L	0.0050	5	01/27/21	ckd	01/28/21	dc	J	
Barium	0.85 mg/L	0.0030	5	01/27/21	ckd	01/28/21	dc		
Cadmium	0.00017 mg/L	0.0010	5	01/27/21	ckd	01/28/21	dc	J	
Chromium	0.0043 mg/L	0.00080	1	01/27/21	ckd	01/28/21	dc		
Cobalt	0.00049 mg/L	0.0016	1	01/27/21	ckd	01/28/21	dc	J	
Copper	0.00016 mg/L	0.00080	1	01/27/21	ckd	01/28/21	dc	J	
Lead	0.00092 mg/L	0.0020	5	01/27/21	ckd	01/28/21	dc	J	
Manganese	0.32 mg/L	0.00040	1	01/27/21	ckd	01/28/21	dc		
Molybdenum	0.016 mg/L	0.0020	5	01/27/21	ckd	01/28/21	dc	N	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

 Trace ID: 21A0660-10
 Matrix: Ground Water
 Date Collected: 01/25/21 12:10

 Sample ID: MW-10
 Date Received: 01/25/21 15:47

Sample ID: MW-10	Date Received: 01/25/21 15:47								
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, DISSOLVED									
Nickel	0.0015 mg/L	0.00040	1	01/27/21	ckd	01/28/21	dc		
Selenium	<0.0044 mg/L	0.0044	5	01/27/21	ckd	01/28/21	dc		
Silver	<0.00020 mg/L	0.00020	5	01/27/21	ckd	01/28/21	dc		
Thallium	<0.00087 mg/L	0.00087	5	01/27/21	ckd	01/28/21	dc		
Vanadium	0.00048 mg/L	0.00080	1	01/27/21	ckd	02/02/21	dc	J	
WET CHEMISTRY									
Analysis Method: EPA 300.0 Rev. 2.1 Batch: T106685									
Fluoride	11 mg/L	1.0	50	01/26/21	ans	01/26/21	ans		
Chloride	400 mg/L	5.0	50	01/26/21	ans	01/26/21	ans		
Sulfate as SO4	5.5 mg/L	3.0	5	01/26/21	ans	01/26/21	ans		
Analysis Method: SM 2320 B-11 Batch: T106775									
Bicarbonate Alkalinity as CaCO3 at pH 4.5	930 mg/L	50	10	01/28/21	cm	01/28/21	cm	N	
Carbonate Alkalinity as CaCO3 at pH 8.2	<50 mg/L	50	10	01/28/21	cm	01/28/21	cm	N	
Analysis Method: SM 2540 C-11 Batch: T106690									
Total Dissolved Solids	1200 mg/L	40	4	01/26/21	rg	01/26/21	rg		
Analysis Method: SM 4500-H+ B-11 Batch: T105995									
pH	7.65 pH Units		1	01/25/21	jm	01/25/21	jm	SITE, N	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

QUALITY CONTROL RESULTS

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

QC Batch: T106718 Analysis Description: Mercury, Total, EPA 7470/7471

QC Batch Method: EPA 7470A Prep Analysis Method: EPA 7470A

METHOD BLANK: T106718-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	mg/L	<0.00020	0.00020	

LABORATORY CONTROL SAMPLE: T106718-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Mercury	mg/L	0.00200	0.00206	103	77-122	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T106718-MSD1

		Original	Spike	MS	MSD	MS	MSD	% Rec	DDD	Max	Notes
Parameter	Units	Result	Conc.	Result	Result	% Rec	% Rec	Limit	RPD	RPD	notes
Mercury	mg/L	0	0.00200	0.00226	0.00212	113	106	76-123	6	20	

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

Original: 21A0660-07

QC Batch: T106757 Analysis Description: Mercury, Total, Low Level
QC Batch Method: EPA 1631E Analysis Method: EPA 1631E

METHOD BLANK: T106757-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/L	<0.20	0.20	

METHOD BLANK: T106757-BLK2

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/L	<0.20	0.20	

METHOD BLANK: T106757-BLK3

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/L	<0.20	0.20	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK	K: T106757-BLK4
--------------	-----------------

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/L	<0.20	0.20	

METHOD BLANK: T106757-BLK5

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/L	<0.20	0.20	

METHOD BLANK: T106757-BLK6

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/l	<0.20	0.20	

LABORATORY CONTROL SAMPLE: T106757-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Mercury	ng/L	25.0	24.6	98	77-123	

LABORATORY CONTROL SAMPLE: T106757-BS2

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Mercury	ng/L	25.0	24.9	100	77-123	

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

QC Batch: T106745 QC Batch Method:

Analysis Description: Sodium, Dissolved Analysis Method: EPA 6010D

METHOD BLANK: T106745-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Boron	mg/L	0.0030	0.050	J
Beryllium	mg/L	<0.0010	0.0010	
Calcium	mg/L	<0.50	0.50	
Iron	mg/L	0.0052	0.10	J
Potassium	mg/L	<1.0	1.0	
Lithium	mg/L	<0.010	0.010	
Magnesium	mg/L	<0.20	0.20	
Sodium	mg/L	<0.50	0.50	
Zinc	mg/L	<0.020	0.020	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T106745-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	1.00	0.961	96	80-120	
Beryllium	mg/L	0.0500	0.0482	96	80-120	
Calcium	mg/L	10.0	9.67	97	80-120	
Iron	mg/L	10.0	9.75	97	80-120	
Potassium	mg/L	10.0	9.30	93	80-120	
Lithium	mg/L	0.500	0.464	93	80-120	
Magnesium	mg/L	10.0	9.53	95	80-120	
Sodium	mg/L	10.0	9.30	93	80-120	
Zinc	mg/L	1.00	0.962	96	80-120	

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

QC Batch: T106789

QC Batch Method: EPA 3015 Microwave Assisted Digestions

for Liquids

Analysis Description: Magnesium, Total

Analysis Method: EPA 6010D

METHOD BLANK: T106789-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Boron	mg/L	<0.050	0.050	
Beryllium	mg/L	<0.0020	0.0020	
Calcium	mg/L	<0.50	0.50	
Iron	mg/L	<0.20	0.20	
Potassium	mg/L	<1.0	1.0	
Lithium	mg/L	0.0011	0.010	J
Magnesium	mg/L	<0.20	0.20	
Sodium	mg/L	<0.50	0.50	
Zinc	mg/L	<0.020	0.020	

LABORATORY CONTROL SAMPLE: T106789-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	0.889	0.868	98	80-120	
Beryllium	mg/L	0.111	0.111	100	80-120	
Calcium	mg/L	8.89	9.03	102	80-120	
Iron	mg/L	8.89	9.20	104	80-120	
Potassium	mg/L	8.89	8.66	97	80-120	
Lithium	mg/L	0.889	0.879	99	80-120	
Magnesium	mg/L	8.89	9.04	102	80-120	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T106789-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Sodium	mg/L	8.89	9.09	102	80-120	
Zinc	mg/L	0.889	0.882	99	80-120	

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

QC Batch: T106741 QC Batch Method:

Analysis Description: Thallium, Dissolved

Analysis Method: EPA 6020B

METHOD BLANK: T106741-BLK1

		Blank	- · ·	
Parameter	Units	Result	Reporting Limit	Notes
Silver	mg/L	<0.000040	0.000040	
Arsenic	mg/L	<0.0010	0.0010	
Barium	mg/L	<0.00060	0.00060	
Cadmium	mg/L	<0.00020	0.00020	
Cobalt	mg/L	<0.0016	0.0016	
Chromium	mg/L	<0.00080	0.00080	
Copper	mg/L	<0.00080	0.00080	
Manganese	mg/L	<0.00040	0.00040	
Molybdenum	mg/L	<0.00040	0.00040	
Nickel	mg/L	<0.00040	0.00040	
Lead	mg/L	<0.00040	0.00040	
Antimony	mg/L	0.00010	0.00020	J
Selenium	mg/L	<0.00087	0.00087	
Thallium	mg/L	<0.00017	0.00017	
Vanadium	ma/L	<0.00080	0.00080	

LABORATORY CONTROL SAMPLE: T106741-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Silver	mg/L	0.0600	0.0618	103	80-120	
Arsenic	mg/L	0.0600	0.0614	102	80-120	
Barium	mg/L	0.0600	0.0604	101	80-120	
Cadmium	mg/L	0.0600	0.0609	102	80-120	
Cobalt	mg/L	0.0600	0.0595	99	80-120	
Chromium	mg/L	0.0600	0.0595	99	80-120	
Copper	mg/L	0.0600	0.0611	102	80-120	
Manganese	mg/L	0.0600	0.0612	102	80-120	
Molybdenum	mg/L	0.0600	0.0581	97	80-120	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T106741-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Nickel	mg/L	0.0600	0.0591	99	80-120	
Lead	mg/L	0.0600	0.0587	98	80-120	
Antimony	mg/L	0.0600	0.0595	99	80-120	
Selenium	mg/L	0.0600	0.0620	103	80-120	
Thallium	mg/L	0.0600	0.0590	98	80-120	
Vanadium	mg/L	0.0600	0.0567	94	80-120	

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

QC Batch: T106789

QC Batch Method: EPA 3015 Microwave Assisted Digestions

for Liquids

Analysis Description: Selenium, Total Analysis Method: EPA 6020B

METHOD BLANK: T106789-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Silver	mg/L	<0.0010	0.0010	
Arsenic	mg/L	<0.0010	0.0010	
Barium	mg/L	<0.010	0.010	
Cadmium	mg/L	<0.0010	0.0010	
Cobalt	mg/L	<0.0016	0.0016	
Chromium	mg/L	<0.00090	0.00090	
Copper	mg/L	<0.0050	0.0050	
Manganese	mg/L	<0.025	0.025	
Molybdenum	mg/L	<0.00040	0.00040	
Nickel	mg/L	<0.0050	0.0050	
Lead	mg/L	<0.0020	0.0020	
Antimony	mg/L	<0.00030	0.00030	
Selenium	mg/L	<0.0020	0.0020	
Thallium	mg/L	<0.0010	0.0010	
Vanadium	mg/L	<0.00080	0.00080	

LABORATORY CONTROL SAMPLE: T106789-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Silver	mg/L	0.0556	0.0613	110	80-120	
Arsenic	mg/L	0.0556	0.0566	102	80-120	
Barium	mg/L	0.889	0.946	106	80-120	
Cadmium	mg/L	0.0278	0.0315	113	80-120	
Cobalt	mg/L	0.889	0.888	100	80-120	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T106789-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Chromium	mg/L	0.0278	0.0279	100	80-120	
Copper	mg/L	0.889	0.865	97	80-120	
Manganese	mg/L	0.889	0.922	104	80-120	
Molybdenum	mg/L	0.889	0.926	104	80-120	
Nickel	mg/L	0.889	0.890	100	80-120	
Lead	mg/L	0.0556	0.0540	97	80-120	
Antimony	mg/L	0.0556	0.0648	117	80-120	
Selenium	mg/L	0.0556	0.0571	103	80-120	
Thallium	mg/L	0.0556	0.0561	101	80-120	
Vanadium	mg/L	0.889	0.946	106	80-120	

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

QC Batch: [CALC]
QC Batch Method:

Analysis Description: Hardness (Metals) Analysis Method: SM 2340 B-11

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

QC Batch: T106679
QC Batch Method:

Analysis Description: Filtration for Dissolved Metals

Analysis Method: Dissolved Metals

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

QC Batch: T106685

Analysis Description: Chloride
Analysis Method: EPA 300.0 Rev. 2.1

QC Batch Method: IC Prep W

METHOD BLANK: T106685-BLK1

		Blank	Reporting	
Parameter	Units	Result	Limit	Notes
Chloride	mg/L	<0.10	0.10	
Fluoride	mg/L	<0.020	0.020	
Sulfate as SO4	mg/L	<0.60	0.60	

LABORATORY CONTROL SAMPLE: T106685-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Chloride	mg/L	5.00	5.34	107	90-110	
Fluoride	mg/L	1.00	1.04	104	90-110	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T106685-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Sulfate as SO4	mg/L	5.00	5.15	103	90-110	

MATRIX SPIKE: T106685-MS1 Original: 21A0660-07

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Unit	Notes
Chloride	mg/L	14.0	25.0	37.4	94	80-120	
Fluoride	mg/L	0.132	5.00	5.05	98	80-120	
Sulfate as SO4	mg/L	26.2	25.0	50.3	96	80-120	

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

QC Batch: T106775

QC Batch Method: SM 2320 B-11

Analysis Description: Alkalinity, Carbonate

Analysis Method: SM 2320 B-11

LABORATORY CONTROL SAMPLE: T106775-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Bicarbonate Alkalinity as CaCO3 at pH 4.5	mg/L	100	98.4	98	88-112	
Carbonate Alkalinity as CaCO3	mg/L	100	98.4	98	88-112	

SAMPLE DUPLICATE: T106775-DUP1 Original: 21A0660-01

Parameter	Units	Original Result	DUP Result	Max RPD RPD Notes
Bicarbonate Alkalinity as CaCO3 at pH 4.5	mg/L	1020	1020	0.03 200
Carbonate Alkalinity as CaCO3 at pH 8.2	mg/L	0	<50	200

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

QC Batch: T106690 Analysis Description: Total Dissolved Solids
QC Batch Method: SM 2540 C-11 Analysis Method: SM 2540 C-11

METHOD BLANK: T106690-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Total Dissolved Solids	ma/L	<10	10	

LABORATORY CONTROL SAMPLE: T106690-BS1

LCS

% Rec

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Parameter	Units	Conc.	Result	% Rec	Limit	Notes
Total Dissolved Solids	mg/L	503	601	119	80-120	
LABORATORY CONTROL S	AMPLE: T106690-B	S2				_
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Total Dissolved Solids	mg/L	501	488	97	80-120	
LABORATORY CONTROL S	ΔΜΡΙ F: T106690-R9	23				

LCS

Spike

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Total Dissolved Solids	mg/L	502	533	106	80-120	

LABORATORY CONTROL S	AMPLE: 1100090-B					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Total Dissolved Solids	mg/L	502	454	90	80-120	

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

QC Batch: T106860	Analysis Description: Total Dissolved Solids
QC Batch Method: SM 2540 C-11	Analysis Method: SM 2540 C-11

METHOD BLANK: T106860-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Total Dissolved Solids	mg/L	<10	10	

LABORATORY CONTROL SAMPLE: T106860-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Total Dissolved Solids	mg/L	522	524	100	80-120	

SAMPLE DUPLICATE: T106860-DUP1 Original: 21A0660-02

Parameter	Units	Original Result	DUP Result	Max RPD RPD Notes
Total Dissolved Solids	ma/l	1620	1570	3 10

Trace Project ID: 21A0660

Client Project ID: Monitoring Wells Sampling - 1/25/21

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

QC Batch: T105995

QC Batch Method: *** DEFAULT PREP ***

Analysis Description: pH, SM 4500 Analysis Method: SM 4500-H+ B-11

LABORATORY REPORT

If you have any questions concerning this report, please do not hesitate to call us at (800) 332-4345 or (574) 233-4777.

This report may not be reproduced, except in full, without written approval from EEA.

STATE CERTIFICATION LIST

State	Certification	State	Certification
Alabama	40700	Missouri	880
Alaska	IN00035	Montana	CERT0026
Arizona	AZ0432	Nebraska	NE-OS-05-04
Arkansas	IN00035	Nevada	IN00035
California	2920	New Hampshire*	2124
Colorado	IN00035	New Jersey*	IN598
Colorado Radiochemistry	IN00035	New Mexico	IN00035
Connecticut	PH-0132	New York*	11398
Delaware	IN035	North Carolina	18700
Florida(Primary AB)*	E87775	North Dakota	R-035
Georgia	929	Ohio	87775
Hawaii	IN035	Oklahoma	D9508
Idaho	IN00035	Oregon*	4156
Illinois*	200001	Pennsylvania*	68-00466
Illinois Microbiology	17767	Puerto Rico	IN00035
Illinois Radiochemistry	IN00035	Rhode Island	LAO00343
Indiana Chemistry	C-71-01	South Carolina	95005
Indiana Microbiology	M-76-07	South Dakota	IN00035
lowa	098	Tennessee	TN02973
Kansas*	E-10233	Texas*	T104704187
Kentucky	90056	Texas/TCEQ	TX207
Louisiana*	LA014	Utah*	IN00035
Maine	IN00035	Vermont	VT-8775
Maryland	209	Virginia*	460275
Massachusetts	M-IN035	Washington	C837
Michigan	9926	West Virginia	9927 C
Minnesota*	018-999-338	Wisconsin	999766900
Mississippi	IN035	Wyoming	IN035
EPA	IN00035		

*NELAP/TNI Recognized Accreditation Bodies

Revision date: 09/29/2020

LABORATORY CASE NARRATIVE

Client: Trace Analytical Laboratories	Report #: 509005CN
---------------------------------------	--------------------

All method QC was within acceptance limits.

Note: This report may not be reproduced, except in full, without written approval from EEA.

Karen Fullmer ASM

02/18/2021

110 South Hill Street South Bend, IN 46617 Tel: (574) 233-4777 Fax: (574) 233-8207 1 800 332 4345

Laboratory Report

Client: Trace Analytical Laboratories

2241 Black Creek Road

Report: 509005

Final

Attn: Jon Mink

Priority: Standard Written

Muskegon, MI 49444
Status:

Project: MW Sampling-01-25-21

SUMMARY OF DETECTIONS				
Sample ID: 4821585 Parameter Radium-226 Radium-228 Combined Radium	Sample Site: Method 7500-Ra B 7500-Ra D calc.	21A0660-01/MW-1R Result 0.21 +/- 0.26 0.58 +/- 0.45 0.79 +/- 0.52	Units pCi/L pCi/L pCi/L	Run # 285346 285328 285346
Sample ID: 4821586 Parameter Radium-226 Radium-228 Combined Radium	Sample Site: Method 7500-Ra B 7500-Ra D calc.	21A0660-02/MW-2 Result 0.48 +/- 0.37 1.9 +/- 0.6 2.38 +/- 0.68	Units pCi/L pCi/L pCi/L	Run # 285346 285328 285346
Sample ID: 4821587 Parameter Radium-226 Radium-228 Combined Radium	Sample Site: Method 7500-Ra B 7500-Ra D calc.	21A0660-03/MW-3 Result 0.80 +/- 0.35 0.88 +/- 0.56 1.68 +/- 0.66	Units pCi/L pCi/L pCi/L	Run # 285346 285328 285346
Sample ID: 4821588 Parameter Radium-226 Radium-228 Combined Radium	Sample Site: Method 7500-Ra B 7500-Ra D calc.	21A0660-04/MW-4 Result 0.45 +/- 0.24 0.52 +/- 0.48 0.97 +/- 0.54	Units pCi/L pCi/L pCi/L	Run # 285346 285328 285346
Sample ID: 4821589 Parameter Radium-226 Radium-228	Sample Site: Method 7500-Ra B 7500-Ra D	21A0660-05/MW-5 Result 0.17 +/- 0.18 0.09 +/- 0.58	Units pCi/L pCi/L	Run # 285346 285328
Sample ID: 4821590 Parameter Radium-226 Radium-228 Combined Radium	Sample Site: Method 7500-Ra B 7500-Ra D calc.	21A0660-06/MW-6 Result 0.63 +/- 0.35 0.87 +/- 0.58 1.50 +/- 0.68	Units pCi/L pCi/L pCi/L	Run # 285346 285328 285346

Client Name: Trace Analytical Laboratories		Report: 50	9005	
SUMMARY OF DETECTIONS - Continued				
Sample ID: 4821591	Sample Site:	21A0660-07/MW-7		
Parameter	Method	Result	Units	Run #
Radium-226	7500-Ra B	1.1 +/- 0.4	pCi/L	285346
Radium-228	7500-Ra D	0.93 +/- 0.47	pCi/L	285328
Combined Radium	calc.	2.03 +/- 0.62	pCi/L	285346
Sample ID: 4821592	Sample Site:	21A0660-08/MW-8		
Parameter	Method	Result	Units	Run#
Radium-226	7500-Ra B	0.50 +/- 0.28	pCi/L	285346
Radium-228	7500-Ra D	2.3 +/- 0.6	pCi/L	285328
Combined Radium	calc.	2.80 +/- 0.64	pCi/L	285346
Sample ID: 4821593	Sample Site:	21A0660-09/MW-9		
Parameter	Method	Result	Units	Run#
Radium-226	7500-Ra B	0.44 +/- 0.28	pCi/L	285348
Radium-228	7500-Ra D	1.3 +/- 0.5	pCi/L	285326
Combined Radium	calc.	1.74 +/- 0.59	pCi/L	285348
Sample ID: 4821594	Sample Site:	21A0660-10/MW-10		
Parameter	Method	Result	Units	Run #
Radium-226	7500-Ra B	0.40 +/- 0.26	pCi/L	285348
Radium-228	7500-Ra D	1.3 +/- 0.5	pCi/L	285326
Combined Radium	calc.	1.70 +/- 0.55	pCi/L	285348

Note: The results presented relate only to the samples provided for analysis.

We appreciate the opportunity to provide you with this analysis. If you have any questions concerning this report, please do not hesitate to call Karen Fullmer at (574) 233-4777.

Note: This report may not be reproduced, except in full, without written approval from EEA.

	Dava M. Soz_ Reporter	2/18/2021
Reviewed By	Title	Date
Finalized By	Title	 Date

110 South Hill Street South Bend, IN 46617 Tel: (574) 233-4777 Fax: (574) 233-8207 1 800 332 4345

Laboratory Report

Client: Trace Analytical Laboratories Report: 509005

Attn: Jon Mink Priority: Standard Written

2241 Black Creek Road Status: Final

Muskegon, MI 49444 PWS ID: Not Supplied

	Sampl	e Information			
EEA ID#	Client ID	Method	Collected Date / Time	Collected By:	Received Date / Time
4821585	21A0660-01/MW-1R	7500-Ra B	01/25/21 09:10	Client	01/27/21 09:00
4821585	21A0660-01/MW-1R	7500-Ra D	01/25/21 09:10	Client	01/27/21 09:00
4821586	21A0660-02/MW-2	7500-Ra B	01/25/21 09:40	Client	01/27/21 09:00
4821586	21A0660-02/MW-2	7500-Ra D	01/25/21 09:40	Client	01/27/21 09:00
4821587	21A0660-03/MW-3	7500-Ra B	01/25/21 10:25	Client	01/27/21 09:00
4821587	21A0660-03/MW-3	7500-Ra D	01/25/21 10:25	Client	01/27/21 09:00
4821588	21A0660-04/MW-4	7500-Ra B	01/25/21 11:10	Client	01/27/21 09:00
4821588	21A0660-04/MW-4	7500-Ra D	01/25/21 11:10	Client	01/27/21 09:00
4821589	21A0660-05/MW-5	7500-Ra B	01/25/21 07:50	Client	01/27/21 09:00
4821589	21A0660-05/MW-5	7500-Ra D	01/25/21 07:50	Client	01/27/21 09:00
4821590	21A0660-06/MW-6	7500-Ra B	01/25/21 08:35	Client	01/27/21 09:00
4821590	21A0660-06/MW-6	7500-Ra D	01/25/21 08:35	Client	01/27/21 09:00
4821591	21A0660-07/MW-7	7500-Ra B	01/25/21 07:20	Client	01/27/21 09:00
4821591	21A0660-07/MW-7	7500-Ra D	01/25/21 07:20	Client	01/27/21 09:00
4821592	21A0660-08/MW-8	7500-Ra B	01/25/21 13:50	Client	01/27/21 09:00
4821592	21A0660-08/MW-8	7500-Ra D	01/25/21 13:50	Client	01/27/21 09:00
4821593	21A0660-09/MW-9	7500-Ra B	01/25/21 12:55	Client	01/27/21 09:00
4821593	21A0660-09/MW-9	7500-Ra D	01/25/21 12:55	Client	01/27/21 09:00
4821594	21A0660-10/MW-10	7500-Ra B	01/25/21 12:10	Client	01/27/21 09:00
4821594	21A0660-10/MW-10	7500-Ra D	01/25/21 12:10	Client	01/27/21 09:00

Report Summary

Note: See attached page for additional comments. Note: Sample containers were provided by the client.

Detailed quantitative results are presented on the following pages. The results presented relate only to the samples provided for analysis.

We appreciate the opportunity to provide you with this analysis. If you have any questions concerning this report, please do not hesitate to call Karen Fullmer at (574) 233-4777.

Note: This report may not be reproduced, except in full, without written approval from EEA.

Karen Fullmer ASM

02/18/2021

Date

Client Name: Trace Analytical Laboratories

Report #: 509005

Title

Sampling Point: 21A0660-01/MW-1R PWS ID: Not Supplied

	Radionuclides												
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#			
13982-63-3	Radium-226	7500-Ra B		0.29	1.0	0.21 ± 0.26	pCi/L	01/28/21 10:55	02/05/21 11:43	4821585			
15262-20-1	Radium-228	7500-Ra D		0.44	1.0	0.58 ± 0.45	pCi/L	01/28/21 10:55	02/10/21 13:19	4821585			
	Combined Radium	calc.	5 *	0.44	1.0	0.79 ± 0.52	pCi/L	01/28/21 10:55	02/10/21 13:19	4821585			

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: 21A0660-02/MW-2 PWS ID: Not Supplied

	Radionuclides												
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#			
13982-63-3	Radium-226	7500-Ra B		0.32	1.0	0.48 ± 0.37	pCi/L	01/28/21 10:55	02/05/21 11:43	4821586			
15262-20-1	Radium-228	7500-Ra D		0.50	1.0	1.9 ± 0.6	pCi/L	01/28/21 10:55	02/10/21 13:19	4821586			
	Combined Radium	calc.	5 *	0.50	1.0	2.38 ± 0.68	pCi/L	01/28/21 10:55	02/10/21 13:19	4821586			

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: 21A0660-03/MW-3 PWS ID: Not Supplied

	Radionuclides											
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#		
13982-63-3	Radium-226	7500-Ra B		0.20	1.0	0.80 ± 0.35	pCi/L	01/28/21 10:55	02/05/21 11:43	4821587		
15262-20-1	Radium-228	7500-Ra D		0.54	1.0	0.88 ± 0.56	pCi/L	01/28/21 10:55	02/10/21 13:19	4821587		
	Combined Radium	calc.	5 *	0.54	1.0	1.68 ± 0.66	pCi/L	01/28/21 10:55	02/10/21 13:19	4821587		

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: 21A0660-04/MW-4 PWS ID: Not Supplied

	Radionuclides												
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#			
13982-63-3	Radium-226	7500-Ra B		0.16	1.0	0.45 ± 0.24	pCi/L	01/28/21 10:55	02/05/21 11:43	4821588			
15262-20-1	Radium-228	7500-Ra D		0.47	1.0	0.52 ± 0.48	pCi/L	01/28/21 10:55	02/10/21 13:19	4821588			
	Combined Radium	calc.	5 *	0.47	1.0	0.97 ± 0.54	pCi/L	01/28/21 10:55	02/10/21 13:19	4821588			

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: 21A0660-05/MW-5 PWS ID: Not Supplied

	Radionuclides												
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#			
13982-63-3	Radium-226	7500-Ra B		0.18	1.0	0.17 ± 0.18	pCi/L	01/28/21 10:55	02/05/21 11:43	4821589			
15262-20-1	Radium-228	7500-Ra D		0.61	1.00	0.09 ± 0.58	pCi/L	01/28/21 10:55	02/10/21 13:19	4821589			
	Combined Radium	calc.	5 *	0.61	1.0	< 0.61	pCi/L	01/28/21 10:55	02/10/21 13:19	4821589			

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: 21A0660-06/MW-6 PWS ID: Not Supplied

	Radionuclides												
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#			
13982-63-3	Radium-226	7500-Ra B		0.24	1.0	0.63 ± 0.35	pCi/L	01/28/21 10:55	02/05/21 11:43	4821590			
15262-20-1	Radium-228	7500-Ra D		0.56	1.0	0.87 ± 0.58	pCi/L	01/28/21 10:55	02/10/21 13:19	4821590			
	Combined Radium	calc.	5 *	0.56	1.0	1.50 ± 0.68	pCi/L	01/28/21 10:55	02/10/21 13:19	4821590			

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: 21A0660-07/MW-7 PWS ID: Not Supplied

	Radionuclides												
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#			
13982-63-3	Radium-226	7500-Ra B		0.21	1.0	1.1 ± 0.4	pCi/L	01/28/21 10:55	02/05/21 11:43	4821591			
15262-20-1	Radium-228	7500-Ra D		0.44	1.0	0.93 ± 0.47	pCi/L	01/28/21 10:55	02/10/21 13:19	4821591			
	Combined Radium	calc.	5 *	0.44	1.0	2.03 ± 0.62	pCi/L	01/28/21 10:55	02/10/21 13:19	4821591			

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: 21A0660-08/MW-8 PWS ID: Not Supplied

	Radionuclides												
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#			
13982-63-3	Radium-226	7500-Ra B		0.20	1.0	0.50 ± 0.28	pCi/L	01/28/21 10:55	02/05/21 11:43	4821592			
15262-20-1	Radium-228	7500-Ra D		0.49	1.0	2.3 ± 0.6	pCi/L	01/28/21 10:55	02/10/21 13:19	4821592			
	Combined Radium	calc.	5 *	0.49	1.0	2.80 ± 0.64	pCi/L	01/28/21 10:55	02/10/21 13:19	4821592			

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: 21A0660-09/MW-9 PWS ID: Not Supplied

	Radionuclides												
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#			
13982-63-3	Radium-226	7500-Ra B		0.21	1.0	0.44 ± 0.28	pCi/L	01/28/21 13:12	02/05/21 12:52	4821593			
15262-20-1	Radium-228	7500-Ra D		0.48	1.0	1.3 ± 0.5	pCi/L	01/28/21 13:12	02/10/21 16:24	4821593			
	Combined Radium	calc.	5 *	0.48	1.0	1.74 ± 0.59	pCi/L	01/28/21 13:12	02/10/21 16:24	4821593			

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: 21A0660-10/MW-10 PWS ID: Not Supplied

	Radionuclides												
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#			
13982-63-3	Radium-226	7500-Ra B		0.20	1.0	0.40 ± 0.26	pCi/L	01/28/21 13:12	02/05/21 12:52	4821594			
15262-20-1	Radium-228	7500-Ra D		0.43	1.0	1.3 ± 0.5	pCi/L	01/28/21 13:12	02/10/21 16:24	4821594			
	Combined Radium	calc.	5 *	0.43	1.0	1.70 ± 0.55	pCi/L	01/28/21 13:12	02/10/21 16:24	4821594			

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

[†] EEA has demonstrated it can achieve these report limits in reagent water, but can not document them in all sample matrices.

Reg Limit Type:	MCL	SMCL	AL
Symbol:	*	۸	!

Client Name: Trace Analytical Laboratories

Lab Definitions

Report #: 509005

Continuing Calibration Check Standard (CCC) / Continuing Calibration Verification (CCV) / Initial Calibration Verification Standard (ICV) / Initial Performance Check (IPC) - is a standard containing one or more of the target analytes that is prepared from the same standards used to calibrate the instrument. This standard is used to verify the calibration curve at the beginning of each analytical sequence, and may also be analyzed throughout and at the end of the sequence. The concentration of continuing standards may be varied, when prescribed by the reference method, so that the range of the calibration curve is verified on a regular basis. CCL, CCM, and CCH are the CCC standards at low, mid, and high concentration levels, respectively.

Internal Standards (IS) - are pure compounds with properties similar to the analytes of interest, which are added to field samples or extracts, calibration standards, and quality control standards at a known concentration. They are used to measure the relative responses of the analytes of interest and surrogates in the sample, calibration standard or quality control standard.

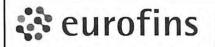
Laboratory Duplicate (LD) - is a field sample aliquot taken from the same sample container in the laboratory and analyzed separately using identical procedures. Analysis of laboratory duplicates provides a measure of the precision of the laboratory procedures.

Laboratory Fortified Blank (LFB) / Laboratory Control Sample (LCS) - is an aliquot of reagent water to which known concentrations of the analytes of interest are added. The LFB is analyzed exactly the same as the field samples. LFBs are used to determine whether the method is in control. FBL, FBM, and FBH are the LFB samples at low, mid, and high concentration levels, respectively.

Laboratory Method Blank (LMB) / **Laboratory Reagent Blank (LRB)** - is a sample of reagent water included in the sample batch analyzed in the same way as the associated field samples. The LMB is used to determine if method analytes or other background contamination have been introduced during the preparation or analytical procedure. The LMB is analyzed exactly the same as the field samples.

Laboratory Trip Blank (LTB) / Field Reagent Blank (FRB) - is a sample of laboratory reagent water placed in a sample container in the laboratory and treated as a field sample, including storage, preservation, and all analytical procedures. The FRB/LTB container follows the collection bottles to and from the collection site, but the FRB/LTB is not opened at any time during the trip. The FRB/LTB is primarily a travel blank used to verify that the samples were not contaminated during shipment.

If applicable, the calculation of the matrix spike (MS) or matrix spike duplicate (MSD) percent recovery is as follows: (MS or MSD value - Sample value) * 100 / spike target / dilution factor = **Recovery** %


Matrix Spike Duplicate Sample (MSD) / Laboratory Fortified Sample Matrix Duplicate (LFSMD) - is a sample aliquot taken from the same field sample source as the Matrix Spike Sample to which known quantities of the analytes of interest are added in the laboratory. The MSD is analyzed exactly the same as the field samples. Analysis of the MSD provides a measure of the precision of the laboratory procedures in a specific matrix. SDL, SDM, and SDH / LFSMDL, LFSMDM, and LFSMDH are the MSD or LFSMD at low, mid, and high concentration levels, respectively.

Matrix Spike Sample (MS) / Laboratory Fortified Sample Matrix (LFSM) - is a sample aliquot taken from field sample source to which known quantities of the analytes of interest are added in the laboratory. The MS is analyzed exactly the same as the field samples. The purpose is to demonstrate recovery of the analytes from a sample matrix to determine if the specific matrix contributes bias to the analytical results. MSL, MSM, and MSH / LFSML, LFSMM, and LFSMH are the MS or LFSM at low, mid, and high concentration levels, respectively.

Quality Control Standard (QCS) / Second Source Calibration Verification (SSCV) - is a solution containing known concentrations of the analytes of interest prepared from a source different from the source of the calibration standards. The solution is obtained from a second manufacturer or lot if the lot can be demonstrated by the manufacturer as prepared independently from other lots. The QCS sample is analyzed using the same procedures as field samples. The QCS is used as a check on the calibration standards used in the method on a routine basis.

Reporting Limit Check (RLC) / Initial Calibration Check Standard (ICCS) - is a procedural standard that is analyzed each day to evaluate instrument performance at or below the minimum reporting limit (MRL).

Surrogate Standard (SS) / Surrogate Analyte (SUR) - is a pure compound with properties similar to the analytes of interest, which is highly unlikely to be found in any field sample, that is added to the field samples, calibration standards, blanks and quality control standards before sample preparation. The SS is used to evaluate the efficiency of the sample preparation process.

Eaton Analytical

110 S. Hill Street South Bend, IN 46617 T: 1.800.332.4345 F: 1.574.233.8207

Order#

40988D 509005

www.EurofinsUS.com/Eaton CHAIN OF CUSTODY RECORD Page 1 of Shaded area for EEA use only REPORT TO: SAMPLER (Signature) STATE (sample origin) PROJECT NAME PO# PWS ID# Jon Mink, Tim Brewer (jmink@trace-labs.com, tbrewer@trace-labs.com) Trace Analytical Laboratories, Inc., 2241 Black Creek Rd., Muskegon, MI 49444 231-MI 773-5998 MW Sampling-01-BILL TO: POPULATION SERVED SOURCE WATER CONTAINERS Yes No 21A0660 25-21 COMPLIANCE TURNAROUND MATRIX CODE MONITORING X Accounts Payable, Trace Analytical Laboratories, Inc., 2241 Black Creek Rd., Muskegon, MI 49444 COLLECTION TESTINAME ACCED LAB Number SAMPLE REMARKS CHLORINATED SAMPLING SITE # 0F DATE AM PM TIME YES NO 3 GW SW X 01/25/21 9:10 MW-1R Radium 226/228 3 X GW SW 01/25/21 MW-2 9:40 Radium 226/228 3 GW SW 01/25/21 10:25 MW-3 X Radium 226/228 3 GW SW x 01/25/21 11:10 MW-4 Radium 226/228 3 GW x SW 01/25/21 7:50 MW-5 Radium 226/228 X 3 GW SW Radium 226/228 01/25/21 8:35 MW-6 3 GW SW 01/25/21 7:20 MW-7 x Radium 226/228 01/25/21 MW-8 × 3 GW SW 13:50 Radium 226/228 3 GW SW 01/25/21 12:55 MW-9 x Radium 226/228 3 GW SW 10 01/25/21 12:10 MW-10 Radium 226/228 x Client Provided Sample Container 6 110 13 14 RELINQUISHED BY: (Signature) TIME RECEIVED BY:(Signature) DATE TIME LAB RESERVES THE RIGHT TO RETURN UNUSED PORTIONS OF NON-AQUEOUS SAMPLES TO CLIENT LAB COMMENTS AM PM RELINQUISHED BY: (Sidnatur DATE TIME RECEIVED BY:(Signature) DATE TIME AM PM AM PM RELINQUISHED BY:(Signature) DATE RECEIVED FOR LABORATORY BY: DATE TIME CONDITIONS UPON RECEIPT (check one): N/A AM PM TURN-AROUND TIME (TAT) - SURCHARGES MATRIX CODES: SW = Standard Written: (15 working days) DW-DRINKING WATER IV* = Immediate Verbal: (3 working days) 100% RW-REAGENT WATER RV* = Rush Verbal: (5 working days) 50% IW* ≔Immediate Written: (3 working days) 125% GW-GROUND WATER Samples received unannounced with less EW-EXPOSURE WATER RW* = Rush Written: (5 working days) 75% than 48 hours holding time remaining SP* = Weekend, Holiday CALL SW-SURFACE WATER may be subject to additional charges. STAT* = Less than 48 hours CALL PW-POOL WATER WW-WASTE WATER Please call, expedited service not available for all testing 06-LO-F0435 Issue 6.0 Effective Date: 2016-09-20

Run ID: 285346 Method: 7500-Ra B

<u>Type</u>	Sample Id	Sample Site	<u>Matrix</u>	Instrument ID	Analysis Date	Calibration File
FS	4821585	21A0660-01/MW-1R	GW	CI	02/05/2021 11:43	
FS	4821586	21A0660-02/MW-2	GW	CI	02/05/2021 11:43	
FS	4821587	21A0660-03/MW-3	GW	CI	02/05/2021 11:43	
FS	4821588	21A0660-04/MW-4	GW	CI	02/05/2021 11:43	
FS	4821589	21A0660-05/MW-5	GW	CI	02/05/2021 11:43	
FS	4821590	21A0660-06/MW-6	GW	CI	02/05/2021 11:43	
FS	4821591	21A0660-07/MW-7	GW	CI	02/05/2021 11:43	
FS	4821592	21A0660-08/MW-8	GW	CI	02/05/2021 11:43	
LRB	4833011		RW	CI	02/05/2021 11:43	
LFB	4833012		RW	CI	02/05/2021 11:43	

	QC Summary Report															
Sample Type	Analyte	Method	MDA95	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits			Dil Factor	Extracted	Analyzed	EEA ID#
FS	Radium-226	7500-Ra B	0.29	21A0660-01/MW-1R		0.21		pCi/L					1.0	01/28/2021 10:55	02/05/2021 11:43	4821585
FS	Radium-226	7500-Ra B	0.32	21A0660-02/MW-2		0.48		pCi/L					1.0	01/28/2021 10:55	02/05/2021 11:43	4821586
FS	Radium-226	7500-Ra B	0.20	21A0660-03/MW-3		0.80		pCi/L					1.0	01/28/2021 10:55	02/05/2021 11:43	4821587
FS	Radium-226	7500-Ra B	0.16	21A0660-04/MW-4		0.45		pCi/L					1.0	01/28/2021 10:55	02/05/2021 11:43	4821588
FS	Radium-226	7500-Ra B	0.18	21A0660-05/MW-5		0.17		pCi/L					1.0	01/28/2021 10:55	02/05/2021 11:43	4821589
FS	Radium-226	7500-Ra B	0.24	21A0660-06/MW-6		0.63		pCi/L					1.0	01/28/2021 10:55	02/05/2021 11:43	4821590
FS	Radium-226	7500-Ra B	0.21	21A0660-07/MW-7		1.1		pCi/L					1.0	01/28/2021 10:55	02/05/2021 11:43	4821591
FS	Radium-226	7500-Ra B	0.20	21A0660-08/MW-8		0.50		pCi/L					1.0	01/28/2021 10:55	02/05/2021 11:43	4821592
LRB	Radium-226	7500-Ra B	0.18			-0.01		pCi/L					1.0	01/28/2021 10:55	02/05/2021 11:43	4833011
LFB	Radium-226	7500-Ra B	0.20			8.7200	9.06	pCi/L	96	90 - 110			1.0	01/28/2021 10:55	02/05/2021 11:43	4833012

Run ID: **285348** Method: **7500-Ra B**

<u>Type</u>	Sample Id	Sample Site	<u>Matrix</u>	Instrument ID	Analysis Date	Calibration File
FS	4821593	21A0660-09/MW-9	GW	CI	02/05/2021 12:52	
FS	4821594	21A0660-10/MW-10	GW	CI	02/05/2021 12:52	
LRB	4833075		RW	CI	02/05/2021 12:52	
LFB	4833076		RW	CI	02/05/2021 12:52	

	QC Summary Report														
Sample Type	Analyte	Method	MDA95	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits		Dil Factor	Extracted	Analyzed	EEA ID#
FS	Radium-226	7500-Ra B	0.21	21A0660-09/MW-9		0.44		pCi/L				 1.0	01/28/2021 13:12	02/05/2021 12:52	4821593
FS	Radium-226	7500-Ra B	0.20	21A0660-10/MW-10		0.40		pCi/L				 1.0	01/28/2021 13:12	02/05/2021 12:52	4821594
LRB	Radium-226	7500-Ra B	0.22			-0.08		pCi/L				 1.0	01/28/2021 13:12	02/05/2021 12:52	4833075
LFB	Radium-226	7500-Ra B	0.14			8.9800	9.06	pCi/L	99	90 - 110		 1.0	01/28/2021 13:12	02/05/2021 12:52	4833076

Run ID: 285326 Method: 7500-Ra D

<u>Type</u>	Sample Id	Sample Site	<u>Matrix</u>	Instrument ID	Analysis Date	Calibration File
FS	4821593	21A0660-09/MW-9	GW	CI	02/10/2021 16:24	
FS	4821594	21A0660-10/MW-10	GW	CI	02/10/2021 16:24	
LFB	4832583		RW	CI	02/10/2021 16:36	
LRB	4832582		RW	CI	02/10/2021 18:18	

	QC Summary Report														
Sample Type	Analyte	Method	MDA95	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits		 Dil Factor	Extracted	Analyzed	EEA ID#
FS	Radium-228	7500-Ra D	0.48	21A0660-09/MW-9		1.3		pCi/L				 1.0	01/28/2021 13:12	02/10/2021 16:24	4821593
FS	Radium-228	7500-Ra D	0.43	21A0660-10/MW-10		1.3		pCi/L				 1.0	01/28/2021 13:12	02/10/2021 16:24	4821594
LFB	Radium-228	7500-Ra D	0.55			6.9800	8.52	pCi/L	82	80 - 120		 1.0	01/28/2021 13:12	02/10/2021 16:36	4832583
LRB	Radium-228	7500-Ra D	0.42			0.260		pCi/L				 1.0	01/28/2021 13:12	02/10/2021 18:18	4832582

Run ID: 285328 Method: 7500-Ra D

<u>Type</u>	Sample Id	Sample Site	<u>Matrix</u>	Instrument ID	Analysis Date	Calibration File
FS	4821585	21A0660-01/MW-1R	GW	CI	02/10/2021 13:19	
FS	4821586	21A0660-02/MW-2	GW	CI	02/10/2021 13:19	
FS	4821587	21A0660-03/MW-3	GW	CI	02/10/2021 13:19	
FS	4821588	21A0660-04/MW-4	GW	CI	02/10/2021 13:19	
FS	4821589	21A0660-05/MW-5	GW	CI	02/10/2021 13:19	
FS	4821590	21A0660-06/MW-6	GW	CI	02/10/2021 13:19	
FS	4821591	21A0660-07/MW-7	GW	CI	02/10/2021 13:19	
FS	4821592	21A0660-08/MW-8	GW	CI	02/10/2021 13:19	
LRB	4832640		RW	CI	02/10/2021 13:19	
LFB	4832641		RW	CI	02/10/2021 13:19	

	QC Summary Report														
Sample Type	Analyte	Method	MDA95	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits		Dil Factor	Extracted	Analyzed	EEA ID#
FS	Radium-228	7500-Ra D	0.44	21A0660-01/MW-1R		0.58		pCi/L			 	1.0	01/28/2021 10:55	02/10/2021 13:19	4821585
FS	Radium-228	7500-Ra D	0.50	21A0660-02/MW-2		1.9		pCi/L			 	1.0	01/28/2021 10:55	02/10/2021 13:19	4821586
FS	Radium-228	7500-Ra D	0.54	21A0660-03/MW-3		0.88		pCi/L			 	1.0	01/28/2021 10:55	02/10/2021 13:19	4821587
FS	Radium-228	7500-Ra D	0.47	21A0660-04/MW-4		0.52		pCi/L			 	1.0	01/28/2021 10:55	02/10/2021 13:19	4821588
FS	Radium-228	7500-Ra D	0.61	21A0660-05/MW-5		0.09		pCi/L			 	1.0	01/28/2021 10:55	02/10/2021 13:19	4821589
FS	Radium-228	7500-Ra D	0.56	21A0660-06/MW-6		0.87		pCi/L			 	1.0	01/28/2021 10:55	02/10/2021 13:19	4821590
FS	Radium-228	7500-Ra D	0.44	21A0660-07/MW-7		0.93		pCi/L			 	1.0	01/28/2021 10:55	02/10/2021 13:19	4821591
FS	Radium-228	7500-Ra D	0.49	21A0660-08/MW-8		2.3		pCi/L			 	1.0	01/28/2021 10:55	02/10/2021 13:19	4821592
LRB	Radium-228	7500-Ra D	0.44			0.0600		pCi/L			 	1.0	01/28/2021 10:55	02/10/2021 13:19	4832640
LFB	Radium-228	7500-Ra D	0.51			8.4300	8.52	pCi/L	99	80 - 120	 	1.0	01/28/2021 10:55	02/10/2021 13:19	4832641

Samp	le Typ	e Kev

Type (Abbr.) Sample Type Sample Type

FS Field Sample

LFB Laboratory Fortified Blank
LRB Laboratory Reagent Blank

END OF REPORT

Eurofins Eaton Analytical Laboratory Reagent Blank

Sample Matrix: RW Instrument: GPC - CI Sample Number: 4833011 Sample Site: Not Available Sample Location: Not Available

Run Status: Completed
Order Number: Not Available
Client: EEA-SBN / QA Department

Method: 7500-Ra B

Analysis Date: 02/05/2021 Analysis Time: 11:43

Analyst: bolen

Results Submitted By: bolen

Run Number: 285346

Receipt Batch Number: Not Available

Project Manager: Not Available

File Name:82433CI

Ordered Parameter Results

<u>Parameter</u>	Amount	Reported <u>Amount</u>	Uncertainty	MRL	<u>Units</u>
Radium-226	-0.01	-0.01	+/-0.11	0.18	pCi/L

Additional Searched For Parameters

		Reported			
<u>Parameter</u>	<u>Amount</u>	<u>Amount</u>	Uncertainty	MRL	<u>Units</u>

Comments:

Eurofins Eaton Analytical Laboratory Fortified Blank

Sample Matrix: RW
Instrument: GPC - CI
Sample Number: 4833012
Sample Site: Not Available

Sample Location: Not Available

Run Status: Completed
Order Number: Not Available
Client: EEA-SBN / QA Department

Method: 7500-Ra B

Analysis Date: 02/05/2021 Analysis Time: 11:43

Analyst: bolen

Results Submitted By: bolen

Run Number: 285346

Receipt Batch Number: Not Available

File Name:82433CI

Ordered Parameter Results

<u>Parameter</u>	Amount	<u>Units</u>	<u>Target</u>	%Rec	Lim <u>Lower</u>	its <u>Upper</u>	Pass/Fail
Radium-226	8.72	pCi/L	9.06	96	90	110	PASS

Comments:

Eurofins Eaton Analytical Matrix Spike Report

File Name: 82433Cl Today's Date: 02/11/2021 Instrument: GPC - Cl Sample Number: 4832642 Associated Sample: 4819814

Run Status: Completed
Order Number: Not Available

Method: 7500-Ra B

Analysis Date: 02/05/2021 Analysis Time: 11:43

Analyst: bolen

Results Submitted By: bolen

Run Number: 285346

Receipt Batch Number: 508775

File Name:82433CI

Ordered Parameter Results

<u>Parameter</u>	Conc <u>Units</u>	Target	Sample Conc	MS Conc	MS <u>%Rec</u>	Pass/Fail
Radium-226	pCi/L	10.06	1.4	10.91	95	PASS

Comments:

Eurofins Eaton Analytical Matrix Spike - Matrix Spike Duplicate Report

File Name: 82433CI
Today's Date: 02/11/2021
Instrument: GPC - CI
Sample Number: 4832643
Associated Sample: 4819814

Run Status: Completed Order Number: Not Available

Method: 7500-Ra B

Analysis Date: 02/05/2021 Analysis Time: 11:43

Analyst: bolen

Results Submitted By: bolen

Run Number: 285346

Receipt Batch Number: 508775

File Name:82433CI

Ordered Parameter Results

<u>Parameter</u>	Conc <u>Units</u>	<u>Target</u>	Sample Conc	MS Conc	MS <u>%Rec</u>	Pass/Fail
Radium-226	pCi/L	10.06	1.4	10.27	88	PASS

Comments:

Eurofins Eaton Analytical Sample Result Record Sheet

Sample Matrix: GW Instrument: GPC - CI

Sample Number: 4821585 Sample Site: 21A0660-01/MW-1R

Sample Location: MW Sampling-01-25-21

Run Status: Completed Order Number: 409880

Client: Trace Analytical Laboratories / Jon Mink

Method: 7500-Ra B

Analysis Date: 02/05/2021 Analysis Time: 11:43

Analyst: bolen

Results Submitted By: bolen

Run Number: 285346

Receipt Batch Number: 509005

Project Manager: fullmer

File Name:82433CI

Ordered Parameter Results

<u>Parameter</u>	Amount	Reported <u>Amount</u>	<u>Uncertainty</u>	MRL	<u>Units</u>
Radium-226	0.21	0.21	+/-0.26	0.29	pCi/L

Additional Searched For Parameters

		Reported			
<u>Parameter</u>	<u>Amount</u>	<u>Amount</u>	<u>Uncertainty</u>	MRL	<u>Units</u>

Comments:

Eurofins Eaton Analytical Sample Result Record Sheet

Sample Matrix: GW Instrument: GPC - CI Sample Number: 4821586

Sample Site: 21A0660-02/MW-2

Sample Location: MW Sampling-01-25-21

Run Status: Completed Order Number: 409880

Client: Trace Analytical Laboratories / Jon Mink

Method: 7500-Ra B

Analysis Date: 02/05/2021 Analysis Time: 11:43

Analyst: bolen

Results Submitted By: bolen

Run Number: 285346

Receipt Batch Number: 509005

Project Manager: fullmer

File Name:82433CI

Ordered Parameter Results

<u>Parameter</u>	Amount	Reported <u>Amount</u>	<u>Uncertainty</u>	MRL	<u>Units</u>
Radium-226	0.48	0.48	+/-0.37	0.32	pCi/L

Additional Searched For Parameters

Reported
Parameter Amount Uncertainty MRL Units

Comments:

Eurofins Eaton Analytical Sample Result Record Sheet

Sample Matrix: GW Instrument: GPC - CI Sample Number: 4821587 Sample Site: 21A0660-03/MW-3

Sample Location: MW Sampling-01-25-21

Run Status: Completed Order Number: 409880

Client: Trace Analytical Laboratories / Jon Mink

Method: 7500-Ra B

Analysis Date: 02/05/2021 Analysis Time: 11:43

Analyst: bolen

Results Submitted By: bolen

Run Number: 285346

Receipt Batch Number: 509005

Project Manager: fullmer

File Name:82433CI

Ordered Parameter Results

<u>Parameter</u>	Amount	Reported Amount	<u>Uncertainty</u>	MRL	<u>Units</u>
Radium-226	0.8	0.80	+/-0.35	0.20	pCi/L

Additional Searched For Parameters

Reported

<u>Parameter</u>

<u>Amount</u>

<u>MRL</u>

<u>Units</u>

Comments:

Sample Matrix: GW Instrument: GPC - CI Sample Number: 4821588 Sample Site: 21A0660-04/MW-4

Sample Location: MW Sampling-01-25-21

Run Status: Completed Order Number: 409880

Client: Trace Analytical Laboratories / Jon Mink

Method: 7500-Ra B

Analysis Date: 02/05/2021 Analysis Time: 11:43

Analyst: bolen

Results Submitted By: bolen

Run Number: 285346

Receipt Batch Number: 509005

Project Manager: fullmer

File Name:82433CI

Ordered Parameter Results

<u>Parameter</u>	Amount	Reported <u>Amount</u>	Uncertainty	MRL	<u>Units</u>
Radium-226	0.45	0.45	+/-0.24	0.16	pCi/L

Additional Searched For Parameters

		Reported			
<u>Parameter</u>	<u>Amount</u>	<u>Amount</u>	<u>Uncertainty</u>	MRL	<u>Units</u>

Comments:

Sample Matrix: GW Instrument: GPC - CI

Sample Number: 4821589 Sample Site: 21A0660-05/MW-5

Sample Location: MW Sampling-01-25-21

Run Status: Completed Order Number: 409880

Client: Trace Analytical Laboratories / Jon Mink

Method: 7500-Ra B

Analysis Date: 02/05/2021 Analysis Time: 11:43

Analyst: bolen

Results Submitted By: bolen

Run Number: 285346

Receipt Batch Number: 509005

Project Manager: fullmer

File Name:82433CI

Ordered Parameter Results

ParameterAmountReported AmountUncertaintyMRLUnitsRadium-2260.170.17+/-0.180.18pCi/L

Additional Searched For Parameters

Reported <u>Amount Uncertainty MRL Units</u>

Comments:

Sample Matrix: GW Instrument: GPC - CI Sample Number: 4821590 Sample Site: 21A0660-06/MW-6

Sample Location: MW Sampling-01-25-21

Run Status: Completed Order Number: 409880

Client: Trace Analytical Laboratories / Jon Mink

Method: 7500-Ra B

Analysis Date: 02/05/2021 Analysis Time: 11:43

Analyst: bolen

Results Submitted By: bolen

Run Number: 285346

Receipt Batch Number: 509005

Project Manager: fullmer

File Name:82433CI

Ordered Parameter Results

<u>Parameter</u>	Amount	Reported <u>Amount</u>	<u>Uncertainty</u>	MRL	<u>Units</u>
Radium-226	0.63	0.63	+/-0.35	0.24	pCi/L

Additional Searched For Parameters

Reported
Parameter Amount Uncertainty MRL Units

Comments:

Sample Matrix: GW Instrument: GPC - CI Sample Number: 4821591 Sample Site: 21A0660-07/MW-7

Sample Location: MW Sampling-01-25-21

Run Status: Completed Order Number: 409880

Client: Trace Analytical Laboratories / Jon Mink

Method: 7500-Ra B

Analysis Date: 02/05/2021 Analysis Time: 11:43

Analyst: bolen

Results Submitted By: bolen

Run Number: 285346

Receipt Batch Number: 509005

Project Manager: fullmer

File Name:82433CI

Ordered Parameter Results

<u>Parameter</u>	Amount	Reported <u>Amount</u>	Uncertainty	MRL	<u>Units</u>
Radium-226	1.12	1.1	+/-0.4	0.2	pCi/L

Additional Searched For Parameters

Reported

<u>Amount Amount Uncertainty MRL Units</u>

Comments:

Parameter

NC = Not Confirmed, NS = Not Searched

Sample Comments:

1. Sample result is greater than 1 pCi/L and will be held 4 days from first count date, pending Ra-224 decay. Sample will be recounted on or after 02/09.

Sample Matrix: GW Instrument: GPC - CI Sample Number: 4821592 Sample Site: 21A0660-08/MW-8

Sample Location: MW Sampling-01-25-21

Run Status: Completed Order Number: 409880

Client: Trace Analytical Laboratories / Jon Mink

Method: 7500-Ra B

Analysis Date: 02/05/2021 Analysis Time: 11:43

Analyst: bolen

Results Submitted By: bolen

Run Number: 285346

Receipt Batch Number: 509005

Project Manager: fullmer

File Name:82433CI

Ordered Parameter Results

<u>Parameter</u>	Amount	Reported <u>Amount</u>	<u>Uncertainty</u>	MRL	<u>Units</u>
Radium-226	0.5	0.50	+/-0.28	0.20	pCi/L

Additional Searched For Parameters

Reported

<u>Amount Amount Uncertainty MRL Units</u>

Comments:

Parameter

Ra 226 Batch Report by SM 7500 Ra-B

Instrument:	
Analyst:	Bolen
Prep Batch:	82433
Date:	02/11/21
filename:	2 11 2021 226 BATCH 82433

06-LO-F0863 Issue 5.0

Effective Date: 07/15/2019 Page 1 of 1

Calibration Data

2 11 2021 226 BATCH 82433 CI

LB4100 (CI) Background Date Collected:	1/30/2021		226 Cal Date Collected:	2/17/2020	
Date Collected.	Alpha	Beta	Date Collected.	Slope	Intercept
A1	0.1483	1.5200	A1	0.000106	0.2217672
A2	0.0767	1.1000		-0.000091	0.2392097
A3	0.0700	1.9267	A3	-0.000106	0.2376181
A4	0.1267	1.6267	A4		0.245435
B1	0.1033	1.2650	B1	0.000064	0.2366137
B2	0.1700	1.6367	B2	0.000239	0.2183716
В3	0.1433	1.4983	B3	0.000194	0.2232439
B4	0.0767	1.7483	B4	0.000012	0.2309777
C1	0.0667	3.3867	C1	-0.000018	0.2450165
C2	0.0817	1.0500	C2	0.000044	0.2396955
C3	0.0767	1.3350	C3	-0.000029	0.235875
C4	0.0933	1.2300	C4	0.000123	0.2329013
D1	0.1067	1.2500	D1	-0.000098	0.2516045
D2	0.1933	2.0633	D2	0.000211	0.2146519
D3	0.0400	1.0750	D3	-0.000126	0.2407988
D4	0.2733	1.9467	D4		0.2403726
E1	0.1583	0.9933	E1	-0.000811	0.2416731
E2	0.1850	1.0583	E2		0.2427347
E3	0.1150	1.4350		-0.000689	0.2379716
E4	0.1450	1.0683		-0.000746	0.2417898
F1	0.1217	1.1550	F1	-0.000768	0.2315517
F2	0.1667	1.0717		-0.000633	0.2246939
F3	0.1650	4.2100	1	-0.000759	0.2311511
F4	0.1717	1.2967	i	-0.000775	0.2355018
G1	0.1150	1.1033	G1	-0.000889	0.2344666
G2	0.2017	1.2417	ł .	-0.000852	0.2362288
G3	0.1517	1.4400	1	-0.000849	0.240775
G4	0.1600	1.3550	l .	-0.000658	0.2282136
H1	0.1233	0.9150	H1	-0.000903	0.2294615
H2	0.1333	1.0700		-0.000797	0.2380014
H3	0.1433	0.9017		-0.000806	0.2363951
H4	0.1400	1.3767	H4	-0.000745	0.2385951
	Alpha	Beta		Slope	Intercept
LB4100 (DU)					
Background	4 (07/000 :		226 Cal	0/5/0000	
Date Collected:	1/27/2021		Date Collected:	2/5/2020	

Page 1 of 1

06-LO-F0863 Issue 5.0

Effective Date: 07/15/2019 302/11/21 Log ID Ba:

12:95-B

Vol (mL):

1.0

Conc. (mg/mL):

57.0

QC limits established: 3/8/2018

Lower limit Upper limit

Lower Mass

Upper mass

 $\% 6.04 \pm 6.08$

0.401

1.218

22.9

06-LO-F0863 Issue 5.0	
Issue 5.0	
Effective Da	
ective Date: 07/15/201	
2019	

Page 1 of 1

CI 226 BATCH 82433

Page 1 of 1	<u>Pa</u>		2/5/2021 12:05:26 PM			
4	354	329	30	2/5/2021 11:13:04 AM	4819814MSD	D4
ω	343	329	30	2/5/2021 11:13:04 AM	4819814MS	D3
	77	18	30	2/5/2021 11:13:04 AM	4821592	D1
	59	34	30	2/5/2021 11:13:04 AM	4821591	C4
	81	17	30	2/5/2021 11:13:04 AM	4821590	C3
	56	œ	30	2/5/2021 11:13:04 AM	4821589	C2
7	117	17	30	2/5/2021 11:13:04 AM	4821588	C1
7	107	24	30	2/5/2021 11:13:03 AM	4821587	B4
	98	14	30	2/5/2021 11:13:03 AM	4821586	B3
	75	10	30	2/5/2021 11:13:03 AM	4821585	B2
9	109	38	30	2/5/2021 11:13:03 AM	4819814	B1
	69	7	30	2/5/2021 11:13:03 AM	4819170	A3
9	219	247	30	2/5/2021 11:13:03 AM	LFB	A2
	46	4	30	2/5/2021 11:13:03 AM	LRB	A1
Beta Counts $\stackrel{\sim}{\scriptscriptstyle \mathcal{Q}}$	Alpha Counts Be	Alpha	Livetime (min)	Assay Date	Sample	Detector
11/2		1		71		

302/11/011

Sample ID	Detector	Last BaSO4 precip.	Analysis Start Date	Count Time	Counts	Ba Mass (mg)	Ba Mass (mg) Analysis End Date
LRB	<u>A</u>	01/29/2021 15:33	02/05/2021 11:13	30	4	44.5	02/05/2021 11:43
LFB	A2	01/29/2021 15:33	02/05/2021 11:13	30	247	32.5	02/05/2021 11:43
4819170	A3	01/29/2021 15:33	02/05/2021 11:13	30	7	32.9	02/05/2021 11:43
4819814	B1	01/29/2021 15:33	02/05/2021 11:13	30	38	31.7	02/05/2021 11:43
4821585	B2	01/29/2021 15:33	02/05/2021 11:13	30	10	31.8	02/05/2021 11:43
4821586	B 3	01/29/2021 15:33	02/05/2021 11:13	30	14	26.6	02/05/2021 11:43
4821587	B4	01/29/2021 15:33	02/05/2021 11:13	30	24	34.1	02/05/2021 11:43
4821588	Ω	01/29/2021 15:33	02/05/2021 11:13	30	17	40.4	02/05/2021 11:43
4821589	C2	01/29/2021 15:33	02/05/2021 11:13	30	œ	37.9	02/05/2021 11:43
4821590	င္သ	01/29/2021 15:33	02/05/2021 11:13	30	17	29.4	02/05/2021 11:43
4821591	C4	01/29/2021 15:33	02/05/2021 11:13	30	34	35.1	02/05/2021 11:43
4821592	<u>D</u>	01/29/2021 15:33	02/05/2021 11:13	30	18	34.9	02/05/2021 11:43
4819814MS	D3	01/29/2021 15:33	02/05/2021 11:13	30	329	38.7	02/05/2021 11:43
4819814MSD	Ω	01/29/2021 15:33	02/05/2021 11:13	30	329	38.3	02/05/2021 11:43

Page 1 of 1

226 Results

4819814MSD 4819814MS Sample ID 4821589 4821590 4821585 4821592 4821591 4821588 4821587 4821586 4819814 4819170 LRB LFB Detector 02/05/21,11:13 02/05/21,11:13 02/05/21,11:13 02/05/21,11:13 02/05/21,11:13 02/05/21,11:13 02/05/21,11:13 02/05/21,11:13 02/05/21,11:13 02/05/21,11:13 02/05/21,11:13 02/05/21,11:13 02/05/21,11:13 02/05/21,11:13 Analysis Start Activity 8.72 0.19 1.40 0.21 0.48 0.80 0.45 0.17 0.63 1.12 0.50 UNC (pCi/L) 0.20 0.49 0.26 0.37 0.35 0.24 0.18 0.11 1.10 (pCi/L) 0.20 0.21 0.24 0.29 0.32 0.20 0.16 0.18 0.24 0.21 0.20 Recovery Recount Recovery 0.96 1.08 1.02 × 02/05/21,11:43 02/05/21,11:43 02/05/21,11:43 02/05/21,11:43 02/05/21,11:43 02/05/21,11:43 02/05/21,11:43 02/05/21,11:43 02/05/21,11:43 02/05/21,11:43 02/05/21,11:43 02/05/21,11:43 02/05/21,11:43 02/05/21,11:43 Analysis End

	226
LRB Activity	-0.01
LFB Activity	8.72
LFB % Recovery	96.2
MS % Recovery	94.5
MSD % Recovery	88.1
RPD	6.0
RER	

MS Parent ID	4819814	LD ID	
Parent Activity	1.400753	Parent Activity #N/A	
Parent DL	0.238608	Parent UNC #N/A	
MS Target	10.06219	LD Activity #N/A	
MSD Target	10.06443	LD UNC #N/A	
MS Corr. Activity	9.506709		
MSD Corr. Activity	8.867139		
MS Activity	10.90746		
MSD Activity	10.26789		

B

Kadium bench onee	Dadin Danah Cha	
	•	

Earliest Due Date/ Rush: 4819814MSD 700. 2 4819814MS LFB 82433 LRB 82433 Sample ID 4819814 4821591 4821587 4821586 4819170 4821585 4821592 4821590 4821589 4821588 Balance ID: 326.8 Sample Volume (mL) 200 % 1000)| & . @| 1000 02/15/2021 YOX Planchet Tare Weight (mg) Balance ID: × × × × × × \times YOX Planchet Final BaSO₄ Planchet Weight (mg) Tare Weight (mg) × 9323, 9320.8 9295,9 9334.8 9309.0 9302.6 9317, 9307,5 9334.3 9317,5 9365,7 9303,7 9363,1 L. 60 h b 4.02.6 9.00(6 2772 2361-6 0.05.5.0 BaSO₄ Planchet 1361-6 Final Weight (mg) 9240. C 93354 0.8hhb 1404.4 9332.0 いない 322 42456 Ö Ra-226 Ra-228 Added (mL) Added (mL) 9.00 12:44-4 Source Ra-226 1.000 1.000 1.000 pCi/mL NA Ra-228 Source N/A × × × × × × × × × × × pCi/mL YOH Precip Date/Time: BaSO₄ Precip Date/Time: _ Prep Batch/Time: 82433 P ~ = TI COMP 2 duidad -= 1 6/129/2021 N. 2001 1513

				1			
Reagent ID 10N NaOH:	Reagent ID 18N NaOH: _	Reagent ID 6N NH ₄ OH:	Lot # Conc NH ₄ OH: 20 366)	Reagent ID (NH ₄) ₂ OX:	Reagent ID (NH ₄) ₂ S: N/A	Reagent ID NH ₄ SO ₄ :	
4	N/A	9.5471	20'366'	N/A	N/A	N/A	
Reagent ID Y Carrier:	Reagent ID Ba Carrier:	Reagent ID Sr-Y Carrier: _	Reagent ID Lead Carrier: _	Reagent ID Lead Carrier B:	Reagent ID Lead Carrier A:	Reagent ID 0.25M EDTA:	
N/A Vol Used:	1219.5 vol Used:	N/A	10.95.4		N/A	9-8171	· >>
N/A Vol Used: N/A (mL) Conc. N/A	Reagent ID Ba Carrier: (1 (1) -) Vol Used: (mL) Conc.) 7.0 (m						

(mg/mL)

(mg/mL)

For 7500-Ra B or 7500-Ra D Lot # Conc HNO3: 28 17 38

Reagent ID 18N H₂SO₄:

12.96.7

203615 12196

Reagent ID 1N HNO3: __

Reagent ID 1M Citric Acid: Lot # Conc Acetic Acid: _ Reagent ID 6N HNO₃:

N/A

Lot # Conc HNO3: _

Eurofins Eaton Analytical Laboratory Reagent Blank

Sample Matrix: RW Instrument: GPC - CI Sample Number: 4833075 Sample Site: Not Available Sample Location: Not Available

Run Status: Completed
Order Number: Not Available
Client: EEA-SBN / QA Department

Method: 7500-Ra B

Analysis Date: 02/05/2021 Analysis Time: 12:52

Analyst: bolen

Results Submitted By: bolen

Run Number: 285348

Receipt Batch Number: Not Available

Project Manager: Not Available

File Name:82446CI

Ordered Parameter Results

<u>Parameter</u>	Amount	Reported <u>Amount</u>	<u>Uncertainty</u>	MRL	<u>Units</u>
Radium-226	-0.08	-0.08	+/-0.10	0.22	pCi/L

Additional Searched For Parameters

		Reported			
<u>Parameter</u>	<u>Amount</u>	<u>Amount</u>	<u>Uncertainty</u>	MRL	<u>Units</u>

Comments:

Eurofins Eaton Analytical Laboratory Reagent Blank

Sample Matrix: RW Instrument: GPC - CI Sample Number: 4833075 Sample Site: Not Available

Sample Location: Not Available

Run Status: Completed
Order Number: Not Available
Client: EEA-SBN / QA Department

Method: 7500-Ra B

Analysis Date: 02/05/2021 Analysis Time: 12:52

Analyst: bolen

Results Submitted By: bolen

Run Number: 285348

Receipt Batch Number: Not Available

Project Manager: Not Available

File Name:82446CI

Ordered Parameter Results

<u>Parameter</u>	Amount	Reported <u>Amount</u>	Uncertainty	MRL	<u>Units</u>
Radium-226	-0.08	-0.08	+/-0.10	0.22	pCi/L

Additional Searched For Parameters

		Reported			
<u>Parameter</u>	<u>Amount</u>	<u>Amount</u>	Uncertainty	MRL	<u>Units</u>

Comments:

Eurofins Eaton Analytical Laboratory Fortified Blank

Sample Matrix: RW Instrument: GPC - CI Sample Number: 4833076 Sample Site: Not Available

Sample Location: Not Available

Run Status: Completed
Order Number: Not Available
Client: EEA-SBN / QA Department

Method: 7500-Ra B

Analysis Date: 02/05/2021 Analysis Time: 12:52

Analyst: bolen

Results Submitted By: bolen

Run Number: 285348

Receipt Batch Number: Not Available

File Name:82446CI

Ordered Parameter Results

					Lim	its	
<u>Parameter</u>	<u>Amount</u>	<u>Units</u>	<u>Target</u>	%Rec	Lower	<u>Upper</u>	Pass/Fail
Radium-226	8.98	pCi/L	9.06	99	90	110	PASS

Comments:

Eurofins Eaton Analytical Matrix Spike Report

File Name: 82446Cl Today's Date: 02/11/2021 Instrument: GPC - Cl Sample Number: 4833077 Associated Sample: 4820834

Run Status: Completed Order Number: Not Available

Method: 7500-Ra B

Analysis Date: 02/05/2021 Analysis Time: 12:52

Analyst: bolen

Results Submitted By: bolen

Run Number: 285348

Receipt Batch Number: 508909

File Name:82446CI

Ordered Parameter Results

<u>Parameter</u>	Conc <u>Units</u>	Target	Sample Conc	MS Conc	MS <u>%Rec</u>	Pass/Fail
Radium-226	pCi/L	10.05	4.23	13.83	96	PASS

Comments:

Eurofins Eaton Analytical Matrix Spike - Matrix Spike Duplicate Report

File Name: 82446Cl Today's Date: 02/11/2021 Instrument: GPC - Cl Sample Number: 4833078 Associated Sample: 4820834

Run Status: Completed
Order Number: Not Available

Method: 7500-Ra B

Analysis Date: 02/05/2021 Analysis Time: 12:52

Analyst: bolen

Results Submitted By: bolen

Run Number: 285348

Receipt Batch Number: 508909

File Name:82446CI

Ordered Parameter Results

<u>Parameter</u>	Conc <u>Units</u>	<u>Target</u>	Sample Conc	MS Conc	MS <u>%Rec</u>	Pass/Fail
Radium-226	pCi/L	10.06	4.23	13.31	90	PASS

Comments:

Sample Matrix: GW **Instrument:** GPC - CI

Sample Number: 4821593 Sample Site: 21A0660-09/MW-9

Sample Location: MW Sampling-01-25-21

Run Status: Completed Order Number: 409880

Client: Trace Analytical Laboratories / Jon Mink

Method: 7500-Ra B

Analysis Date: 02/05/2021 Analysis Time: 12:52

Analyst: bolen

Results Submitted By: bolen

Run Number: 285348

Receipt Batch Number: 509005

Project Manager: fullmer

File Name:82446CI

Ordered Parameter Results

ParameterAmountReported AmountUncertaintyMRLUnitsRadium-2260.440.44+/-0.280.21pCi/L

Additional Searched For Parameters

Reported
Parameter Amount MRL Units

Comments:

Sample Matrix: GW Instrument: GPC - CI Sample Number: 4821594 Sample Site: 21A0660-10/MW-10

Sample Location: MW Sampling-01-25-21

Run Status: Completed Order Number: 409880

Client: Trace Analytical Laboratories / Jon Mink

Method: 7500-Ra B

Analysis Date: 02/05/2021 Analysis Time: 12:52

Analyst: bolen

Results Submitted By: bolen

Run Number: 285348

Receipt Batch Number: 509005

Project Manager: fullmer

File Name:82446CI

Ordered Parameter Results

<u>Parameter</u>	Amount	Reported <u>Amount</u>	<u>Uncertainty</u>	MRL	<u>Units</u>
Radium-226	0.4	0.40	+/-0.26	0.20	pCi/L

Additional Searched For Parameters

		Reported			
<u>Parameter</u>	<u>Amount</u>	Amount	<u>Uncertainty</u>	MRL	<u>Units</u>

Comments:

Ra 226 Batch Report by SM 7500 Ra-B

Instrument:	CI
Analyst:	
Prep Batch:	82446
Date:	02/11/21
filename:	2 11 2021 226 BATCH 82446

Effective Date: 07/15/2019 Page 1 of 1

06-LO-F0863 Issue 5.0

Calibration Data

2 11 2021 226 BATCH 82446 CI

LB4100 (CI) Background			226 Cal		
Date Collected:	1/30/2021		Date Collected:	2/17/2020	
	Alpha	Beta		Slope	Intercept
A1	0.1483	1.5200	A1		0.2217672
A2	0.0767	1.1000	1	-0.000091	0.2392097
A3	0.0700	1.9267	A3		0.2376181
A4	0.1267	1.6267	A4		0.245435
B1	0.1033	1.2650	B1	0.000064	0.2366137
B2	0.1700	1.6367	B2		0.2183716
B3	0.1433	1.4983	B3		0.2232439
B4	0.0767	1.7483	B4		0.2309777
C1	0.0667	3.3867	C1	-0.000018	0.2450165
C2	0.0817	1.0500	C2		0.2396955
C3	0.0767	1.3350	li .	-0.000029	0.235875
C4	0.0933	1.2300	C4		0.2329013
D1	0.1067	1.2500	D1		0.2516045
D2	0.1933	2.0633	D2	0.000211	0.2146519
D3	0.0400	1.0750	D3		0.2407988
D4	0.2733	1.9467	D4		0.2403726
E1	0.1583	0.9933	E1	-0.000811	0.2416731
E2	0.1850	1.0583	E2	-0.000824	0.2427347
E3	0.1150	1.4350	E3	-0.000689	0.2379716
E4	0.1450	1.0683		-0.000746	0.2417898
F1	0.1217	1.1550	F1	-0.000768	0.2315517
F2	0.1667	1.0717		-0.000633	0.2246939
F3	0.1650	4.2100		-0.000759	0.2311511
F4	0.1717	1.2967	F4	-0.000775	0.2355018
G1	0.1150	1.1033	G1	-0.000889	0.2344666
G2	0.2017	1.2417	G2	-0.000852	0.2362288
G3	0.1517	1.4400		-0.000849	0.240775
G4	0.1600	1.3550	G4	-0.000658	0.2282136
H1	0.1233	0.9150	H1	-0.000903	0.2294615
H2	0.1333	1.0700		-0.000797	0.2380014
H3	0.1433	0.9017	H3	-0.000806	0.2363951
H4	0.1400	1.3767	H4	-0.000745	0.2385951
	Alpha	Beta		Slope	Intercept
LB4100 (DU)					
Background			226 Cal		
Date Collected:	1/27/2021		Date Collected:	2/5/2020	

Page 1 of 1

		Batch Prep Date	Т		, , , ,	1	12:94-A
		BaSO4 precip Date:	e: 1/29/2021 15:33		Activity	Activity (pCi/mL)	9.06
	Sample	ole		BaSO₄	BaSO ₄	BaSO ₄	
	Volume	ne		Planchet	-		Ra-226 added
Sample ID		(mL)		Tare (mg)	Final (mg)	(mg)	(mL)
LRB	3 1000.0	0.0		9325.0	9361.6	36.6	
LFB		0.0		9313.4	9358.1	44.7	1.000
4819793		.3		9288.2	9329.0	40.8	
4819795	95 902.6	.6		9298.1	9343.0	44.9	
4819798	98 902.4	.4		9308.1	9349.9	41.8	
4820825		9		9311.4	9352.2	40.8	
4820834	34 900.0	.0.		9328.9	9374.2	45.3	
4821593	93 962.5	.5		9335.3	9368.0	32.7	
4821594	94 904.3	.3		9303.0	9336.7	33.7	
4821619	19 919.6	.6		9315.8	9342.0	26.2	
4821620	20 965.3	.3		9285.7	9313.6	27.9	
12 4821621	21 950.1	. <u>1</u>		9329.1	9352.2	23.1	
13 4820834MS	4MS 901.9	.9		9289.5	9330.4	40.9 	1.000
14 4820834MSD	MSD 900.4	.4		9317.1	9358.7	41.6	1.000
15)						0.0	
6						0.0	

9317.1 9358.7
9289.5 9330.4
9329.1 9352.2
9285.7 9313.6
9315.8 9342.0
9303.0 9336.7
9335.3 9368.0
9328.9 9374.2
9311.4 9352.2
9308.1 9349.9
9298.1 9343.0
9288.2 9329.0
9313.4 9358.1
9325.0 9361.6
<u></u>
Planchet Planchet

Page 1 of 1

Effective Date: 07/15/2019

CI 226 BATCH 82446

	Page 1 of 1	A Samuel Anna Anna Anna Anna Anna Anna Anna Ann	2/5/2021 1:20:28 PM	2/5/20		
	448	414	30	2/5/2021 12:22:51 PM	4820834MSD	D2
	430	466	30	2/5/2021 12:22:51 PM	4820834MS	D1
	37	ω	30	2/5/2021 12:22:51 PM	4821621	C4
	45	4	30	2/5/2021 12:22:51 PM	4821620	C3
	42	4	30	2/5/2021 12:22:51 PM	4821619	C2
	125	13	30	2/5/2021 12:22:51 PM	4821594	C1
	77	14	30	2/5/2021 12:22:51 PM	4821593	B4
	197	151	30	2/5/2021 12:22:50 PM	4820834	B3
	45	9	30	2/5/2021 12:22:50 PM	4820825	B2
	61	9	30	2/5/2021 12:22:50 PM	4819798	B1
	58	29	30	2/5/2021 12:22:50 PM	4819795	A4
<	61	14	30	2/5/2021 12:22:50 PM	4819793	A3
<u> </u>	289	348	30	2/5/2021 12:22:50 PM	LFB	A2
2/1	43	2	30	2/5/2021 12:22:49 PM	LRB	A1
lut	Beta Counts	Alpha Counts	Livetime (min)	Assay Date	Sample	Detector
2/						r

4820834MSD	4820834MS	4821621	4821620	4821619	4821594	4821593	4820834	4820825	4819798	4819795	4819793	LFB	LRB	Sample ID
D2	모	2	\mathbb{S}	2	2	四	B3	B2	B1	₽4	A3	Æ	Α1	Detector
01/29/2021 15:33	01/29/2021 15:33	01/29/2021 15:33	01/29/2021 15:33	01/29/2021 15:33	01/29/2021 15:33	01/29/2021 15:33	01/29/2021 15:33	01/29/2021 15:33	01/29/2021 15:33	01/29/2021 15:33	01/29/2021 15:33	01/29/2021 15:33	01/29/2021 15:33	Last BaSO4 precip.
02/05/2021 12:22	02/05/2021 12:22	02/05/2021 12:22	02/05/2021 12:22	02/05/2021 12:22	02/05/2021 12:22	02/05/2021 12:22	02/05/2021 12:22	02/05/2021 12:22	02/05/2021 12:22	02/05/2021 12:22	02/05/2021 12:22	02/05/2021 12:22	02/05/2021 12:22	Analysis Start Date
30	30	30	30	30	30	30	30	30	30	30	30	30	30	Count Time
414	466	ω	4	4	3	14	151	9	9	29	14	348	2	Counts
41.6	40.9	23.1	27.9	26.2	33.7	32.7	45.3	40.8	41.8	44.9	40.8	44.7		Ba Mass (mg)
02/05/2021 12:52	02/05/2021 12:52	02/05/2021 12:52	02/05/2021 12:52	02/05/2021 12:52	02/05/2021 12:52	02/05/2021 12:52	02/05/2021 12:52	02/05/2021 12:52	02/05/2021 12:52	02/05/2021 12:52	02/05/2021 12:52	02/05/2021 12:52	02/05/2021 12:52	Analysis End Date

Effective Date: 07/15/2019

Page 1 of 1

226 Results

	4820834MSE	4820834MS	4821621	4821620	4821619	4821594	4821593	4820834	4820825	4819798	4819795	4819793	LFB	LRB	Sample ID	
	D2	<u>D</u> 1	22	C3	C2	2	B4	B3	B2	B1	Α4	A3	A2	≥1	Detector	
	02/05/21.12:22	02/05/21,12:22	02/05/21,12:22	02/05/21,12:22	02/05/21,12:22	02/05/21,12:22	02/05/21,12:22	02/05/21,12:22	02/05/21,12:22	02/05/21,12:22	02/05/21,12:22	02/05/21,12:22	02/05/21,12:22	02/05/21,12:22	Date	Analysis Start
	13.31	13.83	0.01	0.07	0.07	0.40	0.44	4.23	0.13	0.18	0.69	0.37	8.98	-0.08	(pCi/L)	Activity
1	+	I +	1+	+	H	1+	1+	I+	1+	1+	H	1+	1+	1+		
į	1.30	1.26	0.18	0.17	0.19	0.26	0.28	0.70	0.19	0.18	0.29	0.23	0.95	0.10	(pCi/L)	UNC
į	0.23	0.18	0.31	0.24	0.26	0.20	0.21	0.19	0.22	0.18	0.17	0.17	0.14	0.22	(pCi/L)	모
:	1.32	1.38											0.99		Recovery Recoun	
								×							Recount	
															Recovery	Ba
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	02/05/21 12:52	02/05/21,12:52	02/05/21,12:52	02/05/21,12:52	02/05/21,12:52	02/05/21,12:52	02/05/21,12:52	02/05/21,12:52	02/05/21,12:52	02/05/21,12:52	02/05/21,12:52	02/05/21,12:52	02/05/21,12:52	02/05/21,12:52	Date	Analysis End

Page 1 of 1

	226
LRB Activity	-0.08
LFB Activity	8.98
LFB % Recovery	99.1
MS % Recovery	95.5
MSD % Recovery	90.2
RPD	3.8
RER	

MS Parent ID	4820834
Parent Activity	4.232279
Parent DL	0.18773
MS Target	10.04546
MSD Target	10.06219
MS Corr. Activity	9.59566
MSD Corr. Activity	9.078186
MS Activity	13.82794
MSD Activity	13.31046

LD ID	an Tarkera
Parent Activity	#N/A
Parent UNC	#N/A
LD Activity	#N/A
LD UNC	#N/A

Reagent ID 1M Citric Acid: Lot # Conc Acetic Acid: Reagent ID 18N H₂SO₄: Reagent ID 1N HNO3: Reagent ID 6N HNO₃:

NA

N A

11.98-6

	02/17/2021		
Source Sour	Ra-226 Ra-2		
Source Source YOH Precip Date/Time: N/A	Prep Batch/Time: 82446 (Δ) 19/Λ. BaSO ₄ Precip Date/Time: C1 2 6 20 7 15:33	Prep Date/Analyst initials: 1/24/2021/ 87w	

₽

12:442) -

N/A

Radium Bench Sheet

Earliest Due Date/ Rush:_

4820834MSD 700.~ LRB 82446 4820834MS LFB 82446 4821619 4820825 Sample ID 4819798 4819795 4821620 4821594 4821593 4820834 4819793 4821621 202.4 Sample YOX Planchet Volume (mL) Tare Weight (mg) しょり 100°2 00.0 1000 1000 an \times × \times × YOX Planchet Final Weight (mg) BaSO₄ Planchet Tare Weight (mg) 9315.8 9308. 9313.4 9325.0 4285,7 9303.0 9328,9 9311.4 9298.1 9335.3 9288.2 9289,5 9329. 317.1 BaSO₄ Planchet Final Weight (mg) 93420 ところん 1 Q. 26 7-5120 9324.0 392-0-7342.0 9.368.0 1352-2 ンドイン 349.9 374.2 4.38.5 Added (mL) Mapping. 9, depoilme 1.000 1.000 1.000 Ra-226 Ra-228 Added (mL) × × × × × × John Jan Dishort Mark Comments

Eurofins Eaton Analytical Laboratory Reagent Blank

Sample Matrix: RW Instrument: GPC - CI Sample Number: 4832582 Sample Site: Not Available

Sample Location: Not Available

Run Status: Completed
Order Number: Not Available
Client: EEA-SBN / QA Department

Method: 7500-Ra D

Analysis Date: 02/10/2021 Analysis Time: 18:18

Analyst: oke

Results Submitted By: oke

Run Number: 285326

Receipt Batch Number: Not Available

Project Manager: Not Available

File Name:82444CI

Ordered Parameter Results

<u>Parameter</u>	Amount	Reported <u>Amount</u>	<u>Uncertainty</u>	MRL	<u>Units</u>
Radium-228	0.26	0.26	+/-0.41	0.42	pCi/L

Additional Searched For Parameters

		Reported			
<u>Parameter</u>	<u>Amount</u>	<u>Amount</u>	<u>Uncertainty</u>	MRL	<u>Units</u>

Comments:

Eurofins Eaton Analytical Laboratory Reagent Blank

Sample Matrix: RW Instrument: GPC - CI Sample Number: 4832582 Sample Site: Not Available Sample Location: Not Available

Run Status: Completed
Order Number: Not Available
Client: EEA-SBN / QA Department

Method: 7500-Ra D

Analysis Date: 02/10/2021 Analysis Time: 18:18

Analyst: oke

Results Submitted By: oke

Run Number: 285326

Receipt Batch Number: Not Available

Project Manager: Not Available

File Name:82444CI

Ordered Parameter Results

<u>Parameter</u>	Amount	Reported <u>Amount</u>	<u>Uncertainty</u>	MRL	<u>Units</u>
Radium-228	0.26	0.26	+/-0.41	0.42	pCi/L

Additional Searched For Parameters

Reported
Parameter Amount Amount Uncertainty MRL Units

Comments:

Eurofins Eaton Analytical Laboratory Fortified Blank

Sample Matrix: RW Instrument: GPC - CI

Sample Number: 4832583 Sample Site: Not Available Sample Location: Not Available

Run Status: Completed
Order Number: Not Available
Client: EEA-SBN / QA Department

Method: 7500-Ra D

Analysis Date: 02/10/2021 Analysis Time: 16:36

Analyst: oke

Results Submitted By: oke

Run Number: 285326

Receipt Batch Number: Not Available

File Name:82444CI

Ordered Parameter Results

<u>Parameter</u>	Amount	<u>Units</u>	Target	%Rec	Lim <u>Lower</u>	Upper	Pass/Fail
Radium-228	6.98	pCi/L	8.52	82	80	120	PASS

Comments:

Eurofins Eaton Analytical Matrix Spike Report

File Name: 82444Cl Today's Date: 02/11/2021 Instrument: GPC - Cl Sample Number: 4832584 Associated Sample: 4820825

Run Status: Completed
Order Number: Not Available

Method: 7500-Ra D

Analysis Date: 02/10/2021 Analysis Time: 16:25

Analyst: oke

Results Submitted By: oke

Run Number: 285326

Receipt Batch Number: 508905

File Name:82444CI

Ordered Parameter Results

<u>Parameter</u>	Conc <u>Units</u>	Target	Sample Conc	MS Conc	MS <u>%Rec</u>	Pass/Fail
Radium-228	pCi/L	9.46	0.9	9.4	99	PASS

Comments:

Eurofins Eaton Analytical Matrix Spike - Matrix Spike Duplicate Report

File Name: 82444CI
Today's Date: 02/11/2021
Instrument: GPC - CI
Sample Number: 4832585
Associated Sample: 4820825

Run Status: Completed Order Number: Not Available

Method: 7500-Ra D

Analysis Date: 02/10/2021 Analysis Time: 16:25

Analyst: oke

Results Submitted By: oke

Run Number: 285326

Receipt Batch Number: 508905

File Name:82444CI

Ordered Parameter Results

<u>Parameter</u>	Conc <u>Units</u>	Target	Sample Conc	MS Conc	MS <u>%Rec</u>	Pass/Fail
Radium-228	pCi/L	9.44	0.9	9.68	103	PASS

Comments:

Sample Matrix: GW Instrument: GPC - CI Sample Number: 4821594 Sample Site: 21A0660-10/MW-10

Sample Location: MW Sampling-01-25-21

Run Status: Completed Order Number: 409880

Client: Trace Analytical Laboratories / Jon Mink

Method: 7500-Ra D

Analysis Date: 02/10/2021 Analysis Time: 16:24

Analyst: oke

Results Submitted By: oke

Run Number: 285326

Receipt Batch Number: 509005

Project Manager: fullmer

File Name:82444CI

Ordered Parameter Results

<u>Parameter</u>	Amount	Reported Amount	<u>Uncertainty</u>	MRL	<u>Units</u>
Radium-228	1.33	1.3	+/-0.5	0.4	pCi/L

Additional Searched For Parameters

Reported
Parameter Amount MRL Units

Comments:

Sample Matrix: GW Instrument: GPC - CI Sample Number: 4821593

Sample Site: 21A0660-09/MW-9

Sample Location: MW Sampling-01-25-21

Run Status: Completed Order Number: 409880

Client: Trace Analytical Laboratories / Jon Mink

Method: 7500-Ra D

Analysis Date: 02/10/2021 Analysis Time: 16:24

Analyst: oke

Results Submitted By: oke

Run Number: 285326

Receipt Batch Number: 509005

Project Manager: fullmer

File Name:82444CI

Ordered Parameter Results

<u>Parameter</u>	Amount	Reported <u>Amount</u>	Uncertainty	MRL	<u>Units</u>
Radium-228	1.3	1.3	+/-0.5	0.5	pCi/L

Additional Searched For Parameters

		Reported			
<u>Parameter</u>	<u>Amount</u>	<u>Amount</u>	<u>Uncertainty</u>	MRL	<u>Units</u>

Comments:

Ra 228 Batch Report by SM 7500 Ra-D

Instrument:	
Analyst:	Oke
Prep Batch:	82444
Date:	02/11/21
filonamo:	2 44 2024 228 BATCH 82444 C

970 06-LO-F0864 Issue 5.0

Effective Date: 2019-07-09

Calibration Data

File: 2 11 2021 228 BATCH 82444 CI

LB4100 (CI) Background			228 Cal	
Date Collected:	2/8/2021		Date Collected:	2/18/2020
	Alpha	Beta		Efficiency
A1	0.0933	1.4517	A1	0.436
A2	0.2667	1.0783	A2	0.432
A3	0.0767	1.8783	A3	0.437
A4	0.4450	1.6050	A4	0.436
B1	0.0933	1.2700	B1	0.457
B2	0.1517	1.5000	B2	0.459
B3	0.1050	1.4783	B3	0.421
B4	0.1400	1.8283	B4	0.435
C1	0.0683	2.6933	C1	0.401
C2	0.0833	1.1667	C2	0.400
C3	0.0733	1.3633	C3	0.387
C4	0.1200	1.3250	C4	0.398
D1	0.0617	1.0350	D1	0.397
D2	0.0600	1.5867	D2	0.438
D3	0.0517	1.0250	D3	0.419
D4	0.1617	1.5867	D4	0.441
LB4200 (DU)				
LB4200 (DU) Background			228 Cal	
	1/27/2021		228 Cal Date Collected:	2/10/2020
Background	1/27/2021 Alpha	Beta		2/10/2020 Efficiency
Background		Beta 0.9933		
Background Date Collected:	Alpha		Date Collected:	Efficiency
Background Date Collected: E1	Alpha 0.1583	0.9933	Date Collected: E1	Efficiency 0.369
Background Date Collected: E1 E2 E3 E4	Alpha 0.1583 0.1850 0.1150 0.1450	0.9933 1.0583	Date Collected: E1 E2	Efficiency 0.369 0.381
Background Date Collected: E1 E2 E3 E4 F1	Alpha 0.1583 0.1850 0.1150 0.1450 0.1217	0.9933 1.0583 1.4350	Date Collected: E1 E2 E3 E4 F1	Efficiency 0.369 0.381 0.379
Background Date Collected: E1 E2 E3 E4 F1 F2	Alpha 0.1583 0.1850 0.1150 0.1450 0.1217 0.1667	0.9933 1.0583 1.4350 1.0683 1.1550 1.0717	Date Collected: E1 E2 E3 E4 F1 F2	Efficiency 0.369 0.381 0.379 0.372
Background Date Collected: E1 E2 E3 E4 F1 F2 F3	Alpha 0.1583 0.1850 0.1150 0.1450 0.1217 0.1667 0.1650	0.9933 1.0583 1.4350 1.0683 1.1550 1.0717 4.2100	Date Collected: E1 E2 E3 E4 F1 F2 F3	Efficiency 0.369 0.381 0.379 0.372 0.345 0.367 0.357
Background Date Collected: E1 E2 E3 E4 F1 F2 F3 F4	Alpha 0.1583 0.1850 0.1150 0.1450 0.1217 0.1667 0.1650 0.1717	0.9933 1.0583 1.4350 1.0683 1.1550 1.0717 4.2100 1.2967	Date Collected: E1 E2 E3 E4 F1 F2 F3 F4	Efficiency 0.369 0.381 0.379 0.372 0.345 0.367 0.357 0.368
Background Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1	Alpha 0.1583 0.1850 0.1150 0.1450 0.1217 0.1667 0.1650 0.1717 0.1150	0.9933 1.0583 1.4350 1.0683 1.1550 1.0717 4.2100 1.2967 1.1033	Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1	Efficiency 0.369 0.381 0.379 0.372 0.345 0.367 0.357 0.368 0.349
Background Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2	Alpha 0.1583 0.1850 0.1150 0.1450 0.1217 0.1667 0.1650 0.1717 0.1150 0.2017	0.9933 1.0583 1.4350 1.0683 1.1550 1.0717 4.2100 1.2967 1.1033 1.2417	Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2	Efficiency 0.369 0.381 0.379 0.372 0.345 0.367 0.357 0.368 0.349 0.357
Background Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3	Alpha 0.1583 0.1850 0.1150 0.1450 0.1217 0.1667 0.1650 0.1717 0.1150 0.2017 0.1517	0.9933 1.0583 1.4350 1.0683 1.1550 1.0717 4.2100 1.2967 1.1033 1.2417 1.4400	Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3	Efficiency 0.369 0.381 0.379 0.372 0.345 0.367 0.357 0.368 0.349 0.357 0.351
Background Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3 G4	Alpha 0.1583 0.1850 0.1150 0.1450 0.1217 0.1667 0.1650 0.1717 0.1150 0.2017 0.1517 0.1600	0.9933 1.0583 1.4350 1.0683 1.1550 1.0717 4.2100 1.2967 1.1033 1.2417 1.4400 1.3550	Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3 G4	Efficiency 0.369 0.381 0.379 0.372 0.345 0.367 0.357 0.368 0.349 0.357 0.351 0.363
Background Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3 G4 H1	Alpha 0.1583 0.1850 0.1150 0.1450 0.1217 0.1667 0.1650 0.1717 0.1150 0.2017 0.1517 0.1600 0.1233	0.9933 1.0583 1.4350 1.0683 1.1550 1.0717 4.2100 1.2967 1.1033 1.2417 1.4400 1.3550 0.9150	Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3 G4 H1	Efficiency 0.369 0.381 0.379 0.372 0.345 0.367 0.357 0.368 0.349 0.357 0.351 0.363 0.356
Background Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3 G4 H1 H2	Alpha 0.1583 0.1850 0.1150 0.1450 0.1217 0.1667 0.1650 0.1717 0.1150 0.2017 0.1517 0.1600 0.1233 0.1333	0.9933 1.0583 1.4350 1.0683 1.1550 1.0717 4.2100 1.2967 1.1033 1.2417 1.4400 1.3550 0.9150 1.0700	Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3 G4 H1 H2	Efficiency 0.369 0.381 0.379 0.372 0.345 0.367 0.357 0.368 0.349 0.357 0.351 0.363 0.356 0.361
Background Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3 G4 H1 H2 H3	Alpha 0.1583 0.1850 0.1150 0.1450 0.1217 0.1667 0.1650 0.1717 0.1150 0.2017 0.1517 0.1600 0.1233 0.1333 0.1433	0.9933 1.0583 1.4350 1.0683 1.1550 1.0717 4.2100 1.2967 1.1033 1.2417 1.4400 1.3550 0.9150 1.0700 0.9017	Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3 G4 H1 H2 H3	Efficiency 0.369 0.381 0.379 0.372 0.345 0.367 0.357 0.368 0.349 0.357 0.351 0.363 0.356 0.361 0.370
Background Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3 G4 H1 H2	Alpha 0.1583 0.1850 0.1150 0.1450 0.1217 0.1667 0.1650 0.1717 0.1150 0.2017 0.1517 0.1600 0.1233 0.1333	0.9933 1.0583 1.4350 1.0683 1.1550 1.0717 4.2100 1.2967 1.1033 1.2417 1.4400 1.3550 0.9150 1.0700	Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3 G4 H1 H2	Efficiency 0.369 0.381 0.379 0.372 0.345 0.367 0.357 0.368 0.349 0.357 0.351 0.363 0.356 0.361

06-LO-F0864 Issue 5.0

Effective Date: 2019-07-09

				Batch Prep Date:	1/28/20	1/28/2021 13:12	Corrected Ra-	Ra-228	Ra-228 Source	
			BaSO₄ Y(OH), P	BaSO ₄ Precipitation Date: Y(OH), Precipitations Date:	2/3/20: 2/10/2	2/3/2021 12:25 2/10/2021 9:48	228 Activity (pCi) Prep Date 8.52 8/6/2020	Prep Date 8/6/2020	12-73c 9.07	Activity (pCi/mL)
- 1		Sample					BaSO ₄ Planchet	BaSO ₄		:
		Volume Used	YOX Planchet	YOX Planchet	YOX Residue	BaSO₄ Planchet	Final Weight	Residue	Ra-228 added	
ı	Sample ID	(mL)	Tare Weight (mg) Final Weight (mg	Final Weight (mg)	(mg)	Tare Weight (mg)	(mg)	(mg)	(ml)	
1-	LRB	1000.0	9307.1	9338.6	31.5	9319.9	9381.2	61.3		
\sim	LFB	1000.0	9333.6	9361.6	28.0	9281.5	9336.3	54.8	1.00	
lω	4819793	902.0	9332.1	9362.6	30.5	9324.1	9382.9	58.8		
4	4819795	932.4	9311.9	9340.2	28.3	9310.8	9364.4	53.6		
5	4819798	955.5	9330.2	9359.6	29.4	9324.1	9381.4	57.3		
တ	4820825	915.9	9250.4	9280.3	29.9	9318.7	9375.4	56.7		
17	4820834	944.5	9323.3	9353.8	30.5	9309.8	9365.2	55.4		
lω	4821593	927.4	9289.9	9319.0	29.1	9328.2	9384.3	56.1		
9	4821594	1016.6	9282.1	9312.2	30.1	9364.6	9425.7	61.1		
0	4821619	961.5	9317.9	9347.9	30.0	9322.9	9382.4	59.5		
1-	4821620	993.3	9304.9	9335.2	30.3	9305.3	9361.6	56.3		
\sim	4821621	996.4	9293.4	9324.8	31.4	9352.1	9404.8	52.7		
lω	3 4820825MS	900.6	9331.2	9360.5	29.3	9264.6	9315.6	51.0	1.00	
4	4 4820825MSD	902.5	9364.7	9395.0	30.3	9258.6	9311.0	52.4	1.00	

Y: 89.3 ± 22.8%	Ba: 94.2 ± 21.7%	QC limits established: 12/11/2019 Lower limi	Log ID Ba: 12-95b Log ID Y: 12-94c
0.66	0.73	12/11/2019 Lower limit	Vol (mL):
1.12	1.16	Upper limit	1.0 0.5
22.1	41.3	Lower Mass	Conc. (mg/mL): Conc. (mg/mL):
37.4	66.1	Upper mass	57.0 66.7

0.0

0.0

Effective Date: 2019-07-09

CI 228 BATCH 82444

Page 1 of 1		2/11/2021 12:06:14 PM	2/11/20		
1009	84	180	2/10/2021 1:25:00 PM	4820825MSD	D4
812	41	180	2/10/2021 1:25:00 PM	4820825MS	D3
417	45	180	2/10/2021 1:36:56 PM	4821621	D2
273	36	180	2/10/2021 1:36:56 PM	4821620	D1
324	49	180	2/10/2021 1:36:56 PM	4821619	C4
359	43	180	2/10/2021 1:24:59 PM	4821594	СЗ
303	37	180	2/10/2021 1:24:59 PM	4821593	C2
443	52	180	2/10/2021 1:36:56 PM	4820834	B4
334	40	180	2/10/2021 1:36:56 PM	4820825	B3
303	45	180	2/10/2021 1:36:56 PM	4819798	B2
313	34	180	2/10/2021 1:36:56 PM	4819795	B1
358	82	180	2/10/2021 1:36:56 PM	4819793	A4
880	60	180	2/10/2021 1:36:56 PM	LFB	A3
215	24	180	2/10/2021 3:18:18 PM	LRB	A2
Beta Counts	Alpha Counts	Livetime (min)	Assay Date	Sample	Detector

0no 2/11/2021

Sample ID	Detector	Last BaSO4 precip.	YOH precip.	Analysis Start Date	Count Time	Counts	Ba Mass (mg)	Y Mass (mg)	Analysis End Date
LRB	A2	02/03/2021 12:25	02/10/2021 09:48	02/10/2021 15:18	180	215	61.3	31.5	02/10/2021 18:18
LFB	A3	02/03/2021 12:25	02/10/2021 09:48	02/10/2021 13:36	180	880	54.8	28.0	02/10/2021 16:36
4819793	Α4	02/03/2021 12:25	02/10/2021 09:48	02/10/2021 13:36	180	358	58.8	30.5	02/10/2021 16:36
4819795	В1	02/03/2021 12:25	02/10/2021 09:48	02/10/2021 13:36	180	313	53.6	28.3	02/10/2021 16:36
4819798	B2	02/03/2021 12:25	02/10/2021 09:48	02/10/2021 13:36	180	303	57.3	29.4	02/10/2021 16:36
4820825	B3	02/03/2021 12:25	02/10/2021 09:48	02/10/2021 13:36	180	334	56.7	29.9	02/10/2021 16:36
4820834	B4	02/03/2021 12:25	02/10/2021 09:48	02/10/2021 13:36	180	443	55.4	30.5	02/10/2021 16:36
4821593	C2	02/03/2021 12:25	02/10/2021 09:48	02/10/2021 13:24	180	303	56.1	29.1	02/10/2021 16:24
4821594	C3	02/03/2021 12:25	02/10/2021 09:48	02/10/2021 13:24	180	359	61.1	30.1	02/10/2021 16:24
4821619	C4	02/03/2021 12:25	02/10/2021 09:48	02/10/2021 13:36	180	324	59.5	30.0	02/10/2021 16:36
4821620	9	02/03/2021 12:25	02/10/2021 09:48	02/10/2021 13:36	180	273	56.3	30.3	02/10/2021 16:36
4821621	D2	02/03/2021 12:25	02/10/2021 09:48	02/10/2021 13:36	180	417	52.7	31.4	02/10/2021 16:36
4820825MS	D3	02/03/2021 12:25	02/10/2021 09:48	02/10/2021 13:25	180	812	51.0	29.3	02/10/2021 16:25
4820825MSD	D 4	02/03/2021 12:25	02/10/2021 09:48	02/10/2021 13:25	180	1009	52.4	30.3	02/10/2021 16:25

06-LO-F0864 Issue 5.0

Effective Date: 2019-07-09

Page 1 of 1

One

2/11/202/

	4820825MSD	4820825MS	4821621	4821620	4821619	4821594	4821593	4820834	4820825	4819798	4819795	4819793	LFB	LRB	Sample ID	
	D4	몺	D2	9	C 4	င္သ	2	B4	ВЗ	B2	В1	Α4	Α3	₽	Detector	
	02/10/21 13:25	02/10/21,13:25	02/10/21,13:36	02/10/21,13:36	02/10/21,13:36	02/10/21,13:24	02/10/21,13:24	02/10/21,13:36	02/10/21,13:36	02/10/21,13:36	02/10/21,13:36	02/10/21,13:36	02/10/21,13:36	02/10/21,15:18	Date	Analysis Start
	9.676	9.397	1.573	1.113	1.080	1.326	1.295	1.417	0.898	0.386	1.128	0.846	6.981	0.262	(pCi/L)	Activity
!	± 0.87	± 0.86	± 0.53	± 0.46	± 0.49	± 0.48	± 0.52	± 0.57	± 0.53	± 0.45	± 0.51	± 0.51	± 0.79	± 0.41	(pCi/L)	UNC
	0.53	0.48	0.48	0.42	0.46	0.43	0.48	0.53	0.51	0.45	0.48	0.49	0.55	0.42	L) (pCi/L)	믿
:	1.02	0.99											0.82		Recovery Ba QC	
															3a QC	
															Y QC	
	02/10/2021 16:25	02/10/2021 16:25	02/10/2021 16:36	02/10/2021 16:36	02/10/2021 16:36	02/10/2021 16:24	02/10/2021 16:24	02/10/2021 16:36	02/10/2021 16:36	02/10/2021 16:36	02/10/2021 16:36	02/10/2021 16:36	02/10/2021 16:36	02/10/2021 18:18	Analysis End Date	

06-LO-F0864 Issue 5.0

Effective Date: 2019-07-09

Page 1 of 1

One

Onlaw)

	228	
LRB Activity	0.26	
LFB Activity	6.98	
LFB % Recovery	81.91	
MS % Recovery	99.30	
MSD % Recovery	102.46	
RPD	2.9	
RER		

MS Parent ID	
Parent value	0.8976096
Parent DL	0.5079729
MS Target	9.464
MSD Target	9.444
MS Corr. Activity	9.3973537
MSD Corr. Activity	9.6761356
MS Activity	9.3973537
MSD Activity	9.6761356

LD Parent ID:	
Parent value	#N/A
Parent UNC	#N/A
LD value	#N/A
LD UNC	#N/A

0h0 06-LO-F0864 Issue 5.0

Effective Date: 2019-07-09

a-228	3		
	BaSO₄ Precip Date/Time:	Prep Batch/Time: 82444	Prep Date/Analyst initials:
``	\mathcal{O}_{A}	18	-
	1 6	\sim	3
, ,	8	0	1
5	8	2	5
s	13	ľ	m/ m/
_ (§	Ø	}	1
_	Z		۱

F	5	15	14	13	12	<u> </u>	10	9	œ	7	თ	5	4	ω	2	_	#		
			482082	4820825MS	4821621	4821620	4821619	4821594	4821593	4820834	4820825	4819798	4819	4819	LFB 82444	LRB 82444	Sample	,	Balc
			4820825MSD	25MS	1621	1620	619	594	593)834)825	798	4819795 हैं।	4819793	2444,	2444 🥱	le ID	5	Dalaile in.
			9021	900.	2962	993	201.5	10/16.1	180 J	3/46	210,6	38	2224	Still B	1000	1000	Volume (mL)	Sample	70
		i	0000	5 1 2 m	1 92	300	93	1 CKS	THE OWN	20 (JS)	18031	5000	120	1		1260	_	YOX F	
			7	2/12	924	94.9	12.09	1. /	1899	200.00	50,2	20.2	1.5	122/	13.0	12.	=		Daidi co it.
			9295.0	500CB	9 324.8	9735-	9.542.6	9311.2	9319.0	935	92 80 3	93596	9740.2	9362-6	9361.C	35.56	Weight (mg)	YOX Planchet Final	
			0	2	1 8 h	27.5	2 5 t	1,1	9.06	3 80	0.50	25.00	0.7	, e	6	3.6 6	-		
			1268	12/2	1000	3000	1322	100	1808	200	12/2/	1000	10/0	1220	1281.	13/1/0	Tare Weight (mg)	BaSO ₄ Planchet	
			6	6		Ø	2	1.0	12	, 2	1	7.7	2		0		├		
			93110	7.5160	9404.8	97616	93824	2,276	93843	9365.2	13754	9381.4	4.200	7.1866	9334.3	9281.5	Final Weight (mg)	BaSO ₄ Planchet	
			×	×	×	×	×	×	×	×	×	×	×	×	×	×	Added (mL)	Ra-226	
			1.000	1.000											1.000		Added (mL)	Ra-228	
					25	47	R	700	180				7	400	06/11/20	+			-
								5 during	B dures	-[_	1000 Hampy 1020, H	J11/200 000				
														7020)		0	Comments	
														7	>			nts	
									,										

Reagent ID NH ₄ SO ₄ : L2~11(C)	12 516
Reagent ID (NH ₄) ₂ OX:	21920
ot # Conc NH ₄ OH:	290000
Reagent ID 6N NH₄OH:	N/A
Reagent ID 18N NaOH: (R)	916 18
Reagent ID 10N NaOH:	12-176

Reagent ID Y Carrier: 12 44 CVol U	Reagent ID Ba Carrier: 12 75h vol Used: 10	Reagent ID Sr-Y Carrier: 12-159	Reagent ID Lead Carrier: N/A	Reagent ID Lead Carrier B: 12 - An	Reagent ID Lead Carrier A: 12 - 4/6	Reagent ID 0.25M EDTA:
Reagent ID Y Carrier: 12 44 Cvol Used: 0 · 5 (mL) Conc. U. (mg/mL)	Jsed: //U (mL) Conc. 2 1. (mg/mL)	7				

Eurofins Eaton Analytical Laboratory Reagent Blank

Sample Matrix: RW Instrument: GPC - CI Sample Number: 4832640 Sample Site: Not Available Sample Location: Not Available

Run Status: Completed
Order Number: Not Available
Client: EEA-SBN / QA Department

Method: 7500-Ra D

Analysis Date: 02/10/2021 Analysis Time: 13:19

Analyst: oke

Results Submitted By: oke

Run Number: 285328

Receipt Batch Number: Not Available

Project Manager: Not Available

File Name:82435CI

Ordered Parameter Results

<u>Parameter</u>	Amount	Reported <u>Amount</u>	Uncertainty	MRL	<u>Units</u>
Radium-228	0.06	0.06	+/-0.41	0.44	pCi/L

Additional Searched For Parameters

		Reported			
<u>Parameter</u>	<u>Amount</u>	<u>Amount</u>	Uncertainty	MRL	<u>Units</u>

Comments:

Eurofins Eaton Analytical Laboratory Fortified Blank

Sample Matrix: RW Instrument: GPC - CI Sample Number: 4832641 Sample Site: Not Available Sample Location: Not Available

Run Status: Completed
Order Number: Not Available
Client: EEA-SBN / QA Department

Method: 7500-Ra D

Analysis Date: 02/10/2021 Analysis Time: 13:19

Analyst: oke

Results Submitted By: oke

Run Number: 285328

Receipt Batch Number: Not Available

File Name:82435CI

Ordered Parameter Results

					Lim	its	
<u>Parameter</u>	<u>Amount</u>	<u>Units</u>	<u>Target</u>	%Rec	Lower	<u>Upper</u>	Pass/Fail
Radium-228	8.43	pCi/L	8.52	99	80	120	PASS

Comments:

Eurofins Eaton Analytical Matrix Spike Report

File Name: 82435CI
Today's Date: 02/11/2021
Instrument: GPC - CI
Sample Number: 4832642
Associated Sample: 4819814

Run Status: Completed
Order Number: Not Available

Method: 7500-Ra D

Analysis Date: 02/10/2021 Analysis Time: 13:19

Analyst: oke

Results Submitted By: oke

Run Number: 285328

Receipt Batch Number: 508775

File Name:82435CI

Ordered Parameter Results

<u>Parameter</u>	Conc <u>Units</u>	<u>Target</u>	Sample Conc	MS Conc	MS <u>%Rec</u>	Pass/Fail
Radium-228	pCi/L	9.47	2.3	11.3	95	PASS

Comments:

Eurofins Eaton Analytical Matrix Spike - Matrix Spike Duplicate Report

File Name: 82435Cl Today's Date: 02/11/2021 Instrument: GPC - Cl Sample Number: 4832643 Associated Sample: 4819814

Run Status: Completed
Order Number: Not Available

Method: 7500-Ra D

Analysis Date: 02/10/2021 Analysis Time: 13:19

Analyst: oke

Results Submitted By: oke

Run Number: 285328

Receipt Batch Number: 508775

File Name:82435CI

Ordered Parameter Results

<u>Parameter</u>	Conc <u>Units</u>	<u>Target</u>	Sample Conc	MS Conc	MS <u>%Rec</u>	Pass/Fail
Radium-228	pCi/L	9.46	2.3	12.5	108	PASS

Comments:

Sample Matrix: GW Instrument: GPC - CI Sample Number: 4821585 Sample Site: 21A0660-01/MW-1R

Sample Location: MW Sampling-01-25-21

Run Status: Completed Order Number: 409880

Client: Trace Analytical Laboratories / Jon Mink

Method: 7500-Ra D

Analysis Date: 02/10/2021 Analysis Time: 13:19

Analyst: oke

Results Submitted By: oke

Run Number: 285328

Receipt Batch Number: 509005

Project Manager: fullmer

File Name:82435CI

Ordered Parameter Results

<u>Parameter</u>	<u>Amount</u>	Amount	<u>Uncertainty</u>	MRL	<u>Units</u>
Radium-228	0.58	0.58	+/-0.45	0.44	pCi/L

Additional Searched For Parameters

Reported
Parameter Amount Uncertainty MRL Units

Comments:

Sample Matrix: GW Instrument: GPC - CI Sample Number: 4821587

Sample Site: 21A0660-03/MW-3

Sample Location: MW Sampling-01-25-21

Run Status: Completed Order Number: 409880

Client: Trace Analytical Laboratories / Jon Mink

Method: 7500-Ra D

Analysis Date: 02/10/2021 Analysis Time: 13:19

Analyst: oke

Results Submitted By: oke

Run Number: 285328

Receipt Batch Number: 509005

Project Manager: fullmer

File Name:82435CI

Ordered Parameter Results

<u>Parameter</u>	Amount	Reported Amount	<u>Uncertainty</u>	MRL	<u>Units</u>
Radium-228	0.88	0.88	+/-0.56	0.54	pCi/L

Additional Searched For Parameters

		Reported			
<u>Parameter</u>	<u>Amount</u>	Amount	<u>Uncertainty</u>	MRL	<u>Units</u>

Comments:

Sample Matrix: GW Instrument: GPC - CI Sample Number: 4821591 Sample Site: 21A0660-07/MW-7

Sample Location: MW Sampling-01-25-21

Run Status: Completed Order Number: 409880

Client: Trace Analytical Laboratories / Jon Mink

Method: 7500-Ra D

Analysis Date: 02/10/2021 Analysis Time: 13:19

Analyst: oke

Results Submitted By: oke

Run Number: 285328

Receipt Batch Number: 509005

Project Manager: fullmer

File Name:82435CI

Ordered Parameter Results

ParameterAmountReported AmountUncertaintyMRLUnitsRadium-2280.93+/-0.470.44pCi/L

Additional Searched For Parameters

Reported
Parameter Amount Amount Uncertainty MRL Units

Comments:

Sample Matrix: GW Instrument: GPC - CI Sample Number: 4821589 Sample Site: 21A0660-05/MW-5

Sample Location: MW Sampling-01-25-21

Run Status: Completed Order Number: 409880

Client: Trace Analytical Laboratories / Jon Mink

Method: 7500-Ra D Analysis Date: 02/10/2021

Analysis Time: 13:19

Analyst: oke

Results Submitted By: oke

Run Number: 285328

Receipt Batch Number: 509005

Project Manager: fullmer

File Name:82435CI

Ordered Parameter Results

<u>Parameter</u>	Amount	Reported <u>Amount</u>	<u>Uncertainty</u>	MRL	<u>Units</u>
Radium-228	0.09	0.09	+/-0.58	0.61	pCi/L

Additional Searched For Parameters

		Reported			
<u>Parameter</u>	<u>Amount</u>	Amount	Uncertainty	MRL	<u>Units</u>

Comments:

Sample Matrix: GW Instrument: GPC - CI Sample Number: 4821586 Sample Site: 21A0660-02/MW-2

Sample Location: MW Sampling-01-25-21

Run Status: Completed Order Number: 409880

Client: Trace Analytical Laboratories / Jon Mink

Method: 7500-Ra D

Analysis Date: 02/10/2021 Analysis Time: 13:19

Analyst: oke

Results Submitted By: oke

Run Number: 285328

Receipt Batch Number: 509005

Project Manager: fullmer

File Name:82435CI

Ordered Parameter Results

<u>Parameter</u>	Amount	Reported <u>Amount</u>	<u>Uncertainty</u>	MRL	<u>Units</u>
Radium-228	1.92	1.9	+/-0.6	0.5	pCi/L

Additional Searched For Parameters

Reported
Parameter Amount Uncertainty MRL Units

Comments:

Sample Matrix: GW Instrument: GPC - CI Sample Number: 4821592

Sample Site: 21A0660-08/MW-8

Sample Location: MW Sampling-01-25-21

Run Status: Completed Order Number: 409880

Client: Trace Analytical Laboratories / Jon Mink

Method: 7500-Ra D

Analysis Date: 02/10/2021 Analysis Time: 13:19

Analyst: oke

Results Submitted By: oke

Run Number: 285328

Receipt Batch Number: 509005

Project Manager: fullmer

File Name:82435CI

Ordered Parameter Results

<u>Parameter</u>	Amount	Reported <u>Amount</u>	<u>Uncertainty</u>	MRL	<u>Units</u>
Radium-228	2.32	2.3	+/-0.6	0.5	pCi/L

Additional Searched For Parameters

		Reported			
<u>Parameter</u>	<u>Amount</u>	<u>Amount</u>	<u>Uncertainty</u>	<u>MRL</u>	<u>Units</u>

Comments:

Sample Matrix: GW Instrument: GPC - CI Sample Number: 4821590

Sample Site: 21A0660-06/MW-6

Sample Location: MW Sampling-01-25-21

Run Status: Completed Order Number: 409880

Client: Trace Analytical Laboratories / Jon Mink

Method: 7500-Ra D

Analysis Date: 02/10/2021 Analysis Time: 13:19

Analyst: oke

Results Submitted By: oke

Run Number: 285328

Receipt Batch Number: 509005

Project Manager: fullmer

File Name:82435CI

Ordered Parameter Results

<u>Parameter</u>	Amount	Reported <u>Amount</u>	<u>Uncertainty</u>	MRL	<u>Units</u>
Radium-228	0.87	0.87	+/-0.58	0.56	pCi/L

Additional Searched For Parameters

Reported
Parameter Amount Uncertainty MRL Units

Comments:

Sample Matrix: GW Instrument: GPC - CI Sample Number: 4821588 Sample Site: 21A0660-04/MW-4

Sample Location: MW Sampling-01-25-21

Run Status: Completed Order Number: 409880

Client: Trace Analytical Laboratories / Jon Mink

Method: 7500-Ra D

Analysis Date: 02/10/2021 Analysis Time: 13:19

Analyst: oke

Results Submitted By: oke

Run Number: 285328

Receipt Batch Number: 509005

Project Manager: fullmer

File Name:82435CI

Ordered Parameter Results

<u>Parameter</u>	Amount	Reported <u>Amount</u>	<u>Uncertainty</u>	MRL	<u>Units</u>
Radium-228	0.52	0.52	+/-0.48	0.47	pCi/L

Additional Searched For Parameters

		Reported			
<u>Parameter</u>	<u>Amount</u>	<u>Amount</u>	<u>Uncertainty</u>	MRL	<u>Units</u>

Comments:

Ra 228 Batch Report by SM 7500 Ra-D

Instrument:	
Analyst:	
Prep Batch:	82435
Date:	02/11/21
filename:	2 11 2021 228 BATCH 82435 CI

One 06-LO-F0864 Issue 5.0

Effective Date: 2019-07-09

LB4100 (CI) Background			228 Cal	
Date Collected:	2/8/2021		Date Collected:	2/18/2020
Date Concetts.	Alpha	Beta	Date Competed:	Efficiency
A1	0.0933	1.4517	A1	0.436
A2	0.2667	1.0783	A2	0.432
A3	0.0767	1.8783	A3	0.437
A4	0.4450	1.6050	A4	0.436
B1	0.0933	1.2700	B1	0.457
B2	0.1517	1.5000	B2	0.459
B3	0.1050	1.4783	В3	0.421
B4	0.1400	1.8283	В4	0.435
C1	0.0683	2.6933	C1	0.401
C2	0.0833	1.1667	C2	0.400
C3	0.0733	1.3633	C3	0.387
C4	0.1200	1.3250	C4	0.398
D1	0.0617	1.0350	D1	0.397
D2	0.0600	1.5867	D2	0.438
D3	0.0517	1.0250	D3	0.419
D4	0.1617	1.5867	D4	0.441
LB4200 (DU)				
Background			228 Cal	
	1/27/2021		228 Cal Date Collected:	2/10/2020
Background Date Collected:	Alpha	Beta	Date Collected:	Efficiency
Background Date Collected: E1	Alpha 0.1583	0.9933	Date Collected: E1	Efficiency 0.369
Background Date Collected: E1 E2	Alpha 0.1583 0.1850	0.9933 1.0583	Date Collected: E1 E2	Efficiency 0.369 0.381
Background Date Collected: E1 E2 E3	Alpha 0.1583 0.1850 0.1150	0.9933 1.0583 1.4350	Date Collected: E1 E2 E3	Efficiency 0.369 0.381 0.379
Background Date Collected: E1 E2 E3 E4	Alpha 0.1583 0.1850 0.1150 0.1450	0.9933 1.0583 1.4350 1.0683	Date Collected: E1 E2 E3 E4	Efficiency 0.369 0.381 0.379 0.372
Background Date Collected: E1 E2 E3 E4 F1	Alpha 0.1583 0.1850 0.1150 0.1450 0.1217	0.9933 1.0583 1.4350 1.0683 1.1550	Date Collected: E1 E2 E3 E4 F1	Efficiency 0.369 0.381 0.379 0.372 0.345
Background Date Collected: E1 E2 E3 E4 F1 F2	Alpha 0.1583 0.1850 0.1150 0.1450 0.1217 0.1667	0.9933 1.0583 1.4350 1.0683 1.1550 1.0717	Date Collected: E1 E2 E3 E4 F1 F2	Efficiency 0.369 0.381 0.379 0.372 0.345 0.367
Background Date Collected: E1 E2 E3 E4 F1 F2 F3	Alpha 0.1583 0.1850 0.1150 0.1450 0.1217 0.1667 0.1650	0.9933 1.0583 1.4350 1.0683 1.1550 1.0717 4.2100	Date Collected: E1 E2 E3 E4 F1 F2 F3	Efficiency 0.369 0.381 0.379 0.372 0.345 0.367 0.357
Background Date Collected: E1 E2 E3 E4 F1 F2 F3 F4	Alpha 0.1583 0.1850 0.1150 0.1450 0.1217 0.1667 0.1650 0.1717	0.9933 1.0583 1.4350 1.0683 1.1550 1.0717 4.2100 1.2967	Date Collected: E1 E2 E3 E4 F1 F2 F3 F4	Efficiency 0.369 0.381 0.379 0.372 0.345 0.367 0.357 0.368
Background Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1	Alpha 0.1583 0.1850 0.1150 0.1450 0.1217 0.1667 0.1650 0.1717 0.1150	0.9933 1.0583 1.4350 1.0683 1.1550 1.0717 4.2100 1.2967 1.1033	Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1	Efficiency 0.369 0.381 0.379 0.372 0.345 0.367 0.357 0.368 0.349
Background Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2	Alpha 0.1583 0.1850 0.1150 0.1450 0.1217 0.1667 0.1650 0.1717 0.1150 0.2017	0.9933 1.0583 1.4350 1.0683 1.1550 1.0717 4.2100 1.2967 1.1033 1.2417	Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2	Efficiency 0.369 0.381 0.379 0.372 0.345 0.367 0.357 0.368 0.349 0.357
Background Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3	Alpha 0.1583 0.1850 0.1150 0.1450 0.1217 0.1667 0.1650 0.1717 0.1150 0.2017 0.1517	0.9933 1.0583 1.4350 1.0683 1.1550 1.0717 4.2100 1.2967 1.1033 1.2417 1.4400	Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3	Efficiency 0.369 0.381 0.379 0.372 0.345 0.367 0.357 0.368 0.349 0.357 0.351
Background Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3 G4	Alpha 0.1583 0.1850 0.1150 0.1450 0.1217 0.1667 0.1650 0.1717 0.1150 0.2017 0.1517 0.1600	0.9933 1.0583 1.4350 1.0683 1.1550 1.0717 4.2100 1.2967 1.1033 1.2417 1.4400 1.3550	Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3 G4	Efficiency 0.369 0.381 0.379 0.372 0.345 0.367 0.357 0.368 0.349 0.357 0.351 0.363
Background Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3 G4 H1	Alpha 0.1583 0.1850 0.1150 0.1450 0.1217 0.1667 0.1650 0.1717 0.1150 0.2017 0.1517 0.1600 0.1233	0.9933 1.0583 1.4350 1.0683 1.1550 1.0717 4.2100 1.2967 1.1033 1.2417 1.4400 1.3550 0.9150	Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3 G4 H1	Efficiency 0.369 0.381 0.379 0.372 0.345 0.367 0.357 0.368 0.349 0.357 0.351 0.363 0.356
Background Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3 G4 H1 H2	Alpha 0.1583 0.1850 0.1150 0.1450 0.1217 0.1667 0.1650 0.1717 0.1150 0.2017 0.1517 0.1600 0.1233 0.1333	0.9933 1.0583 1.4350 1.0683 1.1550 1.0717 4.2100 1.2967 1.1033 1.2417 1.4400 1.3550 0.9150 1.0700	Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3 G4 H1 H2	Efficiency 0.369 0.381 0.379 0.372 0.345 0.367 0.357 0.368 0.349 0.357 0.363 0.356 0.363
Background Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3 G4 H1 H2 H3	Alpha 0.1583 0.1850 0.1150 0.1450 0.1217 0.1667 0.1650 0.1717 0.1150 0.2017 0.1517 0.1600 0.1233 0.1333 0.1433	0.9933 1.0583 1.4350 1.0683 1.1550 1.0717 4.2100 1.2967 1.1033 1.2417 1.4400 1.3550 0.9150 1.0700 0.9017	Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3 G4 H1 H2 H3	Efficiency 0.369 0.381 0.379 0.372 0.345 0.367 0.357 0.368 0.349 0.357 0.351 0.363 0.356 0.361 0.370
Background Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3 G4 H1 H2	Alpha 0.1583 0.1850 0.1150 0.1450 0.1217 0.1667 0.1650 0.1717 0.1150 0.2017 0.1517 0.1600 0.1233 0.1333	0.9933 1.0583 1.4350 1.0683 1.1550 1.0717 4.2100 1.2967 1.1033 1.2417 1.4400 1.3550 0.9150 1.0700	Date Collected: E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3 G4 H1 H2	Efficiency 0.369 0.381 0.379 0.372 0.345 0.367 0.357 0.368 0.349 0.357 0.363 0.356 0.363

©№ 06-LO-F0864 Issue 5.0

File: 2 11 2021 228 BATCH 82435 CI

7 6 4 3 2 1	Sample ID LRB LFB 4819170 4819814 4821585 4821586 4821587 4821588 4821589 4821590 4821591 4821591	Sample Volume Used (mL) 1000.0 1000.0 935.0 904.7 929.8 907.1 993.4 967.9 954.8 915.8 976.2 948.8 900.4	YOX Planchet Tare Weight (mg) 9295.4 9295.6 9340.6 9307.2 9305.7 9322.5 9314.1 9291.0 9298.4 9269.2 9329.9	anchet YOX Planchet http://www.planchet yox Planchet ght (mg) Final Weight (mg) 9320.6 5.4 9320.6 2.3 9318.1 5.6 9365.6 7.2 9334.5 7.2 9334.5 5.7 9332.2 5.7 9347.5 4.1 9340.2 4.1 9340.2 4.1 9340.2 5.8 9325.7 9.2 9357.1 9.9 9357.1	YOX Residue (mg) 25.2 25.8 26.5 27.3 26.5 26.1 26.1 27.3 27.3 25.9 27.2	idue BaSO ₄ Planchet Tare Weight (mg) 9331.6 9302.7 9307.3 9365.9 9349.9 9339.2 9283.0 9303.2 9283.0 9312.1 9375.4 9291.9 9272.5	BaSO ₄ Planchet Final Weight (mg) 9386.1 9365.4 9420.5 9408.8 9398.1 9339.5 9339.5 9359.1 9365.2 9426.2 9426.2 9328.0 9368.5	BaSO ₄ Residue (mg) 54.5 58.1 58.1 58.9 58.9 58.9 56.5 55.9 57.4 55.5	3 5 4 4 8 8 1 1 9 9 9 9 5 1 1 1 1 1 1 1 1 1 1 1 1 1
	Sample ID	Volume Used (mL)	YOX Planchet Tare Weight (mg)		YOX Residue (mg)	BaSO ₄ Planchet Tare Weight (mg)	Final	Weight mg)	
_	LRB	1000.0	9295.4	9320.6	25.2	9331.6	9	386.1	
2	LFB	1000.0	9292.3	9318.1	25.8	9302.7		9360.8	9360.8 58.1
ω	4819170	935.0	9285.6	9312.1	26.5	9307.3		9365.4	9365.4 58.1
4	4819814	904.7	9340.6	9365.6	25.0	9365.9	T	9420.5	9420.5 54.6
5		929.8	9307.2	9334.5	27.3	9349.9	\neg	9408.8	9408.8 58.9
രി	4821586	907.1	9305.7	9332.2	26.5	9339.2	-	9398.1	9398.1 58.9
7	4821587	993.4	9322.5	9347.5	25.0	9283.0	_	9339.5	9339.5 56.5
ω	4821588	967.9	9314.1	9340.2	26.1	9303.2		9359.1	9359.1 55.9
9		954.8	9291.0	9315.1	24.1	9312.1		9365.2	9365.2 53.1
10		915.8	9298.4	9325.7	27.3	9375.4	-	9426.2	9426.2 50.8
1	4821591	976.2	9269.2	9295.1	25.9	9291.9		9349.3	9349.3 57.4
12		948.8	9329.9	9357.1	27.2	9272.5		9328.0	9328.0 55.5
13	4819814MS	900.4	9296.8	9324.2	27.4	9319.2		9368.5	9368.5 49.3
14	4 4819814MSD	900.7	9290.8	9315.9	25.1	9288.2	-	9342.9	9342.9 54.7
15					0.0				0.0
,					0.0				0.0

QC limits established: 12/11/2019

Log ID Ba: Log ID Y:

12-95b 12-94c

Vol (mL): Vol (mL):

1.0 0.5

Conc. (mg/mL):

		Lower limit	Upper limit	Lower Mass	Upper mass
ă	Ba: 94.2 ± 21.7%	0.73	1.16	41.3	66.1
<u>:</u>	Y: 89.3 ± 22.8%	0.66	1.12	22.1	37.4

06-LO-F0864 Issue 5.0

Effective Date: 2019-07-09

Page 1 of 1

Ono
Osla Jaos 1

CI 228 BATCH 82435

Detector	Sample	Assay Date	Livetime (min)	Alpha Counts	Beta Counts
A2	LRB	2/10/2021 10:19:52 AM	180	30	199
A3	LFB	2/10/2021 10:19:52 AM	180	14	1046
A4	4819170	2/10/2021 10:19:52 AM	180	40	284
B1	4819814	2/10/2021 10:19:52 AM	180	35	395
B2	4821585	2/10/2021 10:19:52 AM	180	38	321
B3	4821586	2/10/2021 10:19:52 AM	180	28	413
B4	4821587	2/10/2021 10:19:52 AM	180	47	398
C2	4821588	2/10/2021 10:19:52 AM	180	1	248
C3	4821589	2/10/2021 10:19:53 AM	180	19	251
2	4821590	2/10/2021 10:19:53 AM	180	20	295
D1	4821591	2/10/2021 10:19:53 AM	180	13	255
D2	4821592	2/10/2021 10:19:53 AM	180	24	472
D3	4819814MS	2/10/2021 10:19:53 AM	180	27	923
D4	4819814MSD	2/10/2021 10:19:53 AM	180	38	1159
		2/11/2021	2/11/2021 11:55:25 AM		Page 1 of 1

Ono On person

Sample ID	Detector	Last BaSO4 precip.	YOH precip.	Analysis Start Date	Count Time	Counts	Ba Mass (mg)	Y Mass (mg)	Analysis End Date
LRB	A2	02/03/2021 12:20	02/10/2021 07:25	02/10/2021 10:19	180	199	54.5	25.2	02/10/2021 13:19
LFB	A3	02/03/2021 12:20	02/10/2021 07:25	02/10/2021 10:19	180	1046	58.1	25.8	02/10/2021 13:19
4819170	Α4	02/03/2021 12:20	02/10/2021 07:25	02/10/2021 10:19	180	284	58.1	26.5	02/10/2021 13:19
4819814	B1	02/03/2021 12:20	02/10/2021 07:25	02/10/2021 10:19	180	395	54.6	25.0	02/10/2021 13:19
4821585	B2	02/03/2021 12:20	02/10/2021 07:25	02/10/2021 10:19	180	321	58.9	27.3	02/10/2021 13:19
4821586	В3	02/03/2021 12:20	02/10/2021 07:25	02/10/2021 10:19	180	413	58.9	26.5	02/10/2021 13:19
4821587	B4	02/03/2021 12:20	02/10/2021 07:25	02/10/2021 10:19	180	398	56.5	25.0	02/10/2021 13:19
4821588	C2	02/03/2021 12:20	02/10/2021 07:25	02/10/2021 10:19	180	248	55.9	26.1	02/10/2021 13:19
4821589	C3	02/03/2021 12:20	02/10/2021 07:25	02/10/2021 10:19	180	251	53.1	24.1	02/10/2021 13:19
4821590	C4	02/03/2021 12:20	02/10/2021 07:25	02/10/2021 10:19	180	295	50.8	27.3	02/10/2021 13:19
4821591	Ρ.	02/03/2021 12:20	02/10/2021 07:25	02/10/2021 10:19	180	255	57.4	25.9	02/10/2021 13:19
4821592	D2	02/03/2021 12:20	02/10/2021 07:25	00/10/00/10/10	180	472	55.5	27.2	02/10/2021 13:19
4819814MS	D3	02/03/2021 12:20	02/10/2021 07:25	02/10/2021 10:19	180	923	49.3	27.4	02/10/2021 13:19
4819814MSD	2	00/03/00/140:00	000000000000000000000000000000000000000	02/10/2021 10:19				7 00	

06-LO-F0864 Issue 5.0

Effective Date: 2019-07-09

Page 1 of 1
Onyo
Oalh Jazz

40 190 14WISD	46 196 141015	1010011NC	4821592	4821591	4821590	4821589	4821588	4821587	4821586	4821585	4819814	4819170	LFB	LRB	Sample ID [
									B3						Detector	
02/10/21,10.19	02/10/21,10.19	03/10/31 10:10	02/10/21,10:19	02/10/21,10:19	02/10/21,10:19	02/10/21,10:19	02/10/21,10:19	02/10/21,10:19	02/10/21,10:19	02/10/21,10:19	02/10/21,10:19	02/10/21,10:19	02/10/21,10:19	02/10/21,10:19	Date	Analysis Start
12.504	10.000	202	2.320	0.930	0.871	0.092	0.524	0.881	1.923	0.580	2.301	-0.061	8.431	0.064	(pCi/L)	Activity
H	- H	+	l+ _	+	+	H	H	H -	l+ _	+	+	+	+	+	ਰ	_
99	2004	2	0.58	0.47	0.58	0.58	0.48	0.56	0.57	0.45	0.58	0.47).79		(pCi/L)	UNC
0.07	0.49	0 40	0.49	0.44	0.56	0.61	0.47	0.54	0.50	0.44	0.49	0.50	0.51	0.44	(pCi/L)	믿
1.32	<u> </u>	1 10											0.99		Recovery Ba	
															Q C	
															YQC	
02/10/2021 13.19	02/10/2021 13:19	00/10/0001 13:10	02/10/2021 13:19	02/10/2021 13:19	02/10/2021 13:19	02/10/2021 13:19	02/10/2021 13:19	02/10/2021 13:19	02/10/2021 13:19	02/10/2021 13:19	02/10/2021 13:19	02/10/2021 13:19	02/10/2021 13:19	02/10/2021 13:19	Analysis End Date	

06-LO-F0864 Issue 5.0

_	228	
LRB Activity	0.06	
LFB Activity	8.43	
LFB % Recovery	98.92	
MS % Recovery	95.10	
MSD % Recovery	107.82	
RPD	10.1	
RER		

MS Parent ID	
Parent value	2.3008187
Parent DL	0.4945048
MS Target	9.466
MSD Target	9.463
MS Corr. Activity	9.0025596
MSD Corr. Activity	10.203087
MS Activity	11.303378
MSD Activity	12.503906

LD Parent ID:	
Parent value	#N/A
Parent UNC	#N/A
LD value	#N/A
LD UNC	#N/A

9mg

Effective Date: 2019-07-09

Earliest Due Date/ Rush:_ 02/15/20

- Ra-226 Source	~	17:4)-	•	į
2021 Ra-226 Ra-228 BaSO ₄ Precip Date/Time: 2/2/2002/100/2002	YOH Precip Date/Time: 01/19/21 07-57	Source	Source	
		Ra-228	Ra-226	
	Raso, Precip Date/Time: 28/202/ © /2 20			

																	_	
		4819814MSD	4819814MS	4821592	4821591	4821590	4821589	4821588	4821587	4821586	4821585	4819814	4819170	LFB 82435	LRB 82435	Sample ID		Balance ID:
		1900.7	900:4	SHS &	976.2	5 10 10 10 10 10 10 10 10 10 10 10 10 10	464.8	967.9	Classe	7.00	929.8	70017	1850	1000	1000	Volume (mL)	Sample	DZ
•	1200. F	OR SI	1291183	13249;	7261.23	13980M	0,291.0	0,3/4.1	000000	73067	93012	1990.6	2266	0292.3	12954	Tare Weight (mg)	YOX Planchet	Balance ID:
		97179	CHULD I	2382	1395.15	93257	9315-1	9340.7	37452	9331.2	9334.5	9365.6	9312-1	9318.1	9320.6	Weight (mg)	YOX Planchet Final	CU
		M28 P. 2	といれてい	12725	12919	1276×	23/2.	13022	2000	13772	1) podeli	150000	9801.9	1.000%	1851.4	Tare Weight (mg)	BaSO ₄ Planchet	
		M28 P. 2 9342-3	× 9368 S	4778.0	4344.3	2226	9365.2	0359	4339.5	1	9 80 hh	04.70.5	1× (26) 25th	93608	93861	Final Weight (mg)	BaSO ₄ Planchet	Activity
		×	×	×	×	×	×	×	×	×	×	×	365 × 4 30	×	×	Added (mL)		N/A pCi/mL
		1.000	1.000										120/11/1021	1.000		Added (mL)	Ra-228	1 9,07 pci/ml
		3	100 AUG	17 17 17 17 17 17 17 17 17 17 17 17 17 1	A, 15 dusty	15 olivery	5 -	11 11	a cr	15 distri	As divid	7	>				Comments	ClimL
																		١

Lot # Conc Acetic Acid: WOOV IV	Reagent ID 18N H ₂ SO ₄ : 12 VX	Reagent ID 1N HNO3:	Reagent ID 6N HNO3: 12 7/U	Lot # Conc HNO3: WON FINE	For 7500-Ra B or 7500-Ra D
---------------------------------	---	---------------------	----------------------------	---------------------------	----------------------------

26,100

Reagent ID Y Carrier:	Reagent ID Ba Carrier:	Reagent ID Sr-Y Carrier:	Reagent ID Lead Carrier: _	Reagent ID Lead Carrier B:	Reagent ID Lead Carrier A:	Reagent ID 0.25M EDTA:
2 - gal (yol used:	12 7 36 Vol Used:	12 75	, NA .	18 - Jul.		12-1006
12 94 (Vol Used: 0.5 (mL) Conc. UVV (mg/mL)	(mL) Conc.	7				,
(mg/mL	(mg/mL	アルク				

QA - SDWA Detection Limit Study for Radionuclides

Date: 02/10/2020

Approved by: Bruce Li Date: 0
Comments: Added Instrument HA on 04/07/2020
Approved By: Dale Piechocki Date: 09/09/20 Date: 09/09/2020

					Earliest Analysis		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Mean			Target concentration
Instrument	Method	Matrix Type	Analyzed By	Prepared By	date	Parameter	(pCi/L)	Chi-Square	Acceptability	(pCi/L)							
	•					Example from Document Showing											
Example						Correct Equation Results	2.89	5.51	2.88	3.72	3.42	3.11	3.17	3.53	2.0	Acceptable	3.13
CK	906	RW	Jon Bolen	Jon Bolen	1/22/2020		1314.00	998.00	1075.00	883.00	865.00	1084.00	1223.00	1063.14	0.6	Acceptable	1015.00
DU	7110 C	RW	Jon Bolen	Jon Bolen		Gross Alpha	2.52	3.08	2.40	3.61	2.41	3.10	2.19	2.76	0.7	Acceptable	3.00
CI	7110 B	RW	Jon Bolen	Jon Bolen		Gross Alpha	2.67	3.85	2.25	2.84	2.25	3.19	2.68	2.82	0.7	Acceptable	3.15
CI	7110 B	RW	Jon Bolen	Jon Bolen	2/7/2020	Gross Beta	5.80	3.11	6.46	2.26	5.87	7.20	3.84	4.93	4.7	Acceptable	4.11
DU	7500-Ra D	RW	Jon Bolen	Jon Bolen		Radium 228	1.03	0.89	0.47	0.92	0.90	1.07	0.47	0.82	1.3	Acceptable	1.06
DU	7500-Ra B	RW	Jon Bolen	Jon Bolen		Radium 226	1.68	1.20	1.00	1.18	0.80	1.41	1.06	1.19	1.9	Acceptable	1.01
CK	906	RW	Jon Bolen	Jon Bolen	3/7/2020	Tritium	968.00	1080.00	916.00	855.00	1087.00	1098.00	1056.00	1008.57	0.2	Acceptable	1015.00
HA	906	RW	Jon Bolen	Jon Bolen	3/17/2020	Tritium	612.00	954.00	941.00	587.00	695.00	947.00	930.00	809.43	0.7	Acceptable	1007.00

06-LO-F0934 Issue 1.0

Effective Date: 2020-01-27 1 of 2

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Ple	ease	Sig	n	5	P	S	7	9	Ŋ	ᅩ	S	7	_	Trace [No. Col	Project Nam	*Results pro	☐ 1 Day*	Standar 3 Day*	Turnarour	Email Address:	Office Phone:	City, State, Zip Code:	Mailing Address:	Report To: F	Company Na	Report Results To:	\$ -	
		D	Released By	13:10	12:55	13:50	7:20	8.35	7.50	/ 11:10	10:25	\ 9:40	-25-219:10	Date Time Collected Collected	Project Name: MW Sampling-	ided end of busines	Ŋ,	Standard, 5-10 Days 3 Day*	Turnaround Requirements:	s.		p Code:	SS:	Report To: Paul Cederquist	ne: Grand Have	sults To:		11
In avocation this Obside of District advandance the terms as set forth at usual trace lake com/home of paracoment		11/11	By Received By	. MW-10	MW-9	MW-8	MW-7	MW-6	MW-5	MW-4	MW-3	MW-2	MW-1R	Client Sample ID	npling- 1-25-21	Results provided end of business day, requires prior approval. OI = OII		S=Soil / Solid W= Water			Cell Phone:	-			Company Name: Grand Haven Board of Light & Power		ABORATORIES, INC.	1.
	700	1/25/21	Date	N	N	N			<u></u>	Ľ	Z		2	Metals Field Filtered (Y / N)	Sampled By:	D = Drinking Water		Solid WI = Wipes er LW = Liquid Waste		Billing Email Address:	Phone Number:	City, State, Zip Code:	Billing Address (if different):	Contact Name:	PO #	Bill To:	Trace Analytical Laboratories, Inc 2241 Black Creek Road Muskegon, MI 49444-2673	CHAIN-C
the terms as		15:47	Time	8 9 1									w 7 × ×	Matrix Number of Containers Cool HCI HNO ₃ H ₄ SO ₄ NaOH NOON	3	Water		Waste		ess:		de:	different):				Laboratories, Inc. k Road)444-2673	CHAIN-OF-CUSTODY RECORD
not forth at water trace			Released By	100									×	NaOH S Other Total Metals Dissolved M Hardness													Phone 2 Fax 888 www.tra	ECORD
laba sam/sama of a				1 0 0									^ × ×	CI, F, Sulfa Bicarb-Alk, Radium 22	Carbo		Alk		An								Phone 231.773.5998 Fax 888.979.4469 www.trace-labs.com	
			Received By	0									×	pH					Analysis Requested		Sampling Time:	МеОН	Soil Volatiles Pres	Checked By:	Logged By:	Trace Use:	216	P
			Date	7.65	6.93	7.11	6.72	7.24	6.87	7.11	6.76	6.91	7.33	2H Remarks								Low Level L	erved (circle if applicabl	Checked By:	7		Trace ID No. 1 A 0660	Pageof
			Time				<u> </u>		7		,	1		Possible Hea	ith Ha	zards?	,					Lab	le):					

Temperature: 3%
Spec. Conductivity: 3%
Dissolved Oxygen: 10%
ORP: +/- 10 mV

Stabilization Criteria:

Notes:

Turbidity: 10% or <1

Pump Used: Peristaltic

모

, 72

6.

72

ė

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ORP (mV) Oxygen Dissolved Depth to Turbidity(NTU) Specific (Celsius) Water Conductivity Reading Time Well No.: MW 7 Client: GHBLP Temperature Depth to Water: Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form ナンス ラム 5 Z S S W W. 6 5.00 3.30 Purge Start Time: 7:00 Depth to Point: 18.81' Date: 1.25~ 21 5 2 Purge Rate: 300000 majon Sample Tubing Depth: 16' Field Personnel:

Turbidity: 10% or <1 pH: +/- 0.1

Pump Used: Peristaltic

Dissolved Oxygen: 10% ORP: +/- 10 mV

Spec. Conductivity: 3%

Stabilization Criteria: Temperature: 3%

Notes:

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Depth to Water: 5.

Purge Start Time: 7:25

Purge Rate: Social

Sample Tubing Depth: 10'

Depth to Point: 11.5'

Well No.: MW 5

Client: GHBLP Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form Field Personnel:

рН	Turbidity(NTU)	ORP (mV)		₹	ture	Depth to Water	Reading Time
789	10.6	777	1,27	2.23	1.0	5.69	7:40
687 687 687	10.6 9.8 9.8 9.7	.77 -77	1.22 1.22	2.23 2.23 2.23	9.1	5.69 5.69 5.69	7:40 7:43 7:45 7:47
180	8.8	-77	1.22	2,23	9.1	5.69	7:45
	9.7						7:47

Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1

Pump Used: Peristaltic

Spec. Conductivity: 3%

Stabilization Criteria:

Notes:

오

76

Temperature: 3%

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ORP (mV) **Oxygen** Specific (Celsius) Water Depth to Turbidity(NTU) Dissolved Conductivity Reading Time Depth to Water: 4. Temperature Well No.: MW 6 Client: GHBLP Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form とのと 96 9,83 ۲, ,29 ~ l 68.9 8 J 75 20 3 2 2 Purge Start Time: 8: 10 Depth to Point: 16.55' Date: 1-25-21 12 30 50 Purge Rate: 300 u.v. Sample Tubing Depth: 14' Field Personnel:

Turbidity: 10% or <1 pH: +/- 0.1

Pump Used: Peristaltic

Dissolved Oxygen: 10% ORP: +/- 10 mV Spec. Conductivity: 3%

Temperature: 3% Stabilization Criteria:

Notes:

오

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP Well No.: MW -1R	İR		Date: トララ・スト Depth to Point: 18.2ft	18.2ft	Field Sample Tubir	Field Personnel:		
Depth to Water: 5, 83	5,83	1.	Purge Start Time: <u>용: 서 て</u>	16: 8: H7	Purge	Purge Rate:		
Reading Time								1
	9:02	9:04 9:00	9.00		:			
Depth to Water	(e, 1)	() }	(e./)					
Temperature (Celsius)	777	701 701	72					
	·	8						
ivity	3.92	3.92 3.92	3.92					,
Dissolved Oxygen	1	1.19	10					
ORP (mV)	-99	b b-	-99					ni ya kana g
Turbidity(NTU)	1.2	9.7	7.3					
오)						1

Stabilization Criteria:
Temperature: 3%
Spec. Conductivity: 3%
Dissolved Oxygen: 10%
ORP: +/- 10 mV

Ċ

0

Q

Notes:

Turbidity: 10% or <1

Pump Used: Peristaltic

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

ORP (mV) Oxygen Water Depth to 오 Turbidity(NTU) Specific (Celsius) Depth to Water: 15, 47 Dissolved Conductivity Temperature Reading Time Well No.: MW 2 Client: GHBLP カンド 7017 0 8 27 80 のの、と 15 92 22 (Date: 1-25-21 Purge Start Time: 9:15 Depth to Point: 23.51' . 22 7 Purge Rate: _ Sample Tubing Depth: 20' Field Personnel: Sooul

> ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1

Pump Used: Peristaltic

Spec. Conductivity: 3% Dissolved Oxygen: 10%

Stabilization Criteria:

Notes:

Temperature: 3%

모

9

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Oxygen ORP (mV) Depth to Specific (Celsius) Water Depth to Water: Well No.: MW 3 Client: GHBLP Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form Turbidity(NTU) Dissolved Conductivity Temperature Reading Time 2005 5 5 5 TR らった 8.08 0. 5 6 I Date: Purge Start Time: 10:00 Depth to Point: 20.5' Ż 2 3 1-25-21 Sample Tubing Depth: 18' Field Personnel:

Dissolved Oxygen: 10% ORP: +/- 10 mV

Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3%

Notes:

Turbidity: 10% or <1

Pump Used: Peristaltic

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Oxygen Water ORP (mV) Specific Depth to 모 Turbidity(NTU) (Celsius) Dissolved Conductivity Temperature Reading Time Depth to Water: Well No.: MW 4 Client: GHBLP 2.60 20 0 4.90 ユ 8 7 46 0 0 カル (60 0 46 5 工 50 0 16. Purge Start Time: 10 : 나동 Depth to Point: 18.01' Date: |- 25-21 カー 5 T Purge Rate: ___ Sample Tubing Depth: 16' Field Personnel: Bound

Turbidity: 10% or <1 pH: +/- 0.1

ORP: +/- 10 mV Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3% **Stabilization Criteria:**

(Celsius)

B

Temperature

Specific

S

20

2

2,93

Oxygen

70

2

, 22

ORP (mV)

7(69

(

6

2

7/69

Dissolved Conductivity

모

7.65

7.65

Turbidity(NTU)

7,27

in

in

Water

5

2

2

Depth to

Reading Time

12:00

12:03

Sv.t/

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 10

Depth to Point: 13.00

Date: 1 - 25 - 2

Sample Tubing Depth: \ \

Purge Rate: __ 300ml

Depth to Water: 5

Purge Start Time: 11: 45

Field Personnel:

Notes:

Pump Used: Peristaltic

> ORP: +/- 10 mV Dissolved Oxygen: 10% Spec. Conductivity: 3%

Temperature: 3% Stabilization Criteria:

Turbidity: 10% or <1

Pump Used: Peristaltic

모

2 N

6.95

6.93

Notes:

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Oxygen Specific (Celsius) Water Depth to Turbidity(NTU) Conductivity **Reading Time** Well No.: MW 9 Client: GHBLP ORP (mV) Dissolved Temperature Depth to Water: S. 07 57:5 Ó 63 50 43 12: 48 \ll 0 2 28 200 K لر 2 00 Date: 1-25-21 Purge Start Time: 12.30 Depth to Point: 14.9 13:50 2 52 ム、い 23 69 上 3 Purge Rate: 30000 Sample Tubing Depth: \\$ Field Personnel:

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Spec. Conductivity: 3%
Dissolved Oxygen: 10%
ORP: +/- 10 mV
Turbidity: 10% or <1
pH: +/- 0.1

Pump Used: Peristaltic

Stabilization Criteria:

Notes:

Temperature: 3%

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

ORP (mV) 모 Oxygen Specific (Celsius) Water Depth to Turbidity(NTU) Dissolved Conductivity Reading Time Client: GHBLP Temperature Depth to Water: _ Well No.: MW 8 7.08 2.0 26 500 S 936 E 7.05 20 بق S S 936 、より S 2 55 5 Sh:6/ Purge Start Time: 13.25 Depth to Point: 11.85 Date: 1-25-2 99 936 D 05 Sample Tubing Depth: \SF + Field Personnel: KB

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace ID #:	kage Description: Cook Temperature: -1.2
Client Name: Grand Hawan BLP Time:	15:47 Logged in by: 15
Cooler Red	ceint
Cooler/samples delivered by: Trace courier	Cipt
Hand delivered	Name of delivery person: Evan Brewen
Commercial courier L	JPS FED EX US Mail
Tracking Number: Not Applicable	
Trøcking #:	
COC Seals present and intact on cooler? Not Applicable	No Yes
Custody seals signed by Client? No Yes Cl	ient custody seal # (if applicable):
Coolant and Ten	nperature
Type of Coolant Used	Cooler Temperature
Slurry w/ crushed, cubed, or chip ice? Correction Factors	•Digital Stick Thermometer CF = -0.2°C (030930)
Multiple bags of ice around samples?	•IR Thermometer CF = -0.3°C (IR #8)
Ice Packs/ Blue Ice : Representative Sa	mple Temperature:9.5°C (check one below)
No Coolant Present:	emp Blank (Stick Thermometer)
ce still precent upon receipt (circle one):	ient Sample (IR Thermometer)
Yes No N/A Melt Water:	°C (Use Digital Stick Thermometer)
General	
Yes / No N	A Comments ☐
All bottles arrived unbroken with labels in good condition? Each sample point is in a sealed plastic bag?	
Labels filled out completely?	
All bottle labels agree with Chain of Custody (COC)?	<u> </u>
Sufficient sample to run tests requested?	
pH checked - samples at correct pH and labeled as such?	HNO3 added @ 15:50
Correct chemical preservative added to samples?	
Air bubbles absent from VOAs?	<u> </u>
COC filled out properly and signed by client?	
COC signed in by TRACE sample custodian?	
Was project manager called and samples discussed?	
lotes:	*EMD pH Test Strips Used:
	pH 11.0-13.0
*	Lot: HC029115 Lot: HC729101
	Other:

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

May 18, 2021

Mr. Paul Cederquist Grand Haven Board of Light and Power-Monthly MWs 1700 Eaton Drive Grand Haven, MI 49417

Phone: 616-607-1292 Fax: (616) 842-3511

RE: Trace Project

21D0882

Client Project

MW Sampling-April 2021

Dear Mr. Cederquist:

Enclosed are your analytical results. The results of this report relate only to the samples listed in the body of this report.

All reports were examined through Trace's validation process to ensure that requirements for quality and completeness were satisfied. All reported analytical results were obtained in accordance with the methods referenced on the reports. Every practical effort was made to meet the reporting limit specifications for this work, however, some results may have raised reporting limits to correct for percent solids.

For clients that require NELAP Accreditation, Trace certifies that these test results meet all requirements of the NELAP Standard, except for those analytes with a "N" notation. These analytes have not been evaluated by NELAP at Trace's discretion and will not be reported unless requested by client.

If you have questions concerning this report, please contact me at 231.773.5998 or by email at jmink@trace-labs.com.

Sincerely,

Jon Mink Senior Project Manager Enclosures

NJDEP Accreditation No. MI008

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

SAMPLE SUMMARY

Trace Project ID:

21D0882

Client Project ID:

MW Sampling-April 2021

race ID	Sample ID	Matrix	Collected By	Date Collected	Date Received
1D0882-01	MW-1R	Ground Water	EB/Trace	04/23/21 09:15	04/26/21 08:45
1D0882-02	MW-2	Ground Water	EB/Trace	04/23/21 09:55	04/26/21 08:45
1D0882-03	MW-3	Ground Water	EB/Trace	04/23/21 10:20	04/26/21 08:45
1D0882-04	MW-4	Ground Water	EB/Trace	04/23/21 10:50	04/26/21 08:45
1D0882-05	MW-5	Ground Water	EB/Trace	04/23/21 07:50	04/26/21 08:45
1D0882-06	MW-6	Ground Water	EB/Trace	04/23/21 08:45	04/26/21 08:45
1D0882-07	MW-7	Ground Water	EB/Trace	04/23/21 07:30	04/26/21 08:45
1D0882-08	MW-8	Ground Water	EB/Trace	04/23/21 14:58	04/26/21 08:45
1D0882-09	MW-9	Ground Water	EB/Trace	04/23/21 14:30	04/26/21 08:45
1D0882-10	MW-10	Ground Water	EB/Trace	04/23/21 13:00	04/26/21 08:45

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

AN EXPLANATION OF TERMS AND SYMBOLS WHICH MAY OCCUR IN THIS REPORT

DEFINITIONS

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

MS Matrix Spike

MSD Matrix Spike Duplicate
RPD Relative Percent Difference

DUP Matrix Duplicate

RDL Reporting Detection Limit
MCL Maximum Contamination Limit
TIC Tentatively Identified Compound

<, ND or U Indicates the compound was analyzed for but not detected

Indicates a result that exceeds its associated MCL or Surrogate control limits
 Indicates that the laboratory is not accredited by NELAP for this compound

NA Indicates that the compound is not available.

NOTE: Samples for volatiles that have been extracted with a water miscible solvent were corrected for the

total volume of the solvent/water mixture.

Solid matrices Method Blanks are at 100% solids as such results are the same wet or dry.

DATA QUALIFIERS

ice ID: 21D0882-01	
Analysis: EPA 6020B	
Antimony	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Antimony	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Cadmium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Chromium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Copper	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Lead	Note 206: The MS and MSD recoveries were out of control high. The result for this analyte, in the non-spiked version of the sample, must be considered estimated.
Lead	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Lead	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Silver	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Thallium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Thallium	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Vanadium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Analysis: SM 4500-H+ B-11	
рН	Note SITE: The analysis was performed on site at the time of sampling.
race ID: 21D0882-02	
Analysis: EPA 6020B	N. 400 5 Th. 10 10 10 10 10 10 10 10 10 10 10 10 10
Lead	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Thallium	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Analysis: SM 4500-H+ B-11	
рН	Note SITE: The analysis was performed on site at the time of sampling.
race ID: 21D0882-03	
Analysis: EPA 6020B	N. 400 5 Th. 10 10 10 10 10 10 10 10 10 10 10 10 10
Antimony	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Antimony	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Arsenic	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Cadmium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Lead	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Lead	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Molybdenum	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Selenium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Silver	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Thallium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Thallium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Analysis: SM 4500-H+ B-11	
pH	Note SITE : The analysis was performed on site at the time of sampling.

Trace ID: 21D0882-04

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Analysis: EPA 6020B	
Lead	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Thallium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Analysis: SM 4500-H+ B-11	Note SITE : The analysis was performed on site at the time of sampling.
Trace ID: 21D0882-05	
Analysis: EPA 6020B Antimony	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Antimony	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Lead	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Lead	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Thallium	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Thallium	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Analysis: SM 4500-H+ B-11	Note SITE : The analysis was performed on site at the time of sampling.
рН	Note on E. The analysis was performed on site at the time of sampling.
Trace ID: 21D0882-06 Analysis: SM 4500-H+ B-11	
рН	Note SITE : The analysis was performed on site at the time of sampling.
Trace ID: 21D0882-07 Analysis: SM 4500-H+ B-11	
pH	Note SITE : The analysis was performed on site at the time of sampling.
Trace ID: 21D0882-08	
Analysis: SM 4500-H+ B-11 pH	Note SITE : The analysis was performed on site at the time of sampling.
Trace ID: 21D0882-09	
Analysis: SM 4500-H+ B-11 pH	Note SITE: The analysis was performed on site at the time of sampling.

Trace ID: 21D0882-10 *Analysis: EPA 6020B*

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Antimony	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.					
Lead	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards. Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.					
Lead						
Thallium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.					
Thallium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.					
Analysis: SM 4500-H+ B-11						
рН	Note SITE: The analysis was performed on site at the time of sampling.					
race ID: T109603-MSD1 Analysis: EPA 6010D						
Boron	Note 225: The MSD recovery was out of control. The MS recovery and associated RPD were in control. Because the background concentration of this analyte is greater than four times the spike amount, no data require qualification.					
Magnesium	Note 209: The MSD recovery was out of control. Because the MS recovery and the RPD between the MS and the MSD were in control, no data require qualification.					
Potassium	Note 424: The serial dilution for this analyte failed. Therefore, the analyte result in the original analysis should be considered estimated.					
race ID: T109603-MSD2						
Analysis: EPA 6010D Calcium	Note 208: The MS recovery was out of control. Because the MSD recovery and the RPD between the MS and the MSD were in control, no data require qualification.					
race ID: T109789-MSD1 Analysis: EPA 6010D						
Boron	Note 222: The MS and MSD recoveries were out of control. Because the sample background concentration of this analyte is greater than four times the spike amount, no data require qualification.					
Calcium	Note 222: The MS and MSD recoveries were out of control. Because the sample background concentration of this analyte is greater than four times the spike amount, no data require qualification.					
Magnesium	Note 222: The MS and MSD recoveries were out of control. Because the sample background concentration of this analyte is greater than four times the spike amount, no data require qualification.					
Potassium	Note 209: The MSD recovery was out of control. Because the MS recovery and the RPD between the MS and the MSD were in control, no data require qualification.					
Potassium	Note 424: The serial dilution for this analyte failed. Therefore, the analyte result in the original analysis should be considered estimated.					
Sodium	Note 222: The MS and MSD recoveries were out of control. Because the sample background concentration of this analyte is greater than four times the spike amount, no data require qualification.					
Analysis: EPA 6020B	no data regano quannoduori.					

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Barium	Note 209: The MSD recovery was out of control. Because the MS recovery and the RPD between the MS and the MSD were in control, no data require qualification.
Lead	Note 206: The MS and MSD recoveries were out of control high. The result for this analyte, in the non-spiked version of the sample, must be considered estimated.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21

Nickel

21D0882

Client Project ID: MW Sampling- April 2021

Trace ID: 21D0882-01 Sample ID: MW-1R	Matrix: Ground Water	Date Collected: 04/23/21 09:15 Date Received: 04/26/21 08:45			Fie	ld pH: 7.25			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCI
METALS, TOTAL									
Analysis Method: EPA 7470A Batch: T109519									
Mercury	<0.00020 mg/L	0.00020	1	04/28/21	kbc	04/29/21	acs	N	
METALS, TOTAL									
Analysis Method: EPA 1631E Batch: T109489									
Mercury	3.2 ng/L	0.50	1	04/27/21	ckd	04/28/21	ckd	N	
Analysis Method: EPA 6010D Batch: T109789									
Beryllium	<0.0020 mg/L	0.0020	1	05/05/21	mrh	05/07/21	dc		
Boron	40 mg/L	1.0	20	05/05/21	mrh	05/10/21	dc		
Calcium	590 mg/L	10	20	05/05/21	mrh	05/10/21	dc		
Iron	3.7 mg/L	0.20	1	05/05/21	mrh	05/07/21	dc		
Lithium	0.91 mg/L	0.010	1	05/05/21	mrh	05/07/21	dc	N	
Magnesium	140 mg/L	4.0	20	05/05/21	mrh	05/10/21	dc		
Potassium	48 mg/L	1.0	1	05/05/21	mrh	05/07/21	dc		
Sodium	220 mg/L	10	20	05/05/21	mrh	05/10/21	dc	N	
Zinc	0.13 mg/L	0.020	1	05/05/21	mrh	05/07/21	dc		
Analysis Method: EPA 6020B Batch: T109789									
Antimony	0.0031 mg/L	0.0015	5	05/05/21	mrh	05/05/21	acs	402.5	
Arsenic	0.0023 mg/L	0.0010	1	05/05/21	mrh	05/05/21	acs		
Barium	0.075 mg/L	0.050	5	05/05/21	mrh	05/05/21	acs		
Cadmium	0.0053 mg/L	0.0050	5	05/05/21	mrh	05/05/21	acs	402.5	
Chromium	<0.0045 mg/L	0.0045	5	05/05/21	mrh	05/07/21	acs	402.5	
Cobalt	0.022 mg/L	0.0080	5	05/05/21	mrh	05/07/21	acs		
Copper	0.0099 mg/L	0.020	5	05/05/21	mrh	05/07/21	acs	402.5, J	
Lead	0.039 mg/L	0.010	5	05/05/21	mrh	05/05/21	acs	206, 402.5	
Manganese	0.72 mg/L	0.12	5	05/05/21	mrh	05/07/21	acs		
Molybdenum	0.0058 mg/L	0.00040	1	05/05/21	mrh	05/05/21	acs	N	

CERTIFICATE OF ANALYSIS

0.025 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

0.025

5

05/05/21

mrh

05/07/21

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21D0882

Client Project ID: MW Sampling- April 2021

Trace ID: 21D0882-01	Matrix: Ground Water	atrix: Ground Water Date Collected: 04/23/21 09:15							
Sample ID: MW-1R		Date Received: 04/26/21 08:45			Field pH: 7.25				
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	МС
METALS, TOTAL									
Selenium	0.0021 mg/L	0.0020	1	05/05/21	mrh	05/05/21	acs		
Silver	<0.0050 mg/L	0.0050	5	05/05/21	mrh	05/05/21	acs	402.5	
Thallium	<0.0050 mg/L	0.0050	5	05/05/21	mrh	05/05/21	acs	402.5	
Vanadium	<0.0040 mg/L	0.0040	5	05/05/21	mrh	05/07/21	acs	402.5	
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	2100 mg/L	16	20	05/05/21		05/10/21	dc	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T109603									
Beryllium	<0.0010 mg/L	0.0010	1	04/30/21	ckd	05/06/21	dc		
Boron	68 mg/L	0.50	10	04/30/21	ckd	05/06/21	dc		
Calcium	320 mg/L	5.0	10	04/30/21	ckd	05/06/21	dc		
Iron	0.069 mg/L	0.10	1	04/30/21	ckd	05/06/21	dc	J	
Lithium	2.0 mg/L	0.010	1	04/30/21	ckd	05/06/21	dc	N	
Magnesium	130 mg/L	0.20	1	04/30/21	ckd	05/06/21	dc		
Potassium	36 mg/L	10	10	04/30/21	ckd	05/06/21	dc		
Sodium	220 mg/L	5.0	10	04/30/21	ckd	05/06/21	dc	N	
Zinc	0.0064 mg/L	0.020	1	04/30/21	ckd	05/06/21	dc	J	
Analysis Method: EPA 6020B Batch: T109749									
Antimony	0.00060 mg/L	0.0010	5	05/04/21	ckd	05/05/21	acs	402.5, J	
Arsenic	0.0016 mg/L	0.0010	1	05/04/21	ckd	05/05/21	acs		
Barium	0.13 mg/L	0.0030	5	05/04/21	ckd	05/05/21	acs		
Cadmium	<0.0010 mg/L	0.0010	1	05/04/21	ckd	05/05/21	acs		
Chromium	<0.00080 mg/L	0.00080	1	05/04/21	ckd	05/05/21	acs		
Cobalt	0.0027 mg/L	0.0016	1	05/04/21	ckd	05/05/21	acs		
Copper	0.00011 mg/L	0.00080	1	05/04/21	ckd	05/05/21	acs	J	
Lead	<0.0020 mg/L	0.0020	5	05/04/21	ckd	05/05/21	acs	402.5	
Manganese	0.50 mg/L	0.00040	1	05/04/21	ckd	05/05/21	acs		

CERTIFICATE OF ANALYSIS

0.00040

0.0033 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

05/04/21

ckd

05/05/21

Molybdenum

N

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21D0882

Client Project ID: MW Sampling-April 2021

Trace ID: 21D0882-01 Matrix: Ground Water Date Collected: 04/23/21 09:15 Sample ID: MW-1R Date Received: 04/26/21 08:45 Field pH: 7.25 **PARAMETERS RESULTS UNITS** DILUTION PREPARED BY ANALYZED BY NOTES MCL RDL **METALS, DISSOLVED** Nickel 0.0031 mg/L 0.00040 1 05/04/21 ckd 05/05/21 acs Selenium 0.0011 mg/L 0.00087 05/04/21 05/05/21 1 ckd acs <0.000040 mg/L Silver 0.000040 1 05/04/21 05/05/21 ckd acs Thallium <0.00087 mg/L 0.00087 5 05/04/21 ckd 05/05/21 acs 402.5 Vanadium 0.00065 mg/L 0.00080 1 05/04/21 ckd 05/05/21 acs J. **WET CHEMISTRY** Analysis Method: EPA 300.0 Rev. 2.1 Batch: T109450 Fluoride 8.9 mg/L 0.10 5 04/26/21 04/27/21 rg rg Chloride 230 mg/L 15 100 04/26/21 04/27/21 rg rg Sulfate as SO4 1100 mg/L 60 100 04/26/21 04/27/21 rg rg Analysis Method: SM 2320 B-11 Batch: T109705 05/03/21 ats Bicarbonate Alkalinity as CaCO3 at pH 4.5 800 mg/L 10 1 05/04/21 ats N Analysis Method: SM 2540 C-11 Batch: T109546 **Total Dissolved Solids** 2900 mg/L 40 04/28/21 04/28/21 cm Analysis Method: SM 4500-H+ B-11 Batch: T109205

CERTIFICATE OF ANALYSIS

7.25 pH Units

04/23/21

tb

SITE, N

04/23/21

tb

pН

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21D0882

Client Project ID: MW Sampling- April 2021

Trace ID: 21D0882-02 Sample ID: MW-2	Matrix: Ground Water Date Collected: 04/23/21 09:55 Date Received: 04/26/21 08:45 Field pH:								
Cample ID. MAAA		Date	Neceived. 04/20/	21 00.43	1 10	iu pri. 0.94			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: EPA 7470A Batch: T109519									
Mercury	<0.00020 mg/L	0.00020	1	04/28/21	kbc	04/29/21	acs	N	
METALS, TOTAL									
Analysis Method: EPA 1631E Batch: T109489									
Mercury	0.66 ng/L	0.50	1	04/27/21	ckd	04/28/21	ckd	N	
Analysis Method: EPA 6010D Batch: T109789									
Beryllium	<0.0020 mg/L	0.0020	1	05/05/21	mrh	05/07/21	dc		
Boron	65 mg/L	0.50	10	05/05/21	mrh	05/10/21	dc		
Calcium	220 mg/L	5.0	10	05/05/21	mrh	05/10/21	dc		
Iron	6.7 mg/L	0.20	1	05/05/21	mrh	05/07/21	dc		
Lithium	1.0 mg/L	0.010	1	05/05/21	mrh	05/07/21	dc	N	
Magnesium	73 mg/L	2.0	10	05/05/21	mrh	05/10/21	dc		
Potassium	48 mg/L	1.0	1	05/05/21	mrh	05/07/21	dc		
Sodium	210 mg/L	5.0	10	05/05/21	mrh	05/10/21	dc	N	
Zinc	<0.020 mg/L	0.020	1	05/05/21	mrh	05/07/21	dc		
Analysis Method: EPA 6020B Batch: T109789									
Antimony	<0.00030 mg/L	0.00030	1	05/05/21	mrh	05/05/21	acs		
Arsenic	0.0051 mg/L	0.0010	1	05/05/21	mrh	05/05/21	acs		
Barium	0.36 mg/L	0.010	1	05/05/21	mrh	05/05/21	acs		
Cadmium	<0.0010 mg/L	0.0010	1	05/05/21	mrh	05/05/21	acs		
Chromium	0.0086 mg/L	0.00090	1	05/05/21	mrh	05/05/21	acs		
Cobalt	0.0030 mg/L	0.0016	1	05/05/21	mrh	05/05/21	acs		
Copper	<0.0040 mg/L	0.0040	1	05/05/21	mrh	05/05/21	acs		
Lead	<0.0020 mg/L	0.0020	1	05/05/21	mrh	05/05/21	acs		
Manganese	0.75 mg/L	0.025	1	05/05/21	mrh	05/05/21	acs		
Molybdenum	0.0052 mg/L	0.00040	1	05/05/21	mrh	05/05/21	acs	N	

CERTIFICATE OF ANALYSIS

0.0050

0.016 mg/L

05/05/21

05/05/21

Nickel

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21D0882

Client Project ID: MW Sampling- April 2021

Trace ID: 21D0882-02	Matrix: Ground Water	ix: Ground Water Date Collected: 04/23/21 09:55							
Sample ID: MW-2		Date Received: 04/26/21 08:45			Fie	ld pH: 6.94			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MC
METALS, TOTAL									
Selenium	<0.0020 mg/L	0.0020	1	05/05/21	mrh	05/05/21	acs		
Silver	<0.0010 mg/L	0.0010	1	05/05/21	mrh	05/05/21	acs		
Thallium	<0.0010 mg/L	0.0010	1	05/05/21	mrh	05/05/21	acs		
Vanadium	<0.00080 mg/L	0.00080	1	05/05/21	mrh	05/05/21	acs		
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	850 mg/L	8.2	10	05/05/21		05/10/21	dc	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T109603									
Beryllium	<0.0010 mg/L	0.0010	1	04/30/21	ckd	05/06/21	dc		
Boron	43 mg/L	0.50	10	04/30/21	ckd	05/06/21	dc		
Calcium	140 mg/L	5.0	10	04/30/21	ckd	05/06/21	dc		
Iron	0.24 mg/L	0.10	1	04/30/21	ckd	05/06/21	dc		
Lithium	0.92 mg/L	0.010	1	04/30/21	ckd	05/06/21	dc	N	
Magnesium	44 mg/L	2.0	10	04/30/21	ckd	05/06/21	dc		
Potassium	19 mg/L	10	10	04/30/21	ckd	05/06/21	dc		
Sodium	130 mg/L	5.0	10	04/30/21	ckd	05/06/21	dc	N	
Zinc	<0.020 mg/L	0.020	1	04/30/21	ckd	05/06/21	dc		
Analysis Method: EPA 6020B Batch: T109749									
Antimony	0.00024 mg/L	0.00020	1	05/04/21	ckd	05/05/21	acs		
Arsenic	0.0076 mg/L	0.0010	1	05/04/21	ckd	05/05/21	acs		
Barium	0.20 mg/L	0.00060	1	05/04/21	ckd	05/05/21	acs		
Cadmium	<0.0010 mg/L	0.0010	1	05/04/21	ckd	05/05/21	acs		
Chromium	0.0086 mg/L	0.00080	1	05/04/21	ckd	05/05/21	acs		
Cobalt	0.0032 mg/L	0.0016	1	05/04/21	ckd	05/05/21	acs		
Copper	0.00012 mg/L	0.00080	1	05/04/21	ckd	05/05/21	acs	J	
Lead	<0.0020 mg/L	0.0020	5	05/04/21	ckd	05/05/21	acs	402.5	
Manganese	0.91 mg/L	0.00040	1	05/04/21	ckd	05/05/21	acs		

CERTIFICATE OF ANALYSIS

0.00040

0.0048 mg/L

05/04/21

ckd

05/05/21

N

acs

Molybdenum

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21D0882

Client Project ID: MW Sampling-April 2021

Trace ID: 21D0882-02 Matrix: Ground Water Date Collected: 04/23/21 09:55 Sample ID: MW-2 Date Received: 04/26/21 08:45 Field pH: 6.94 **PARAMETERS RESULTS UNITS** DILUTION PREPARED BY ANALYZED ΒY NOTES MCL RDL **METALS, DISSOLVED** Nickel 0.014 mg/L 0.00040 1 05/04/21 ckd 05/05/21 acs Selenium 0.00080 mg/L 0.00087 05/04/21 05/05/21 J 1 ckd acs <0.000040 mg/L Silver 0.000040 1 05/04/21 05/05/21 ckd acs Thallium <0.00087 mg/L 0.00087 5 05/04/21 ckd 05/05/21 acs 402.5 Vanadium 0.00029 mg/L 0.00080 1 05/04/21 ckd 05/05/21 acs J **WET CHEMISTRY** Analysis Method: EPA 300.0 Rev. 2.1 Batch: T109450 Fluoride 8.0 mg/L 0.10 5 04/26/21 04/27/21 rg rg Chloride 140 mg/L 3.8 25 04/26/21 04/27/21 rg rg Sulfate as SO4 1.5 mg/L 3.0 5 04/26/21 04/27/21 J rg rg Analysis Method: SM 2320 B-11 Batch: T109705 05/03/21 ats Bicarbonate Alkalinity as CaCO3 at pH 4.5 1800 mg/L 20 05/04/21 ats N Analysis Method: SM 2540 C-11 Batch: T109546 **Total Dissolved Solids** 1700 mg/L 40 04/28/21 cm 04/28/21 cm Analysis Method: SM 4500-H+ B-11

CERTIFICATE OF ANALYSIS

6.94 pH Units

04/23/21

tb

SITE, N

04/23/21

tb

Batch: T109205

pН

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID:

21D0882

Client Project ID: MW Sampling- April 2021

Trace ID: 21D0882-03 Matrix: Ground Water Date Collected: 04/23/21 10:20 Sample ID: MW-3 Date Received: 04/26/21 08:45 Field pH: 6.91 **PARAMETERS** RESULTS UNITS DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 7470A Batch: T109519 Mercury <0.00020 mg/L 0.00020 04/28/21 kbc 04/29/21 Ν acs **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T109489 0.55 ng/L 0.50 04/27/21 04/28/21 Mercury ckd ckd Ν Analysis Method: EPA 6010D Batch: T109789 0.0020 05/07/21 Beryllium <0.0020 mg/L 1 05/05/21 mrh dc Boron 4.3 mg/L 0.050 1 05/05/21 mrh 05/07/21 dc Calcium 680 mg/L 10 20 05/05/21 mrh 05/10/21 dc Iron 0.71 mg/L 0.20 1 05/05/21 mrh 05/07/21 dc Lithium 0.070 mg/L 0.010 1 05/05/21 mrh 05/07/21 dc Ν 290 mg/L 05/05/21 05/10/21 Magnesium 4.0 20 mrh dc 1 05/07/21 Potassium 22 mg/L 1.0 05/05/21 mrh dc Sodium 160 mg/L 10 20 05/05/21 mrh 05/10/21 dc N <0.020 mg/L 0.020 05/05/21 05/07/21 dc Zinc mrh Analysis Method: EPA 6020B Batch: T109789 <0.0015 mg/L 0.0015 5 05/05/21 05/05/21 402.5 Antimony mrh acs Arsenic <0.0050 mg/L 0.0050 5 05/05/21 mrh 05/05/21 402.5 acs 0.21 mg/L 0.050 5 05/05/21 05/05/21 Barium mrh acs Cadmium <0.0050 mg/L 0.0050 5 05/05/21 mrh 05/05/21 acs 402 5 Chromium 0.0017 mg/L 0.00090 1 05/05/21 mrh 05/05/21 acs Cobalt <0.0016 mg/L 0.0016 1 05/05/21 mrh 05/05/21 acs <0.0040 mg/L 0.0040 05/05/21 05/05/21 Copper 1 mrh acs Lead <0.010 mg/L 0.010 5 05/05/21 mrh 05/05/21 acs 402.5 5 Manganese 2.5 mg/L 0.12 05/05/21 mrh 05/05/21 acs <0.0020 mg/L 05/05/21 Molybdenum 0.0020 5 05/05/21 mrh 402.5, N acs

CERTIFICATE OF ANALYSIS

0.0050

0.0023 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

05/05/21

mrh

05/05/21

Nickel

J

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21D0882

Client Project ID: MW Sampling-April 2021

Trace ID: 21D0882-03 Sample ID: MW-3	Matrix: Ground Water Date Collected: 04/23/21 10:20 Date Received: 04/26/21 08:45 Field pH: 6.91								
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Selenium	<0.010 mg/L	0.010	5	05/05/21	mrh	05/05/21	acs	402.5	
Silver	<0.0050 mg/L	0.0050	5	05/05/21	mrh	05/05/21	acs	402.5	
Thallium	<0.0050 mg/L	0.0050	5	05/05/21	mrh	05/05/21	acs	402.5	
Vanadium	0.00054 mg/L	0.00080	1	05/05/21	mrh	05/05/21	acs	J	
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	2900 mg/L	16	20	05/05/21		05/10/21	dc	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T109603									
Beryllium	<0.0010 mg/L	0.0010	1	04/30/21	ckd	05/06/21	dc		
Boron	4.4 mg/L	0.050	1	04/30/21	ckd	05/06/21	dc		
Calcium	400 mg/L	5.0	10	04/30/21	ckd	05/06/21	dc		
Iron	0.078 mg/L	0.10	1	04/30/21	ckd	05/06/21	dc	J	
Lithium	0.069 mg/L	0.010	1	04/30/21	ckd	05/06/21	dc	N	
Magnesium	160 mg/L	2.0	10	04/30/21	ckd	05/06/21	dc		
Potassium	21 mg/L	1.0	1	04/30/21	ckd	05/06/21	dc		
Sodium	90 mg/L	5.0	10	04/30/21	ckd	05/06/21	dc	N	
Zinc	<0.020 mg/L	0.020	1	04/30/21	ckd	05/06/21	dc		
Analysis Method: EPA 6020B Batch: T109749									
Antimony	<0.0010 mg/L	0.0010	5	05/04/21	ckd	05/05/21	acs	402.5	
Arsenic	0.0016 mg/L	0.0010	1	05/04/21	ckd	05/05/21	acs		
Barium	0.21 mg/L	0.0030	5	05/04/21	ckd	05/05/21	acs		
Cadmium	<0.0010 mg/L	0.0010	1	05/04/21	ckd	05/05/21	acs		
Chromium	0.0019 mg/L	0.00080	1	05/04/21	ckd	05/05/21	acs		
Cobalt	0.00066 mg/L	0.0016	1	05/04/21	ckd	05/05/21	acs	J	
Copper	0.00018 mg/L	0.00080	1	05/04/21	ckd	05/05/21	acs	J	
Lead	<0.0020 mg/L	0.0020	5	05/04/21	ckd	05/05/21	acs	402.5	
Manganese	2.6 mg/L	0.0020	5	05/04/21	ckd	05/05/21	acs		
Molybdenum	0.00010 mg/L	0.00040	1	05/04/21	ckd	05/05/21	acs	J, N	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21D0882

Client Project ID: MW Sampling-April 2021

Trace ID: 21D0882-03 Matrix: Ground Water Date Collected: 04/23/21 10:20 Sample ID: MW-3 Date Received: 04/26/21 08:45 Field pH: 6.91 **PARAMETERS RESULTS UNITS** DILUTION PREPARED BY ANALYZED ΒY NOTES MCL RDL **METALS, DISSOLVED** Nickel 0.0025 mg/L 0.00040 1 05/04/21 ckd 05/05/21 acs Selenium 0.00057 mg/L 0.00087 05/04/21 05/05/21 1 ckd J acs <0.000040 mg/L Silver 0.000040 1 05/04/21 05/05/21 ckd acs Thallium <0.00087 mg/L 0.00087 5 05/04/21 ckd 05/05/21 acs 402.5 Vanadium 0.00084 mg/L 0.00080 1 05/04/21 ckd 05/05/21 acs **WET CHEMISTRY** Analysis Method: EPA 300.0 Rev. 2.1 Batch: T109450 Fluoride 1.3 mg/L 0.10 5 04/26/21 04/27/21 rg rg Chloride 380 mg/L 7.5 50 04/26/21 04/27/21 rg rg Sulfate as SO4 570 mg/L 30 50 04/26/21 04/27/21 rg rg Analysis Method: SM 2320 B-11 Batch: T109705 05/03/21 Bicarbonate Alkalinity as CaCO3 at pH 4.5 1600 mg/L 20 ats 05/04/21 ats N Analysis Method: SM 2540 C-11 Batch: T109546 **Total Dissolved Solids** 2900 mg/L 40 04/28/21 04/28/21 cm Analysis Method: SM 4500-H+ B-11 Batch: T109205 6.91 pH Units 04/23/21 04/23/21 SITE, N

CERTIFICATE OF ANALYSIS

tb

tb

pН

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21D0882

Client Project ID: MW Sampling- April 2021

Trace ID: 21D0882-04 Sample ID: MW-4	Matrix: Ground Water		Date Collected: 04/23/21 10:50 Date Received: 04/26/21 08:45						
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: EPA 7470A Batch: T109519									
Mercury	<0.00020 mg/L	0.00020	1	04/28/21	kbc	04/29/21	acs	N	
METALS, TOTAL									
Analysis Method: EPA 1631E Batch: T109489									
Mercury	<0.50 ng/L	0.50	1	04/27/21	ckd	04/28/21	ckd	N	
Analysis Method: EPA 6010D Batch: T109789									
Beryllium	<0.0020 mg/L	0.0020	1	05/05/21	mrh	05/07/21	dc		
Boron	3.3 mg/L	0.050	1	05/05/21	mrh	05/07/21	dc		
Calcium	380 mg/L	5.0	10	05/05/21	mrh	05/10/21	dc		
Iron	6.9 mg/L	0.20	1	05/05/21	mrh	05/07/21	dc		
Lithium	0.060 mg/L	0.010	1	05/05/21	mrh	05/07/21	dc	N	
Magnesium	100 mg/L	2.0	10	05/05/21	mrh	05/10/21	dc		
Potassium	22 mg/L	1.0	1	05/05/21	mrh	05/07/21	dc		
Sodium	78 mg/L	5.0	10	05/05/21	mrh	05/10/21	dc	N	
Zinc	<0.020 mg/L	0.020	1	05/05/21	mrh	05/07/21	dc		
Analysis Method: EPA 6020B Batch: T109789									
Antimony	<0.00030 mg/L	0.00030	1	05/05/21	mrh	05/05/21	acs		
Arsenic	0.0012 mg/L	0.0010	1	05/05/21	mrh	05/05/21	acs		
Barium	0.086 mg/L	0.010	1	05/05/21	mrh	05/05/21	acs		
Cadmium	<0.0010 mg/L	0.0010	1	05/05/21	mrh	05/05/21	acs		
Chromium	0.0019 mg/L	0.00090	1	05/05/21	mrh	05/05/21	acs		
Cobalt	<0.0016 mg/L	0.0016	1	05/05/21	mrh	05/05/21	acs		
Copper	0.0020 mg/L	0.0040	1	05/05/21	mrh	05/05/21	acs	J	
Lead	<0.0020 mg/L	0.0020	1	05/05/21	mrh	05/05/21	acs		
Manganese	0.83 mg/L	0.025	1	05/05/21	mrh	05/05/21	acs		
Molybdenum	0.00085 mg/L	0.00040	1	05/05/21	mrh	05/05/21	acs	N	
Minima	0.040 "	0.0050		05/05/04		05/05/04			

CERTIFICATE OF ANALYSIS

0.0050

0.018 mg/L

05/05/21

05/05/21

Nickel

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21D0882

Client Project ID: MW Sampling- April 2021

Trace ID: 21D0882-04 Sample ID: MW-4	Matrix: Ground Water		Collected: 04/23		F:-	ld nU: 7 40			
Sample ID: MVV-4		Date	Received: 04/26	/21 08:45	FIE	ld pH: 7.18			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	МС
METALS, TOTAL									
Selenium	<0.0020 mg/L	0.0020	1	05/05/21	mrh	05/05/21	acs		
Silver	<0.0010 mg/L	0.0010	1	05/05/21	mrh	05/05/21	acs		
Thallium	<0.0010 mg/L	0.0010	1	05/05/21	mrh	05/05/21	acs		
Vanadium	0.00055 mg/L	0.00080	1	05/05/21	mrh	05/05/21	acs	J	
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	1400 mg/L	8.2	10	05/05/21		05/10/21	dc	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T109603									
Beryllium	<0.0010 mg/L	0.0010	1	04/30/21	ckd	05/06/21	dc		
Boron	3.3 mg/L	0.050	1	04/30/21	ckd	05/06/21	dc		
Calcium	340 mg/L	5.0	10	04/30/21	ckd	05/06/21	dc		
Iron	2.7 mg/L	0.10	1	04/30/21	ckd	05/06/21	dc		
Lithium	0.064 mg/L	0.010	1	04/30/21	ckd	05/06/21	dc	N	
Magnesium	90 mg/L	2.0	10	04/30/21	ckd	05/06/21	dc		
Potassium	22 mg/L	1.0	1	04/30/21	ckd	05/06/21	dc		
Sodium	64 mg/L	5.0	10	04/30/21	ckd	05/06/21	dc	N	
Zinc	<0.020 mg/L	0.020	1	04/30/21	ckd	05/06/21	dc		
Analysis Method: EPA 6020B Batch: T109749									
Antimony	0.00025 mg/L	0.00020	1	05/04/21	ckd	05/05/21	acs		
Arsenic	0.00098 mg/L	0.0010	1	05/04/21	ckd	05/05/21	acs	J	
Barium	0.073 mg/L	0.00060	1	05/04/21	ckd	05/05/21	acs		
Cadmium	<0.0010 mg/L	0.0010	1	05/04/21	ckd	05/05/21	acs		
Chromium	0.0020 mg/L	0.00080	1	05/04/21	ckd	05/05/21	acs		
Cobalt	0.00027 mg/L	0.0016	1	05/04/21	ckd	05/05/21	acs	J	
Copper	0.00027 mg/L	0.00080	1	05/04/21	ckd	05/05/21	acs	J	
Lead	<0.0020 mg/L	0.0020	5	05/04/21	ckd	05/05/21	acs	402.5	
Manganese	1.1 mg/L	0.00040	1	05/04/21	ckd	05/05/21	acs		

CERTIFICATE OF ANALYSIS

0.00040

0.00078 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

05/04/21

ckd

05/05/21

Molybdenum

N

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21D0882

Client Project ID: MW Sampling-April 2021

Trace ID: 21D0882-04 Matrix: Ground Water Date Collected: 04/23/21 10:50 Sample ID: MW-4 Date Received: 04/26/21 08:45 Field pH: 7.18 **PARAMETERS RESULTS UNITS** DILUTION PREPARED BY ANALYZED ΒY NOTES MCL RDL **METALS, DISSOLVED** Nickel 0.019 mg/L 0.00040 1 05/04/21 ckd 05/05/21 acs Selenium <0.00087 mg/L 0.00087 05/04/21 ckd 05/05/21 1 acs <0.000040 mg/L Silver 0.000040 1 05/04/21 05/05/21 ckd acs Thallium <0.00087 mg/L 0.00087 5 05/04/21 ckd 05/05/21 acs 402.5 Vanadium 0.00054 mg/L 0.00080 1 05/04/21 ckd 05/05/21 acs J. **WET CHEMISTRY** Analysis Method: EPA 300.0 Rev. 2.1 Batch: T109450 Fluoride 1.1 mg/L 0.10 5 04/26/21 04/27/21 rg rg Chloride 220 mg/L 7.5 50 04/26/21 04/27/21 rg rg Sulfate as SO4 530 mg/L 30 50 04/26/21 04/27/21 rg rg Analysis Method: SM 2320 B-11 Batch: T109705 05/03/21 Bicarbonate Alkalinity as CaCO3 at pH 4.5 660 mg/L 20 ats 05/04/21 ats N Analysis Method: SM 2540 C-11 Batch: T109546

40

04/28/21

04/23/21

tb

04/28/21

04/23/21

cm

tb

SITE, N

CERTIFICATE OF ANALYSIS

1800 mg/L

7.18 pH Units

Total Dissolved Solids

pН

Analysis Method: SM 4500-H+ B-11

Batch: T109205

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21D0882

Client Project ID: MW Sampling-April 2021

Trace ID: 21D0882-05 Matrix: Ground Water Date Collected: 04/23/21 07:50 Sample ID: MW-5 Date Received: 04/26/21 08:45 Field pH: 6.76 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 7470A Batch: T109519 Mercury <0.00020 mg/L 0.00020 04/28/21 kbc 04/29/21 Ν acs **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T109489 Mercury <0.50 ng/L 0.50 04/27/21 ckd 04/28/21 ckd Ν Analysis Method: EPA 6010D Batch: T109789 0.0020 05/07/21 Beryllium <0.0020 mg/L 1 05/05/21 mrh dc Boron 2.3 mg/L 0.050 1 05/05/21 mrh 05/07/21 dc Calcium 560 mg/L 10 20 05/05/21 mrh 05/10/21 dc Iron 24 mg/L 0.20 1 05/05/21 mrh 05/07/21 dc Lithium 0.12 mg/L 0.010 1 05/05/21 mrh 05/07/21 dc Ν 05/05/21 05/07/21 Magnesium 41 mg/L 0.20 mrh dc 1 Potassium 10 mg/L 1.0 1 05/05/21 05/07/21 mrh dc Sodium 28 mg/L 0.50 1 05/05/21 mrh 05/07/21 dc N <0.020 mg/L 0.020 05/05/21 mrh 05/07/21 dc Zinc Analysis Method: EPA 6020B Batch: T109789 <0.0015 mg/L 0.0015 5 05/05/21 05/05/21 402.5 Antimony mrh acs Arsenic 0.076 mg/L 0.0010 1 05/05/21 mrh 05/05/21 acs Barium 0.054 mg/L 0.050 5 05/05/21 05/05/21 mrh acs <0.0010 mg/L Cadmium 0.0010 1 05/05/21 mrh 05/05/21 acs Chromium <0.00090 mg/L 0.00090 1 05/05/21 mrh 05/05/21 acs Cobalt 0.0014 mg/L 0.0016 1 05/05/21 mrh 05/05/21 J acs <0.0040 mg/L 0.0040 05/05/21 05/05/21 Copper 1 mrh acs Lead <0.010 mg/L 0.010 5 05/05/21 mrh 05/05/21 acs 402.5 Manganese 1.8 mg/L 0.025 1 05/05/21 mrh 05/05/21 acs 0.0068 mg/L 05/05/21 Molybdenum 0.00040 05/05/21 N 1 mrh acs

CERTIFICATE OF ANALYSIS

0.0050

0.0023 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

05/05/21

mrh

05/05/21

Nickel

J

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21D0882

Molybdenum

Client Project ID: MW Sampling- April 2021

Trace ID: 21D0882-05	Matrix: Ground Water		Collected: 04/23						
Sample ID: MW-5		Date Received: 04/26/21 08:45				ld pH: 6.76			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MC
METALS, TOTAL									
Selenium	<0.0020 mg/L	0.0020	1	05/05/21	mrh	05/05/21	acs		
Silver	<0.0010 mg/L	0.0010	1	05/05/21	mrh	05/05/21	acs		
Thallium	<0.0050 mg/L	0.0050	5	05/05/21	mrh	05/05/21	acs	402.5	
Vanadium	<0.00080 mg/L	0.00080	1	05/05/21	mrh	05/05/21	acs		
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	1600 mg/L	0.82	20	05/05/21		05/10/21	dc	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T109603									
Beryllium	0.00013 mg/L	0.0010	1	04/30/21	ckd	05/06/21	dc	J	
Boron	2.2 mg/L	0.050	1	04/30/21	ckd	05/06/21	dc		
Calcium	320 mg/L	12	25	04/30/21	ckd	05/06/21	dc		
Iron	22 mg/L	0.10	1	04/30/21	ckd	05/06/21	dc		
Lithium	0.12 mg/L	0.010	1	04/30/21	ckd	05/06/21	dc	N	
Magnesium	40 mg/L	0.20	1	04/30/21	ckd	05/06/21	dc		
Potassium	10 mg/L	1.0	1	04/30/21	ckd	05/06/21	dc		
Sodium	28 mg/L	0.50	1	04/30/21	ckd	05/06/21	dc	N	
Zinc	0.0023 mg/L	0.020	1	04/30/21	ckd	05/06/21	dc	J	
Analysis Method: EPA 6020B Batch: T109749									
Antimony	<0.0010 mg/L	0.0010	5	05/04/21	ckd	05/05/21	acs	402.5	
Arsenic	0.071 mg/L	0.0010	1	05/04/21	ckd	05/05/21	acs		
Barium	0.058 mg/L	0.0030	5	05/04/21	ckd	05/05/21	acs		
Cadmium	<0.0010 mg/L	0.0010	1	05/04/21	ckd	05/05/21	acs		
Chromium	<0.00080 mg/L	0.00080	1	05/04/21	ckd	05/05/21	acs		
Cobalt	0.0013 mg/L	0.0016	1	05/04/21	ckd	05/05/21	acs	J	
Copper	0.00094 mg/L	0.00080	1	05/04/21	ckd	05/05/21	acs		
Lead	<0.0020 mg/L	0.0020	5	05/04/21	ckd	05/05/21	acs	402.5	
Manganese	1.7 mg/L	0.0020	5	05/04/21	ckd	05/05/21	acs		

CERTIFICATE OF ANALYSIS

0.00040

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

05/04/21

ckd

05/05/21

N

Page 21 of 58

acs

0.0063 mg/L

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21D0882

Client Project ID: MW Sampling- April 2021

Trace ID: 21D0882-05 Sample ID: MW-5	Matrix: Ground Water		Date Collected: 04/23/21 07:50 Date Received: 04/26/21 08:45			ld pH: 6.76			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, DISSOLVED									
Nickel	0.00086 mg/L	0.00040	1	05/04/21	ckd	05/05/21	acs		
Selenium	<0.00087 mg/L	0.00087	1	05/04/21	ckd	05/05/21	acs		
Silver	<0.000040 mg/L	0.000040	1	05/04/21	ckd	05/05/21	acs		
Thallium	<0.00087 mg/L	0.00087	5	05/04/21	ckd	05/05/21	acs	402.5	
Vanadium	0.00035 mg/L	0.00080	1	05/04/21	ckd	05/05/21	acs	J	
WET CHEMISTRY Analysis Method: EPA 300.0 Rev. 2.1									
Batch: T109450									
Fluoride	3.9 mg/L	0.10	5	04/26/21	rg	04/27/21	rg		
Chloride	28 mg/L	0.75	5	04/26/21	rg	04/27/21	rg		
Sulfate as SO4	540 mg/L	30	50	04/26/21	rg	04/27/21	rg		
Analysis Method: SM 2320 B-11 Batch: T109705									
Bicarbonate Alkalinity as CaCO3 at pH 4.5	5 400 mg/L	20	4	05/03/21	ats	05/04/21	ats	N	
Analysis Method: SM 2540 C-11 Batch: T109546									
Total Dissolved Solids	2000 mg/L	40	4	04/28/21	cm	04/28/21	cm		
Analysis Method: SM 4500-H+ B-11									

CERTIFICATE OF ANALYSIS

6.76 pH Units

04/23/21

tb

04/23/21

SITE, N

tb

Batch: T109205

рΗ

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21D0882

Client Project ID: MW Sampling- April 2021

Trace ID: 21D0882-06	Matrix: Ground Water		ate Collected: 04/23/21 08:45			11			
Sample ID: MW-6		Date	Received: 04/26	/21 08:45	Fie	eld pH: 7.17			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: EPA 7470A Batch: T109519									
Mercury	<0.00020 mg/L	0.00020	1	04/28/21	kbc	04/29/21	acs	N	
METALS, TOTAL									
Analysis Method: EPA 1631E Batch: T109489									
Mercury	6.0 ng/L	0.50	1	04/27/21	ckd	04/28/21	ckd	N	
Analysis Method: EPA 6010D Batch: T109789									
Beryllium	<0.0020 mg/L	0.0020	1	05/05/21	mrh	05/07/21	dc		
Boron	8.6 mg/L	0.050	1	05/05/21	mrh	05/07/21	dc		
Calcium	230 mg/L	5.0	10	05/05/21	mrh	05/10/21	dc		
Iron	18 mg/L	0.20	1	05/05/21	mrh	05/07/21	dc		
Lithium	0.16 mg/L	0.010	1	05/05/21	mrh	05/07/21	dc	N	
Magnesium	110 mg/L	2.0	10	05/05/21	mrh	05/10/21	dc		
Potassium	27 mg/L	1.0	1	05/05/21	mrh	05/07/21	dc		
Sodium	80 mg/L	5.0	10	05/05/21	mrh	05/10/21	dc	N	
Zinc	<0.020 mg/L	0.020	1	05/05/21	mrh	05/07/21	dc		
Analysis Method: EPA 6020B Batch: T109789									
Antimony	<0.00030 mg/L	0.00030	1	05/05/21	mrh	05/05/21	acs		
Arsenic	0.00083 mg/L	0.0010	1	05/05/21	mrh	05/05/21	acs	J	
Barium	1.3 mg/L	0.010	1	05/05/21	mrh	05/05/21	acs		
Cadmium	<0.0010 mg/L	0.0010	1	05/05/21	mrh	05/05/21	acs		
Chromium	0.00089 mg/L	0.00090	1	05/05/21	mrh	05/05/21	acs	J	
Cobalt	<0.0016 mg/L	0.0016	1	05/05/21	mrh	05/05/21	acs		
Copper	<0.0040 mg/L	0.0040	1	05/05/21	mrh	05/05/21	acs		
Lead	0.0021 mg/L	0.0020	1	05/05/21	mrh	05/05/21	acs		
Manganese	0.32 mg/L	0.025	1	05/05/21	mrh	05/05/21	acs		
Molybdenum	0.00045 mg/L	0.00040	1	05/05/21	mrh	05/05/21	acs	N	

CERTIFICATE OF ANALYSIS

0.0050

<0.0050 mg/L

05/05/21

mrh

05/05/21

acs

Nickel

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID:

21D0882

Client Project ID: MW Sampling-April 2021

Trace ID: 21D0882-06 Matrix: Ground Water Date Collected: 04/23/21 08:45 Sample ID: MW-6 Date Received: 04/26/21 08:45 Field pH: 7.17 **PARAMETERS** RESULTS UNITS DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL **RDL METALS, TOTAL** Selenium <0.0020 mg/L 0.0020 1 05/05/21 mrh 05/05/21 acs Silver <0.0010 mg/L 0.0010 05/05/21 mrh 05/05/21 1 acs <0.0010 mg/L 0.0010 05/05/21 Thallium 1 05/05/21 mrh acs Vanadium <0.00080 mg/L 0.00080 05/05/21 mrh 05/05/21 acs Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 1000 mg/L 8.2 10 05/05/21 05/10/21 N dc **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T109603 <0.0010 mg/L 0.0010 04/30/21 05/06/21 Beryllium 1 ckd dc **Boron** 8.4 mg/L 0.050 1 04/30/21 ckd 05/06/21 dc Calcium 220 mg/L 5.0 10 04/30/21 ckd 05/10/21 dc 04/30/21 0.10 Iron 0.23 mg/L 1 ckd 05/06/21 dc Lithium 0.17 mg/L 0.010 1 04/30/21 ckd 05/06/21 dc Ν Magnesium 100 mg/L 2.0 10 04/30/21 ckd 05/10/21 dc 27 mg/L 04/30/21 05/06/21 **Potassium** 1.0 1 ckd dc Sodium 73 mg/L 5.0 10 04/30/21 ckd 05/10/21 dc Ν <0.020 mg/L 0.020 04/30/21 ckd 05/06/21 dc Analysis Method: EPA 6020B Batch: T109749 0.000093 mg/L 0.00020 1 05/04/21 05/05/21 Antimony ckd acs J Arsenic 0.00031 mg/L 0.0010 1 05/04/21 ckd 05/05/21 J acs Barium 1.3 mg/L 0.00060 05/04/21 ckd 05/05/21 1 acs Cadmium <0.0010 mg/L 0.0010 05/04/21 05/05/21 1 ckd acs <0.00080 mg/L 0.00080 05/04/21 05/05/21 Chromium 1 ckd acs 0.00022 mg/L 0.0016 05/04/21 05/05/21 Cobalt 1 ckd J acs 0.00029 mg/L 0.00080 1 05/04/21 05/05/21 J Copper ckd acs <0.00040 mg/L Lead 0.00040 1 05/04/21 ckd 05/05/21 acs 0.38 mg/L 0.00040 05/04/21 ckd 05/05/21 Manganese 1 acs

CERTIFICATE OF ANALYSIS

0.00040

0.00023 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

05/04/21

ckd

05/05/21

Molybdenum

J, N

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21D0882

Client Project ID: MW Sampling- April 2021

Trace ID: 21D0882-06 Matrix: Ground Water Date Collected: 04/23/21 08:45

Sample ID: MW-6		Date Received: 04/26/21 08:45			Field pH: 7.17				
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, DISSOLVED									
Nickel	0.0010 mg/L	0.00040	1	05/04/21	ckd	05/05/21	acs		
Selenium	<0.00087 mg/L	0.00087	1	05/04/21	ckd	05/05/21	acs		
Silver	<0.000040 mg/L	0.000040	1	05/04/21	ckd	05/05/21	acs		
Thallium	<0.00017 mg/L	0.00017	1	05/04/21	ckd	05/05/21	acs		
Vanadium	<0.00080 mg/L	0.00080	1	05/04/21	ckd	05/05/21	acs		
WET CHEMISTRY									
Analysis Method: EPA 300.0 Rev. 2.1 Batch: T109450									
Fluoride	1.2 mg/L	0.10	5	04/26/21	rg	04/27/21	rg		
Chloride	150 mg/L	3.8	25	04/26/21	rg	04/27/21	rg		
Sulfate as SO4	5.7 mg/L	3.0	5	04/26/21	rg	04/27/21	rg		
Analysis Method: SM 2320 B-11 Batch: T109705									
Bicarbonate Alkalinity as CaCO3 at pH 4.5	980 mg/L	20	4	05/03/21	ats	05/04/21	ats	N	
Analysis Method: SM 2540 C-11 Batch: T109546									
Total Dissolved Solids	1200 mg/L	40	4	04/28/21	cm	04/28/21	cm		
Analysis Method: SM 4500-H+ B-11 Batch: T109205									
рН	7.17 pH Units		1	04/23/21	tb	04/23/21	tb	SITE, N	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Date Collected: 04/23/21 07:30

Trace Project ID: 21

Trace ID: 21D0882-07

Antimony

Arsenic

Barium

Cadmium

Chromium

Cobalt

Copper

Manganese

Molybdenum

Lead

Nickel

21D0882

Matrix: Ground Water

<0.00030 mg/L

<0.0010 mg/L

<0.0010 mg/L

<0.00090 mg/L

0.00079 mg/L

<0.0040 mg/L

<0.0020 mg/L

0.00017 mg/L

<0.0050 mg/L

1.6 mg/L

0.27 mg/L

Client Project ID: MW Sampling-April 2021

Sample ID: MW-7 Date Received: 04/26/21 08:45 Field pH: 6.47 **PARAMETERS** RESULTS UNITS DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 7470A Batch: T109519 Mercury <0.00020 mg/L 0.00020 04/28/21 kbc 04/29/21 Ν acs **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T109489 Mercury <0.50 ng/L 0.50 04/27/21 ckd 04/28/21 ckd Ν Analysis Method: EPA 6010D Batch: T109789 0.0020 05/07/21 Beryllium <0.0020 mg/L 1 05/05/21 mrh dc Boron 13 mg/L 0.050 1 05/05/21 mrh 05/07/21 dc Calcium 140 mg/L 2.5 5 05/05/21 mrh 05/10/21 dc Iron 15 mg/L 0.20 1 05/05/21 mrh 05/07/21 dc <0.010 mg/L 05/07/21 Lithium 0.010 1 05/05/21 mrh dc Ν 05/05/21 05/07/21 Magnesium 33 mg/L 0.20 mrh dc 1 05/07/21 Potassium 4.5 mg/L 1.0 05/05/21 mrh dc Sodium 55 mg/L 2.5 5 05/05/21 mrh 05/10/21 dc N <0.020 mg/L 0.020 05/05/21 mrh 05/07/21 dc Zinc Analysis Method: EPA 6020B Batch: T109789

CERTIFICATE OF ANALYSIS

0.00030

0.0010

0.010

0.0010

0.00090

0.0016

0.0040

0.0020

0.025

0.00040

0.0050

05/05/21

05/05/21

05/05/21

05/05/21

05/05/21

05/05/21

05/05/21

05/05/21

05/05/21

05/05/21

05/05/21

1

1

1

1

1

1

1

1

1

1

05/05/21

05/05/21

05/05/21

05/05/21

05/05/21

05/05/21

05/05/21

05/05/21

05/05/21

05/05/21

05/05/21

acs

J

J, N

mrh

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21D0882

Client Project ID: MW Sampling-April 2021

Trace ID: 21D0882-07 Matrix: Ground Water Date Collected: 04/23/21 07:30 Sample ID: MW-7 Date Received: 04/26/21 08:45 Field pH: 6.47 **PARAMETERS** RESULTS UNITS DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL **RDL METALS, TOTAL** Selenium <0.0020 mg/L 0.0020 1 05/05/21 mrh 05/05/21 acs Silver <0.0010 mg/L 0.0010 05/05/21 mrh 05/05/21 1 acs Thallium <0.0010 mg/L 0.0010 05/05/21 05/05/21 1 mrh acs Vanadium 0.00065 mg/L 0.00080 05/05/21 mrh 05/05/21 J acs Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 480 mg/L 0.82 5 05/05/21 05/10/21 N dc **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T109603 <0.0010 mg/L 0.0010 04/30/21 05/06/21 Beryllium 1 ckd dc 1 **Boron** 13 mg/L 0.050 04/30/21 ckd 05/06/21 dc Calcium 150 mg/L 5.0 10 04/30/21 ckd 05/10/21 dc 04/30/21 0.10 Iron 14 mg/L 1 ckd 05/06/21 dc Lithium 0.0046 mg/L 0.010 1 04/30/21 ckd 05/06/21 dc J, N Magnesium 35 mg/L 0.20 1 04/30/21 ckd 05/06/21 dc 04/30/21 05/06/21 Potassium 4.9 mg/L 1.0 1 ckd dc Sodium 55 mg/L 5.0 10 04/30/21 ckd 05/10/21 dc Ν 04/30/21 05/06/21 J Zinc 0.0021 mg/L 0.020 1 ckd dc Analysis Method: EPA 6020B Batch: T109749 0.00032 mg/L 0.00020 1 05/04/21 05/05/21 Antimony ckd acs Arsenic 0.00045 mg/L 0.0010 1 05/04/21 ckd 05/05/21 J acs Barium 0.26 mg/L 0.00060 05/04/21 ckd 05/05/21 1 acs Cadmium <0.0010 mg/L 0.0010 05/04/21 05/05/21 1 ckd acs <0.00080 mg/L 0.00080 05/04/21 05/05/21 Chromium 1 ckd acs 0.00076 mg/L 0.0016 05/04/21 05/05/21 Cobalt 1 ckd J acs 0.00022 mg/L 0.00080 1 05/04/21 05/05/21 J Copper ckd acs Lead 0.000096 mg/L 0.00040 1 05/04/21 ckd 05/05/21 acs J 1.6 mg/L 0.0020 5 05/04/21 ckd 05/05/21 Manganese acs

CERTIFICATE OF ANALYSIS

0.00040

0.00011 mg/L

1

05/04/21

ckd

05/05/21

J, N

acs

Molybdenum

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21D0882

Trace ID: 21D0882-07

Client Project ID: MW Sampling-April 2021

Matrix: Ground Water Date Collected: 04/23/21 07:30

	Matrix. Ground Water	Date	Collected. 04/23	12101.50					
Sample ID: MW-7		Date	Date Received: 04/26/21 08:45			ld pH: 6.47			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, DISSOLVED									
Nickel	0.00026 mg/L	0.00040	1	05/04/21	ckd	05/05/21	acs	J	
Selenium	<0.00087 mg/L	0.00087	1	05/04/21	ckd	05/05/21	acs		
Silver	<0.000040 mg/L	0.000040	1	05/04/21	ckd	05/05/21	acs		
Thallium	<0.00017 mg/L	0.00017	1	05/04/21	ckd	05/05/21	acs		
Vanadium	0.00067 mg/L	0.00080	1	05/04/21	ckd	05/05/21	acs	J	
WET CHEMISTRY									
Analysis Method: EPA 300.0 Rev. 2.1 Batch: T109450									
Fluoride	0.084 mg/L	0.10	5	04/26/21	rg	04/27/21	rg	J	
Chloride	13 mg/L	0.75	5	04/26/21	rg	04/27/21	rg		
Sulfate as SO4	15 mg/L	3.0	5	04/26/21	rg	04/27/21	rg		
Analysis Method: SM 2320 B-11 Batch: T109705									
Bicarbonate Alkalinity as CaCO3 at pH 4.5	610 mg/L	20	4	05/03/21	ats	05/04/21	ats	N	
Analysis Method: SM 2540 C-11 Batch: T109546									
Total Dissolved Solids	660 mg/L	40	4	04/28/21	cm	04/28/21	cm		
Analysis Method: SM 4500-H+ B-11 Batch: T109205									
рН	6.47 pH Units		1	04/23/21	tb	04/23/21	tb	SITE, N	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21D0882

Client Project ID: MW Sampling- April 2021

Trace ID: 21D0882-08 Sample ID: MW-8	Matrix: Ground Water		Date Collected: 04/23/21 14:58 Date Received: 04/26/21 08:45			ld pH: 7.18			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: EPA 7470A Batch: T109519									
Mercury	<0.00020 mg/L	0.00020	1	04/28/21	kbc	04/29/21	acs	N	
METALS, TOTAL									
Analysis Method: EPA 1631E Batch: T109489									
Mercury	1.4 ng/L	0.50	1	04/27/21	ckd	04/28/21	ckd	N	
Analysis Method: EPA 6010D Batch: T109789									
Beryllium	<0.0020 mg/L	0.0020	1	05/05/21	mrh	05/07/21	dc		
Boron	0.96 mg/L	0.050	1	05/05/21	mrh	05/07/21	dc		
Calcium	130 mg/L	2.5	5	05/05/21	mrh	05/10/21	dc		
Iron	27 mg/L	0.20	1	05/05/21	mrh	05/07/21	dc		
Lithium	0.034 mg/L	0.010	1	05/05/21	mrh	05/07/21	dc	N	
Magnesium	23 mg/L	0.20	1	05/05/21	mrh	05/07/21	dc		
Potassium	8.6 mg/L	1.0	1	05/05/21	mrh	05/07/21	dc		
Sodium	25 mg/L	0.50	1	05/05/21	mrh	05/07/21	dc	N	
Zinc	<0.020 mg/L	0.020	1	05/05/21	mrh	05/07/21	dc		
Analysis Method: EPA 6020B Batch: T109789									
Antimony	<0.00030 mg/L	0.00030	1	05/05/21	mrh	05/05/21	acs		
Arsenic	0.0028 mg/L	0.0010	1	05/05/21	mrh	05/05/21	acs		
Barium	0.88 mg/L	0.010	1	05/05/21	mrh	05/05/21	acs		
Cadmium	<0.0010 mg/L	0.0010	1	05/05/21	mrh	05/05/21	acs		
Chromium	<0.00090 mg/L	0.00090	1	05/05/21	mrh	05/05/21	acs		
Cobalt	<0.0016 mg/L	0.0016	1	05/05/21	mrh	05/05/21	acs		
Copper	<0.0040 mg/L	0.0040	1	05/05/21	mrh	05/05/21	acs		
Lead	<0.0020 mg/L	0.0020	1	05/05/21	mrh	05/05/21	acs		
Manganese	1.3 mg/L	0.025	1	05/05/21	mrh	05/05/21	acs		
Molybdenum	0.0036 mg/L	0.00040	1	05/05/21	mrh	05/05/21	acs	N	

CERTIFICATE OF ANALYSIS

0.0050

<0.0050 mg/L

05/05/21

mrh

05/05/21

acs

Nickel

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID:

21D0882

Client Project ID: MW Sampling-April 2021

Trace ID: 21D0882-08 Matrix: Ground Water Date Collected: 04/23/21 14:58 Sample ID: MW-8 Date Received: 04/26/21 08:45 Field pH: 7.18 **PARAMETERS** RESULTS UNITS DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL **RDL METALS, TOTAL** Selenium <0.0020 mg/L 0.0020 1 05/05/21 mrh 05/05/21 acs Silver <0.0010 mg/L 0.0010 05/05/21 05/05/21 1 mrh acs <0.0010 mg/L 0.0010 05/05/21 Thallium 1 05/05/21 mrh acs Vanadium <0.00080 mg/L 0.00080 05/05/21 mrh 05/05/21 acs Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 420 mg/L 0.82 5 05/05/21 05/10/21 N dc **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T109603 <0.0010 mg/L 0.0010 04/30/21 05/06/21 Beryllium 1 ckd dc **Boron** 1.0 mg/L 0.50 10 04/30/21 ckd 05/10/21 dc Calcium 140 mg/L 5.0 10 04/30/21 ckd 05/10/21 dc Iron 27 mg/L 0.10 1 04/30/21 ckd 05/06/21 dc Lithium 0.037 mg/L 0.010 1 04/30/21 ckd 05/06/21 dc Ν Magnesium 24 mg/L 0.20 1 04/30/21 ckd 05/06/21 dc 04/30/21 05/06/21 Potassium 9.2 mg/L 1.0 ckd 1 dc 1 Sodium 27 mg/L 0.50 04/30/21 ckd 05/06/21 dc Ν 04/30/21 05/06/21 J Zinc 0.0031 mg/L 0.020 1 ckd dc Analysis Method: EPA 6020B Batch: T109749 0.00028 mg/L 0.00020 1 05/04/21 05/05/21 Antimony ckd acs Arsenic 0.0027 mg/L 0.0010 1 05/04/21 ckd 05/05/21 acs Barium 0.89 mg/L 0.00060 05/04/21 ckd 05/05/21 1 acs Cadmium <0.0010 mg/L 0.0010 05/05/21 1 05/04/21 ckd acs Chromium 0.00054 mg/L 0.00080 1 05/04/21 ckd 05/05/21 J acs 0.00028 mg/L 05/05/21 Cobalt 0.0016 1 05/04/21 ckd acs 0.00034 mg/L 0.00080 1 05/04/21 05/05/21 J. Copper ckd acs Lead 0.000071 mg/L 0.00040 1 05/04/21 ckd 05/05/21 acs J 1.5 mg/L 0.00040 05/04/21 ckd 05/05/21 Manganese 1 acs

CERTIFICATE OF ANALYSIS

0.00040

0.0036 mg/L

1

05/04/21

ckd

05/05/21

N

acs

Molybdenum

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21D0882

Client Project ID: MW Sampling-April 2021

Trace ID: 21D0882-08 Matrix: Ground Water Date Collected: 04/23/21 14:58 Sample ID: MW-8 Date Received: 04/26/21 08:45 Field pH: 7.18 **PARAMETERS RESULTS UNITS** DILUTION PREPARED BY ANALYZED ΒY NOTES MCL RDL **METALS, DISSOLVED** Nickel 0.0011 mg/L 0.00040 1 05/04/21 ckd 05/05/21 acs Selenium <0.00087 mg/L 0.00087 05/04/21 ckd 05/05/21 1 acs <0.000040 mg/L 05/05/21 Silver 0.000040 1 05/04/21 ckd acs Thallium <0.00017 mg/L 0.00017 1 05/04/21 ckd 05/05/21 acs Vanadium 0.00037 mg/L 0.00080 05/04/21 ckd 05/05/21 acs **WET CHEMISTRY** Analysis Method: EPA 300.0 Rev. 2.1 Batch: T109450 Fluoride 0.49 mg/L 0.10 5 04/26/21 04/27/21 rg rg Chloride 40 mg/L 0.75 5 04/26/21 04/27/21 rg rg Sulfate as SO4 11 mg/L 3.0 5 04/26/21 04/27/21 rg rg Analysis Method: SM 2320 B-11 Batch: T109705 05/03/21 Bicarbonate Alkalinity as CaCO3 at pH 4.5 420 mg/L 20 ats 05/04/21 ats N Analysis Method: SM 2540 C-11 Batch: T109546 **Total Dissolved Solids** 540 mg/L 40 04/28/21 cm 04/28/21 cm Analysis Method: SM 4500-H+ B-11 Batch: T109205

CERTIFICATE OF ANALYSIS

7.18 pH Units

04/23/21

tb

SITE, N

04/23/21

tb

pН

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21D0

Nickel

21D0882

Client Project ID: MW Sampling-April 2021

Trace ID: 21D0882-09 Matrix: Ground Water Date Collected: 04/23/21 14:30 Sample ID: MW-9 Date Received: 04/26/21 08:45 Field pH: 7.14 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 7470A Batch: T109519 Mercury <0.00020 mg/L 0.00020 04/28/21 kbc 04/29/21 Ν acs **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T109489 Mercury <0.50 ng/L 0.50 04/27/21 ckd 04/28/21 ckd Ν Analysis Method: EPA 6010D Batch: T109789 0.0020 05/07/21 Beryllium <0.0020 mg/L 1 05/05/21 mrh dc Boron 5.3 mg/L 0.050 1 05/05/21 mrh 05/07/21 dc Calcium 230 mg/L 5.0 10 05/05/21 mrh 05/10/21 dc Iron 23 mg/L 0.20 1 05/05/21 mrh 05/07/21 dc Lithium 0.26 mg/L 0.010 1 05/05/21 mrh 05/07/21 dc Ν 05/05/21 05/07/21 Magnesium 38 mg/L 0.20 mrh dc 1 Potassium 14 mg/L 1.0 1 05/05/21 05/07/21 mrh dc Sodium 30 mg/L 0.50 1 05/05/21 mrh 05/07/21 dc N <0.020 mg/L 0.020 05/05/21 mrh 05/07/21 dc Zinc Analysis Method: EPA 6020B Batch: T109789 <0.00030 mg/L 0.00030 05/05/21 05/05/21 Antimony 1 mrh acs Arsenic 0.0025 mg/L 0.0010 1 05/05/21 mrh 05/05/21 acs Barium 0.010 1 05/05/21 05/05/21 1.0 mg/L mrh acs Cadmium <0.0010 mg/L 0.0010 1 05/05/21 mrh 05/05/21 acs Chromium 0.0024 mg/L 0.00090 05/05/21 mrh 05/05/21 acs Cobalt <0.0016 mg/L 0.0016 1 05/05/21 mrh 05/05/21 acs <0.0040 mg/L 0.0040 05/05/21 05/05/21 Copper 1 mrh acs Lead <0.0020 mg/L 0.0020 1 05/05/21 mrh 05/05/21 acs Manganese 0.60 mg/L 0.025 1 05/05/21 mrh 05/05/21 acs 0.028 mg/L 05/05/21 Molybdenum 0.00040 05/05/21 1 mrh acs N

CERTIFICATE OF ANALYSIS

0.0031 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

05/05/21

mrh

05/05/21

J

Page 32 of 58

acs

0.0050

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21D0882

Client Project ID: MW Sampling- April 2021

Trace ID: 21D0882-09 Sample ID: MW-9	Matrix: Ground Water		Collected: 04/23 Received: 04/26		Fie	eld pH: 7.14			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Selenium	<0.0020 mg/L	0.0020	1	05/05/21	mrh	05/05/21	acs		
Silver	<0.0010 mg/L	0.0010	1	05/05/21	mrh	05/05/21	acs		
Thallium	<0.0010 mg/L	0.0010	1	05/05/21	mrh	05/05/21	acs		
Vanadium	<0.00080 mg/L	0.00080	1	05/05/21	mrh	05/05/21	acs		
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	740 mg/L	0.82	10	05/05/21		05/10/21	dc	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T109603									
Beryllium	<0.0010 mg/L	0.0010	1	04/30/21	ckd	05/06/21	dc		
Boron	5.3 mg/L	0.050	1	04/30/21	ckd	05/06/21	dc		
Calcium	210 mg/L	5.0	10	04/30/21	ckd	05/10/21	dc		
Iron	23 mg/L	0.10	1	04/30/21	ckd	05/06/21	dc		
Lithium	0.27 mg/L	0.010	1	04/30/21	ckd	05/06/21	dc	N	
Magnesium	39 mg/L	0.20	1	04/30/21	ckd	05/06/21	dc		
Potassium	15 mg/L	1.0	1	04/30/21	ckd	05/06/21	dc		
Sodium	31 mg/L	0.50	1	04/30/21	ckd	05/06/21	dc	N	
Zinc	<0.020 mg/L	0.020	1	04/30/21	ckd	05/06/21	dc		
Analysis Method: EPA 6020B Batch: T109749									
Antimony	0.00022 mg/L	0.00020	1	05/04/21	ckd	05/05/21	acs		
Arsenic	0.0023 mg/L	0.0010	1	05/04/21	ckd	05/05/21	acs		
Barium	0.59 mg/L	0.00060	1	05/04/21	ckd	05/05/21	acs		
Cadmium	<0.0010 mg/L	0.0010	1	05/04/21	ckd	05/05/21	acs		
Chromium	0.0021 mg/L	0.00080	1	05/04/21	ckd	05/05/21	acs		
Cobalt	0.00038 mg/L	0.0016	1	05/04/21	ckd	05/05/21	acs	J	
Copper	0.00020 mg/L	0.00080	1	05/04/21	ckd	05/05/21	acs	J	
Lead	<0.00040 mg/L	0.00040	1	05/04/21	ckd	05/05/21	acs		
Manganese	0.67 mg/L	0.00040	1	05/04/21	ckd	05/05/21	acs		

CERTIFICATE OF ANALYSIS

0.00040

0.027 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

05/04/21

ckd

05/05/21

Molybdenum

N

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21

Client Project ID:

21D0882

MW Sampling-April 2021

Trace ID: 21D0882-09

Matrix: Ground Water

Date Collected: 04/23/21 14:30

Trace ID: 21D0882-09	latrix: Ground Water	Date	Date Collected: 04/23/21 14:30							
Sample ID: MW-9		Date	Received: 04/26	/21 08:45	Fie	ld pH: 7.14				
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL	
METALS, DISSOLVED										
Nickel	0.0016 mg/L	0.00040	1	05/04/21	ckd	05/05/21	acs			
Selenium	0.00033 mg/L	0.00087	1	05/04/21	ckd	05/05/21	acs	J		
Silver	<0.000040 mg/L	0.000040	1	05/04/21	ckd	05/05/21	acs			
Thallium	<0.00017 mg/L	0.00017	1	05/04/21	ckd	05/05/21	acs			
Vanadium	0.00036 mg/L	0.00080	1	05/04/21	ckd	05/05/21	acs	J		
WET CHEMISTRY										
Analysis Method: EPA 300.0 Rev. 2.1 Batch: T109450										
Fluoride	2.4 mg/L	0.10	5	04/26/21	rg	04/27/21	rg			
Chloride	12 mg/L	0.75	5	04/26/21	rg	04/27/21	rg			
Sulfate as SO4	71 mg/L	3.0	5	04/26/21	rg	04/27/21	rg			
Analysis Method: SM 2320 B-11 Batch: T109705										
Bicarbonate Alkalinity as CaCO3 at pH 4.5	710 mg/L	10	2	05/03/21	ats	05/04/21	ats	N		
Analysis Method: SM 2540 C-11 Batch: T109546										
Total Dissolved Solids	880 mg/L	40	4	04/28/21	cm	04/28/21	cm			
Analysis Method: SM 4500-H+ B-11 Batch: T109205										
pH	7.14 pH Units		1	04/23/21	tb	04/23/21	tb	SITE, N		

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21D0882

Nickel

Client Project ID: MW Sampling- April 2021

Trace ID: 21D0882-10 Sample ID: MW-10	Matrix: Ground Water		Collected: 04/23/ Received: 04/26/		Fie	ld pH: 7.60			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: EPA 7470A Batch: T109519									
Mercury	<0.00020 mg/L	0.00020	1	04/28/21	kbc	04/29/21	acs	N	
METALS, TOTAL									
Analysis Method: EPA 1631E Batch: T109489									
Mercury	1.1 ng/L	0.50	1	04/27/21	ckd	04/28/21	ckd	N	
Analysis Method: EPA 6010D Batch: T109789									
Beryllium	<0.0018 mg/L	0.0018	1	05/05/21	mrh	05/07/21	dc		
Boron	42 mg/L	0.45	10	05/05/21	mrh	05/10/21	dc		
Calcium	160 mg/L	4.5	10	05/05/21	mrh	05/10/21	dc		
Iron	12 mg/L	0.18	1	05/05/21	mrh	05/07/21	dc		
Lithium	1.4 mg/L	0.0090	1	05/05/21	mrh	05/07/21	dc	N	
Magnesium	78 mg/L	1.8	10	05/05/21	mrh	05/10/21	dc		
Potassium	42 mg/L	9.0	10	05/05/21	mrh	05/10/21	dc		
Sodium	410 mg/L	4.5	10	05/05/21	mrh	05/10/21	dc	N	
Zinc	<0.018 mg/L	0.018	1	05/05/21	mrh	05/07/21	dc		
Analysis Method: EPA 6020B Batch: T109789									
Antimony	<0.0014 mg/L	0.0014	5	05/05/21	mrh	05/05/21	acs	402.5	
Arsenic	0.00065 mg/L	0.00090	1	05/05/21	mrh	05/05/21	acs	J	
Barium	1.2 mg/L	0.045	5	05/05/21	mrh	05/05/21	acs		
Cadmium	<0.00090 mg/L	0.00090	1	05/05/21	mrh	05/05/21	acs		
Chromium	0.0073 mg/L	0.00081	1	05/05/21	mrh	05/05/21	acs		
Cobalt	0.00070 mg/L	0.0014	1	05/05/21	mrh	05/05/21	acs	J	
Copper	<0.0036 mg/L	0.0036	1	05/05/21	mrh	05/05/21	acs		
Lead	<0.0090 mg/L	0.0090	5	05/05/21	mrh	05/05/21	acs	402.5	
Manganese	0.53 mg/L	0.022	1	05/05/21	mrh	05/05/21	acs		
Molybdenum	0.0042 mg/L	0.00036	1	05/05/21	mrh	05/05/21	acs	N	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

05/05/21

05/05/21

0.0045

0.0032 mg/L

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21D0882

Client Project ID: MW Sampling- April 2021

Trace ID: 21D0882-10	Matrix: Ground Water	Date	Collected: 04/23	/21 13:00					
Sample ID: MW-10		Date Received: 04/26/21 08:45			Fie	ld pH: 7.60			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MC
METALS, TOTAL									
Selenium	<0.0018 mg/L	0.0018	1	05/05/21	mrh	05/05/21	acs		
Silver	<0.00090 mg/L	0.00090	1	05/05/21	mrh	05/05/21	acs		
Thallium	<0.0045 mg/L	0.0045	5	05/05/21	mrh	05/05/21	acs	402.5	
Vanadium	0.00076 mg/L	0.00072	1	05/05/21	mrh	05/05/21	acs		
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	720 mg/L	7.4	10	05/05/21		05/10/21	dc	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T109603									
Beryllium	<0.0010 mg/L	0.0010	1	04/30/21	ckd	05/06/21	dc		
Boron	45 mg/L	0.50	10	04/30/21	ckd	05/10/21	dc		
Calcium	160 mg/L	5.0	10	04/30/21	ckd	05/10/21	dc		
Iron	2.3 mg/L	0.10	1	04/30/21	ckd	05/06/21	dc		
Lithium	1.4 mg/L	0.010	1	04/30/21	ckd	05/06/21	dc	N	
Magnesium	75 mg/L	2.0	10	04/30/21	ckd	05/10/21	dc		
Potassium	37 mg/L	10	10	04/30/21	ckd	05/10/21	dc		
Sodium	400 mg/L	5.0	10	04/30/21	ckd	05/10/21	dc	N	
Zinc	<0.020 mg/L	0.020	1	04/30/21	ckd	05/06/21	dc		
Analysis Method: EPA 6020B Batch: T109749									
Antimony	0.00019 mg/L	0.00020	1	05/04/21	ckd	05/05/21	acs	J	
Arsenic	0.00045 mg/L	0.0010	1	05/04/21	ckd	05/05/21	acs	J	
Barium	1.2 mg/L	0.00060	1	05/04/21	ckd	05/05/21	acs		
Cadmium	<0.0010 mg/L	0.0010	1	05/04/21	ckd	05/05/21	acs		
Chromium	0.0060 mg/L	0.00080	1	05/04/21	ckd	05/05/21	acs		
Cobalt	0.00062 mg/L	0.0016	1	05/04/21	ckd	05/05/21	acs	J	
Copper	0.00031 mg/L	0.00080	1	05/04/21	ckd	05/05/21	acs	J	
Lead	<0.0020 mg/L	0.0020	5	05/04/21	ckd	05/05/21	acs	402.5	
Manganese	0.64 mg/L	0.00040	1	05/04/21	ckd	05/05/21	acs		
		0.00045		05/04/04					

CERTIFICATE OF ANALYSIS

0.00040

0.0039 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

05/04/21

ckd

05/05/21

Molybdenum

N

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21D0882

MW Sampling-April 2021

ID: 21D0882-10

Client Project ID:

Frace ID: 21D0882-10 Matrix: Ground Water Date Co				/21 13:00							
Sample ID: MW-10		Date	Received: 04/26	/21 08:45	Fie	eld pH: 7.60					
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL		
METALS, DISSOLVED											
Nickel	0.0015 mg/L	0.00040	1	05/04/21	ckd	05/05/21	acs				
Selenium	0.00042 mg/L	0.00087	1	05/04/21	ckd	05/05/21	acs	J			
Silver	<0.000040 mg/L	0.000040	1	05/04/21	ckd	05/05/21	acs				
Thallium	<0.00087 mg/L	0.00087	5	05/04/21	ckd	05/05/21	acs	402.5			
Vanadium	<0.00080 mg/L	0.00080	1	05/04/21	ckd	05/05/21	acs				
WET CHEMISTRY											
Analysis Method: EPA 300.0 Rev. 2.1 Batch: T109450											
Fluoride	11 mg/L	0.10	5	04/26/21	rg	04/27/21	rg				
Chloride	430 mg/L	7.5	50	04/26/21	rg	04/27/21	rg				
Sulfate as SO4	2.7 mg/L	3.0	5	04/26/21	rg	04/27/21	rg	J			
Analysis Method: SM 2320 B-11 Batch: T109705											
Bicarbonate Alkalinity as CaCO3 at pH 4.8	5 940 mg/L	10	2	05/03/21	ats	05/04/21	ats	N			
Analysis Method: SM 2540 C-11 Batch: T109546											
Total Dissolved Solids	1700 mg/L	40	4	04/28/21	cm	04/28/21	cm				
Analysis Method: SM 4500-H+ B-11 Batch: T109205											
рН	7.60 pH Units		1	04/23/21	tb	04/23/21	tb	SITE, N			

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

QUALITY CONTROL RESULTS

Trace Project ID: 21D0882

Client Project ID: MW Sampling- April 2021

QC Batch: T109519 Analysis Description: Mercury, Total, EPA 7470/7471

QC Batch Method: EPA 7470A Prep Analysis Method: EPA 7470A

METHOD BLANK: T109519-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	mg/L	<0.00020	0.00020	

LABORATORY CONTROL SAMPLE: T109519-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Mercury	ma/l	0.00200	0.00197	98	77-122	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T109519-MSD1

		Original	Spike	MS	MSD	MS	MSD	% Rec	DDD	Max	Nistan
Parameter	Units	Result	Conc.	Result	Result	% Rec	% Rec	Limit	RPD	RPD	Notes
Mercury	mg/L	0	0.00200	0.00199	0.00234	100	117	76-123	16	20	

Trace Project ID: 21D0882

Client Project ID: MW Sampling- April 2021

Original: 21D0882-01

QC Batch: T109489 Analysis Description: Mercury, Total, Low Level
QC Batch Method: EPA 1631E Analysis Method: EPA 1631E

METHOD BLANK: T109489-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/L	<0.20	0.20	

METHOD BLANK: T109489-BLK2

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/L	<0.20	0.20	

METHOD BLANK: T109489-BLK3

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/L	<0.20	0.20	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T109489-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Mercury	ng/L	25.0	20.8	83	77-123	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T109489-MSD1

Origina			

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Mercury	na/l	3.20	10.0	12.4	12 3	92	91	71-125	1	24	

Trace Project ID: 21D0882

Client Project ID: MW Sampling- April 2021

QC Batch: T109603

Analysis Description: Sodium, Dissolved

QC Batch Method: Analysis Method: EPA 6010D

METHOD BLANK: T109603-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Boron	mg/L	<0.050	0.050	
Beryllium	mg/L	<0.0010	0.0010	
Calcium	mg/L	<0.50	0.50	
Iron	mg/L	0.0091	0.10	J
Potassium	mg/L	<1.0	1.0	
Lithium	mg/L	<0.010	0.010	
Magnesium	mg/L	0.018	0.20	J
Sodium	mg/L	<0.50	0.50	
Zinc	mg/L	<0.020	0.020	

METHOD BLANK: T109603-BLK2

Parameter	Units	Blank Result	Reporting Limit	Notes
Boron	mg/L	<0.050	0.050	
Beryllium	mg/L	0.00018	0.0010	J
Calcium	mg/L	<0.50	0.50	
Iron	mg/L	<0.10	0.10	
Potassium	mg/L	<1.0	1.0	
Lithium	mg/L	<0.010	0.010	
Magnesium	mg/L	<0.20	0.20	
Sodium	mg/L	<0.50	0.50	
Zinc	mg/L	<0.020	0.020	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T109603-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	1.00	0.980	98	80-120	
Beryllium	mg/L	0.0500	0.0483	97	80-120	
Calcium	mg/L	10.0	10.0	100	80-120	
Iron	mg/L	10.0	9.81	98	80-120	
Potassium	mg/L	10.0	9.59	96	80-120	
Lithium	mg/L	0.500	0.473	95	80-120	
Magnesium	mg/L	10.0	9.84	98	80-120	
Sodium	mg/L	10.0	9.88	99	80-120	
Zinc	mg/L	1.00	0.992	99	80-120	

LABORATORY CONTROL SAMPLE: T109603-BS2

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	1.00	1.03	103	80-120	_
Beryllium	mg/L	0.0500	0.0511	102	80-120	
Calcium	mg/L	10.0	10.4	104	80-120	
Iron	mg/L	10.0	10.2	102	80-120	
Potassium	mg/L	10.0	10.0	100	80-120	
Lithium	mg/L	0.500	0.479	96	80-120	
Magnesium	mg/L	10.0	10.3	103	80-120	
Sodium	mg/L	10.0	10.3	103	80-120	
Zinc	mg/L	1.00	1.03	103	80-120	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T109603-MSD1 Original: 21D0882-09

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: 1109603-MSD1					Oligiliai. 2100002-09						
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Boron	mg/L	5.30	1.00	6.06	5.94	76	63	75-125	18	20	225
Beryllium	mg/L	0	0.0500	0.0465	0.0466	93	93	75-125	0.3	20	
Iron	mg/L	22.5	10.0	30.3	30.2	78	76	75-125	2	20	
Potassium	mg/L	14.8	10.0	25.0	25.3	103	105	75-125	2	20	424
Lithium	mg/L	0.267	0.500	0.775	0.771	102	101	75-125	8.0	20	
Magnesium	mg/L	38.5	10.0	46.2	46.0	77	74	75-125	3	20	209
Sodium	mg/L	31.3	10.0	39.7	39.5	84	83	75-125	2	20	
Zinc	mg/L	0	1.00	0.957	0.964	96	96	75-125	0.8	20	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T109603-MSD2

Original: 21D0882-09

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Calcium	mg/L	211	100	341	332	130	121	75-125	7	20	208

Trace Project ID: 21D0882

Client Project ID: MW Sampling- April 2021

QC Batch: T109789

QC Batch Method: EPA 3015 Microwave Assisted Digestions

Analysis Description: Lithium, Total

Analysis Method: EPA 6010D

for Liquids

METHOD BLANK: T109789-BLK1

Parameter	Units	Blank Result	Reporting Limit	
Boron	mg/L	<0.050	0.050	
Beryllium	mg/L	<0.0020	0.0020	
Calcium	mg/L	<0.50	0.50	
Iron	mg/L	<0.20	0.20	
Potassium	mg/L	<1.0	1.0	
Lithium	mg/L	<0.010	0.010	
Magnesium	mg/L	<0.20	0.20	
Sodium	mg/L	<0.50	0.50	
Zinc	mg/L	<0.020	0.020	

LABORATORY CONTROL SAMPLE: T109789-BS1

		· · -				
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	0.889	0.862	97	80-120	
Beryllium	mg/L	0.111	0.108	97	80-120	
Calcium	mg/L	8.89	8.62	97	80-120	
Iron	mg/L	8.89	8.68	98	80-120	
Potassium	mg/L	8.89	8.27	93	80-120	
Lithium	mg/L	0.889	0.819	92	80-120	
Magnesium	mg/L	8.89	8.57	96	80-120	
Sodium	mg/L	8.89	8.47	95	80-120	
Zinc	mg/L	0.889	0.853	96	80-120	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T109789-MSD1

Original: 21D0882-01

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Boron	mg/L	40.0	0.889	38.3	38.0	-192	-225	75-125	-16	20	222
Beryllium	mg/L	0	0.111	0.117	0.118	105	106	75-125	0.5	20	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T109789-MSD1

_						-
Or	iaina	al· 1	71 N	រពនទ	₹2_0	1

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Calcium	mg/L	587	8.89	552	544	-395	-480	75-125	-19	20	222
Iron	mg/L	3.70	8.89	12.5	12.4	99	98	75-125	1	20	
Potassium	mg/L	48.2	8.89	60.2	59.2	135	124	75-125	9	20	209, 424
Lithium	mg/L	0.910	0.889	2.01	2.00	124	122	75-125	2	20	
Magnesium	mg/L	144	8.89	142	140	-22	-44	75-125	-68	20	222
Sodium	mg/L	217	8.89	265	215	544	-15	75-125	212	20	222
Zinc	mg/L	0.130	0.889	1.04	1.04	102	103	75-125	0.3	20	

Trace Project ID: 21D0882

Client Project ID: MW Sampling- April 2021

QC Batch: T109749
QC Batch Method:

Analysis Description: Molybdenum, Dissolved

Analysis Method: EPA 6020B

METHOD BLANK: T109749-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Silver	mg/L	<0.000040	0.000040	
Arsenic	mg/L	<0.0010	0.0010	
Barium	mg/L	<0.00060	0.00060	
Cadmium	mg/L	<0.00020	0.00020	
Cobalt	mg/L	<0.0016	0.0016	
Chromium	mg/L	<0.00080	0.00080	
Copper	mg/L	<0.00080	0.00080	
Manganese	mg/L	<0.00040	0.00040	
Molybdenum	mg/L	<0.00040	0.00040	
Nickel	mg/L	<0.00040	0.00040	
Lead	mg/L	<0.00040	0.00040	
Antimony	mg/L	<0.00020	0.00020	
Selenium	mg/L	<0.00087	0.00087	
Thallium	mg/L	<0.00017	0.00017	
Vanadium	mg/L	<0.00080	0.00080	

LABORATORY CONTROL SAMPLE: T109749-BS1

		Spike	LCS	LCS		
Parameter	Units	Conc.	Result	% Rec	% Rec Limit	Notes
Silver	mg/L	0.0600	0.0577	96	80-120	
Arsenic	mg/L	0.0600	0.0617	103	80-120	
Barium	mg/L	0.0600	0.0600	100	80-120	
Cadmium	mg/L	0.0600	0.0628	105	80-120	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T109749-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Cobalt	mg/L	0.0600	0.0584	97	80-120	
Chromium	mg/L	0.0600	0.0612	102	80-120	
Copper	mg/L	0.0600	0.0595	99	80-120	
Manganese	mg/L	0.0600	0.0599	100	80-120	
Molybdenum	mg/L	0.0600	0.0591	98	80-120	
Nickel	mg/L	0.0600	0.0580	97	80-120	
Lead	mg/L	0.0600	0.0596	99	80-120	
Antimony	mg/L	0.0600	0.0577	96	80-120	
Selenium	mg/L	0.0600	0.0599	100	80-120	
Thallium	mg/L	0.0600	0.0598	100	80-120	
Vanadium	mg/L	0.0600	0.0575	96	80-120	

Trace Project ID: 21D0882

Client Project ID: MW Sampling- April 2021

QC Batch: T109789

QC Batch Method: EPA 3015 Microwave Assisted Digestions

for Liquids

Analysis Description: Vanadium, Total

Analysis Method: EPA 6020B

METHOD BLANK: T109789-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Silver	mg/L	<0.0010	0.0010	
Arsenic	mg/L	<0.0010	0.0010	
Barium	mg/L	<0.010	0.010	
Cadmium	mg/L	<0.0010	0.0010	
Cobalt	mg/L	<0.0016	0.0016	
Chromium	mg/L	<0.00090	0.00090	
Copper	mg/L	<0.0040	0.0040	
Manganese	mg/L	<0.025	0.025	
Molybdenum	mg/L	<0.00040	0.00040	
Nickel	mg/L	<0.0050	0.0050	
Lead	mg/L	<0.0020	0.0020	
Antimony	mg/L	<0.00030	0.00030	
Selenium	mg/L	<0.0020	0.0020	
Thallium	mg/L	<0.0010	0.0010	
Vanadium	mg/L	<0.00080	0.00080	

LABORATORY CONTROL SAMPLE: T109789-BS1

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limit	Notes

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T109789-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Silver	mg/L	0.0278	0.0300	108	80-120	
Arsenic	mg/L	0.0556	0.0554	100	80-120	
Barium	mg/L	0.889	0.930	105	80-120	
Cadmium	mg/L	0.0278	0.0301	108	80-120	
Cobalt	mg/L	0.889	0.821	92	80-120	
Chromium	mg/L	0.0278	0.0270	97	80-120	
Copper	mg/L	0.889	0.792	89	80-120	
Manganese	mg/L	0.889	0.824	93	80-120	
Molybdenum	mg/L	0.889	0.863	97	80-120	
Nickel	mg/L	0.889	0.809	91	80-120	
Lead	mg/L	0.0556	0.0521	94	80-120	
Antimony	mg/L	0.0556	0.0599	108	80-120	
Selenium	mg/L	0.0556	0.0545	98	80-120	
Thallium	mg/L	0.0556	0.0529	95	80-120	
Vanadium	mg/L	0.889	0.859	97	80-120	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T109789-MSD1 Original: 21D0882-01

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Silver	mg/L	0	0.0278	0.0290	0.0285	104	103	75-125	2	20	
Arsenic	mg/L	0	0.0556	0.0621	0.0607	112	109	75-125	2	20	
Barium	mg/L	0.0749	0.889	1.18	1.25	125	132	75-125	6	20	209
Cadmium	mg/L	0.00525	0.0278	0.0351	0.0349	108	107	75-125	1	20	
Cobalt	mg/L	0.0222	0.889	0.796	0.814	87	89	75-125	2	20	
Chromium	mg/L	0	0.0278	0.0287	0.0296	103	106	75-125	3	20	
Copper	mg/L	0.00989	0.889	0.762	0.789	85	88	75-125	4	20	
Manganese	mg/L	0.723	0.889	1.44	1.47	81	84	75-125	4	20	
Molybdenum	mg/L	0.00585	0.889	0.946	0.937	106	105	75-125	1	20	
Nickel	mg/L	0.0246	0.889	0.794	0.813	87	89	75-125	2	20	
Lead	mg/L	0.0391	0.0556	0.116	0.117	138	141	75-125	2	20	206
Antimony	mg/L	0.00313	0.0556	0.0611	0.0623	104	107	75-125	2	20	
Selenium	mg/L	0	0.0556	0.0565	0.0543	102	98	75-125	4	20	
Thallium	mg/L	0	0.0556	0.0565	0.0557	102	100	75-125	1	20	
Vanadium	mg/L	0	0.889	0.820	0.823	92	93	75-125	0.4	20	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Project ID: 21D0882

Client Project ID: MW Sampling- April 2021

QC Batch: [CALC] Analysis Description: Hardness (Metals)
QC Batch Method: Analysis Method: SM 2340 B-11

Trace Project ID: 21D0882

Client Project ID: MW Sampling- April 2021

QC Batch: T109450 Analysis Description: Fluoride
QC Batch Method: IC Prep W Analysis Method: EPA 300.0 Rev. 2.1

METHOD BLANK: T109450-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Chloride	mg/L	<0.15	0.15	
Fluoride	mg/L	<0.020	0.020	
Sulfate as SO4	ma/L	<0.60	0.60	

LABORATORY CONTROL SAMPLE: T109450-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Fluoride	mg/L	1.00	0.916	92	90-110	
Sulfate as SO4	ma/L	5 00	5.08	102	90-110	

MATRIX SPIKE: T109450-MS1 Original: 21D0882-08

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Unit	Notes
Fluoride	mg/L	0.493	5.00	5.64	103	80-120	
Sulfate as SO4	mg/L	11.0	25.0	37.7	107	80-120	

MATRIX SPIKE: T109450-MS2 Original: 21D0882-09

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Unit	Notes
Fluoride	mg/L	2.44	5.00	8.17	115	80-120	
Sulfate as SO4	mg/L	70.6	25.0	100	118	80-120	

Trace Project ID: 21D0882

Client Project ID: MW Sampling- April 2021

QC Batch: T109705 Analysis Description: Alkalinity, Carbonate
QC Batch Method: SM 2320 B-11 Analysis Method: SM 2320 B-11

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T109705-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Bicarbonate Alkalinity as CaCO3 at pH 4.5	mg/L	100	99.8	100	88-112	
Carbonate Alkalinity as CaCO3 at pH 8.2	mg/L	100	96.9	97	88-112	

Trace Project ID: 21D0882

Client Project ID: MW Sampling- April 2021

QC Batch: T109546 Analysis Description: Total Dissolved Solids
QC Batch Method: SM 2540 C-11 Analysis Method: SM 2540 C-11

METHOD BLANK: T109546-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Total Dissolved Solids	mg/L	2.0	10	J

LABORATORY CONTROL SAMPLE: T109546-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Total Dissolved Solids	mg/L	500	502	100	80-120	

SAMPLE DUPLICATE: T109546-DUP1 Original: 21D0882-01

Parameter	Units	Original Result	DUP Result	Max RPD RPD Notes
Total Dissolved Solids	ma/l	2870	2940	2 10

SAMPLE DUPLICATE: T109546-DUP2 Original: 21D0882-02

Parameter	Units	Original Result	DUP Result	RPD	Max RPD	Notes
Total Dissolved Solids	ma/L	1680	1660	1	10	

Trace Project ID: 21D0882

Client Project ID: MW Sampling- April 2021

QC Batch: T109205 Analysis Description: pH, SM 4500

QC Batch Method: *** DEFAULT PREP *** Analysis Method: SM 4500-H+ B-11

LABORATORY REPORT

If you have any questions concerning this report, please do not hesitate to call us at (800) 332-4345 or (574) 233-4777.

This report may not be reproduced, except in full, without written approval from EEA.

STATE CERTIFICATION LIST

State	Certification	State	Certification
Alabama	40700	Missouri	880
Alaska	IN00035	Montana	CERT0026
Arizona	AZ0432	Nebraska	NE-OS-05-04
Arkansas	IN00035	Nevada	IN00035
California	2920	New Hampshire*	2124
Colorado	IN00035	New Jersey*	IN598
Colorado Radiochemistry	IN00035	New Mexico	IN00035
Connecticut	PH-0132	New York*	11398
Delaware	IN035	North Carolina	18700
Florida(Primary AB)*	E87775	North Dakota	R-035
Georgia	929	Ohio	87775
Hawaii	IN035	Oklahoma	D9508
Idaho	IN00035	Oregon*	4156
Illinois*	200001	Pennsylvania*	68-00466
Illinois Microbiology	17767	Puerto Rico	IN00035
Illinois Radiochemistry	IN00035	Rhode Island	LAO00343
Indiana Chemistry	C-71-01	South Carolina	95005
Indiana Microbiology	M-76-07	South Dakota	IN00035
lowa	098	Tennessee	TN02973
Kansas*	E-10233	Texas*	T104704187
Kentucky	90056	Texas/TCEQ	TX207
Louisiana*	LA014	Utah*	IN00035
Maine	IN00035	Vermont	VT-8775
Maryland	209	Virginia*	460275
Massachusetts	M-IN035	Washington	C837
Michigan	9926	West Virginia	9927 C
Minnesota*	018-999-338	Wisconsin	999766900
Mississippi	IN035	Wyoming	IN035
EPA	IN00035		

*NELAP/TNI Recognized Accreditation Bodies

Revision date: 09/29/2020

LABORATORY CASE NARRATIVE

Client: Trace Analytical Laboratories	Report #: 516239CN
---------------------------------------	--------------------

All method QC was within acceptance limits.

Note: This report may not be reproduced, except in full, without written approval from EEA.

Karen Fullmer ASM

05/17/2021

110 South Hill Street South Bend, IN 46617 Tel: (574) 233-4777 Fax: (574) 233-8207 1 800 332 4345

Laboratory Report

Client: Trace Analytical Laboratories

Report: 516239

Attn: Jon Mink

2241 Black Creek Road

Priority: Standard Written

Muskegon, MI 49444

Status: Final

Project: MW Sampling-April 2021

OL IN A	N 4 A D \ /	$\Delta = E$		OTIONIC	٠
SUM	MARY	()⊢ I.) H I H	CTIONS	١

SUMMARY OF DETECTIONS				
Sample ID: 4886107	Sample Site: MW-10			
Parameter	Method	Result	Units	Run#
Radium-226	7500-Ra B	0.69 +/- 0.37	pCi/L	288766
Radium-228	7500-Ra D	0.68 +/- 0.40	pCi/L	288760
Combined Radium	calc.	1.37 +/- 0.54	pCi/L	288766
Sample ID: 4886098	Sample Site: MW-1R			
Parameter	Method	Result	Units	Run#
Radium-226	7500-Ra B	0.58 +/- 0.68	pCi/L	288762
Radium-228	7500-Ra D	0.05 +/- 0.61	pCi/L	288769
Sample ID: 4886099	Sample Site: MW-2			
Parameter	Method	Result	Units	Run#
Radium-226	7500-Ra B	0.45 +/- 1.46	pCi/L	288774
Radium-228	7500-Ra D	1.0 +/- 0.8	pCi/L	288769
Combined Radium	calc.	1.45 +/- 1.66	pCi/L	288774
Sample ID: 4886100	Sample Site: MW-3			
Parameter	Method	Result	Units	Run#
Radium-226	7500-Ra B	0.61 +/- 1.14	pCi/L	288774
Radium-228	7500-Ra D	1.5 +/- 0.7	pCi/L	288769
Combined Radium	calc.	2.11 +/- 1.35	pCi/L	288774
Sample ID: 4886101	Sample Site: MW-4			
Parameter	Method	Result	Units	Run#
Radium-226	7500-Ra B	0.19 +/- 0.22	pCi/L	288762
Radium-228	7500-Ra D	0.51 +/- 0.53	pCi/L	288769
Combined Radium	calc.	0.70 +/- 0.57	pCi/L	288762
Sample ID: 4886102	Sample Site: MW-5			
Parameter	Method	Result	Units	Run#
Radium-226	7500-Ra B	0.56 +/- 0.28	pCi/L	288762
Radium-228	7500-Ra D	0.33 +/- 0.49	pCi/L	288769
Combined Radium	calc.	0.89 +/- 0.56	pCi/L	288762

Client Name: Report: 516239 Trace Analytical Laboratories SUMMARY OF DETECTIONS - Continued Sample ID: 4886103 Sample Site: MW-6 Method **Parameter** Result Units Run# Radium-226 7500-Ra B 0.85 +/- 1.01 pCi/L 288774 Radium-228 7500-Ra D 1.6 +/- 0.7 288769 pCi/L Combined Radium calc. 2.45 +/- 1.21 pCi/L 288774 Sample ID: 4886104 Sample Site: MW-7 Method **Parameter** Units Result Run# Radium-226 7500-Ra B 0.82 + / - 0.39pCi/L 288762 Radium-228 7500-Ra D 0.88 +/- 0.49 pCi/L 288769 Combined Radium calc. 1.70 +/- 0.63 pCi/L 288762 Sample ID: 4886105 Sample Site: MW-8 Method **Parameter** Result Units Run# 7500-Ra B Radium-226 0.29 +/- 0.29 pCi/L 288762 Radium-228 7500-Ra D 1.9 + / - 0.5pCi/L 288769 Combined Radium calc. 2.19 +/- 0.59 pCi/L 288762 Sample Site: Sample ID: 4886106 MW-9 **Parameter** Method Result **Units** Run# Radium-226 7500-Ra B 0.52 +/- 0.30 pCi/L 288766 7500-Ra D 0.89 +/- 0.39 Radium-228 pCi/L 288760

1.41 +/- 0.49

pCi/L

288766

Note: The results presented relate only to the samples provided for analysis.

Combined Radium

We appreciate the opportunity to provide you with this analysis. If you have any questions concerning this report, please do not hesitate to call Karen Fullmer at (574) 233-4777.

calc.

Note: This report may not be reproduced, except in full, without written approval from EEA.

	Dava M. Soz_ Reporter	5/17/2021
Reviewed By	Title	Date
Finalized By	Title	 Date

110 South Hill Street South Bend, IN 46617 Tel: (574) 233-4777 Fax: (574) 233-8207 1 800 332 4345

Laboratory Report

Client: Trace Analytical Laboratories Report: 516239

Attn: Jon Mink Priority: Standard Written

2241 Black Creek Road Status: Final

Muskegon, MI 49444 PWS ID: Not Supplied

	Sample Information								
EEA ID#	Client ID	Method	Collected Date / Time	Collected By:	Received Date / Time				
4886098	MW-1R	7500-Ra B	04/23/21 09:15	Client	04/27/21 09:45				
4886098	MW-1R	7500-Ra D	04/23/21 09:15	Client	04/27/21 09:45				
4886099	MW-2	7500-Ra B	04/23/21 09:55	Client	04/27/21 09:45				
4886099	MW-2	7500-Ra D	04/23/21 09:55	Client	04/27/21 09:45				
4886100	MW-3	7500-Ra B	04/23/21 10:20	Client	04/27/21 09:45				
4886100	MW-3	7500-Ra D	04/23/21 10:20	Client	04/27/21 09:45				
4886101	MW-4	7500-Ra B	04/23/21 10:50	Client	04/27/21 09:45				
4886101	MW-4	7500-Ra D	04/23/21 10:50	Client	04/27/21 09:45				
4886102	MW-5	7500-Ra B	04/23/21 07:50	Client	04/27/21 09:45				
4886102	MW-5	7500-Ra D	04/23/21 07:50	Client	04/27/21 09:45				
4886103	MW-6	7500-Ra B	04/23/21 08:45	Client	04/27/21 09:45				
4886103	MW-6	7500-Ra D	04/23/21 08:45	Client	04/27/21 09:45				
4886104	MW-7	7500-Ra B	04/23/21 07:30	Client	04/27/21 09:45				
4886104	MW-7	7500-Ra D	04/23/21 07:30	Client	04/27/21 09:45				
4886105	MW-8	7500-Ra B	04/23/21 14:58	Client	04/27/21 09:45				
4886105	MW-8	7500-Ra D	04/23/21 14:58	Client	04/27/21 09:45				
4886106	MW-9	7500-Ra B	04/23/21 14:30	Client	04/27/21 09:45				
4886106	MW-9	7500-Ra D	04/23/21 14:30	Client	04/27/21 09:45				
4886107	MW-10	7500-Ra B	04/23/21 13:00	Client	04/27/21 09:45				
4886107	MW-10	7500-Ra D	04/23/21 13:00	Client	04/27/21 09:45				

Report Summary

Note: See attached page for additional comments. Note: Sample containers were provided by the client.

Detailed quantitative results are presented on the following pages. The results presented relate only to the samples provided for analysis.

We appreciate the opportunity to provide you with this analysis. If you have any questions concerning this report, please do not hesitate to call Karen Fullmer at (574) 233-4777.

Note: This report may not be reproduced, except in full, without written approval from EEA.

Karen Fullmer ASM

05/17/2021

Date

Client Name: Trace Analytical Laboratories

Report #: 516239

Title

Sampling Point: MW-1R PWS ID: Not Supplied

	Radionuclides									
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#
13982-63-3	Radium-226	7500-Ra B		0.73	1.0	0.58 ± 0.68	pCi/L	04/29/21 04:35	05/07/21 16:49	4886098
15262-20-1	Radium-228	7500-Ra D		0.64	1.00	0.05 ± 0.61	pCi/L	04/29/21 04:35	05/11/21 16:49	4886098
	Combined Radium	calc.	5 *	0.73	1.0	< 0.73	pCi/L	04/29/21 04:35	05/11/21 16:49	4886098

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: MW-2 PWS ID: Not Supplied

					Radionu	clides				
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#
13982-63-3	Radium-226	7500-Ra B		0.70	1.0	0.45 ± 1.46	pCi/L	04/29/21 04:35	05/12/21 09:55	4886099
15262-20-1	Radium-228	7500-Ra D		0.78	1.0	1.0 ± 0.8	pCi/L	04/29/21 04:35	05/11/21 16:49	4886099
	Combined Radium	calc.	5 *	0.78	1.0	1.45 ± 1.66	pCi/L	04/29/21 04:35	05/12/21 09:55	4886099

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: MW-3 PWS ID: Not Supplied

					Radionu	clides				
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#
13982-63-3	Radium-226	7500-Ra B		0.63	1.0	0.61 ± 1.14	pCi/L	04/29/21 04:35	05/12/21 09:55	4886100
15262-20-1	Radium-228	7500-Ra D		0.69	1.0	1.5 ± 0.7	pCi/L	04/29/21 04:35	05/11/21 16:49	4886100
	Combined Radium	calc.	5 *	0.69	1.0	2.11 ± 1.35	pCi/L	04/29/21 04:35	05/12/21 09:55	4886100

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: MW-4 PWS ID: Not Supplied

					Radionu	clides				
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#
13982-63-3	Radium-226	7500-Ra B		0.23	1.0	0.19 ± 0.22	pCi/L	04/29/21 04:35	05/07/21 16:49	4886101
15262-20-1	Radium-228	7500-Ra D		0.53	1.0	0.51 ± 0.53	pCi/L	04/29/21 04:35	05/11/21 16:49	4886101
	Combined Radium	calc.	5 *	0.53	1.0	0.70 ± 0.57	pCi/L	04/29/21 04:35	05/11/21 16:49	4886101

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: MW-5 PWS ID: Not Supplied

					Radionu	clides				
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#
13982-63-3	Radium-226	7500-Ra B		0.17	1.0	0.56 ± 0.28	pCi/L	04/29/21 04:35	05/07/21 16:49	4886102
15262-20-1	Radium-228	7500-Ra D		0.50	1.0	0.33 ± 0.49	pCi/L	04/29/21 04:35	05/11/21 16:49	4886102
	Combined Radium	calc.	5 *	0.50	1.0	0.89 ± 0.56	pCi/L	04/29/21 04:35	05/11/21 16:49	4886102

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: MW-6 PWS ID: Not Supplied

					Radionu	clides				
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#
13982-63-3	Radium-226	7500-Ra B		0.58	1.0	0.85 ± 1.01	pCi/L	04/29/21 04:35	05/12/21 09:55	4886103
15262-20-1	Radium-228	7500-Ra D		0.60	1.0	1.6 ± 0.7	pCi/L	04/29/21 04:35	05/11/21 16:49	4886103
	Combined Radium	calc.	5 *	0.60	1.0	2.45 ± 1.21	pCi/L	04/29/21 04:35	05/12/21 09:55	4886103

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: MW-7 PWS ID: Not Supplied

					Radionu	clides				
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#
13982-63-3	Radium-226	7500-Ra B		0.24	1.0	0.82 ± 0.39	pCi/L	04/29/21 04:35	05/07/21 16:49	4886104
15262-20-1	Radium-228	7500-Ra D		0.47	1.0	0.88 ± 0.49	pCi/L	04/29/21 04:35	05/11/21 16:49	4886104
	Combined Radium	calc.	5 *	0.47	1.0	1.70 ± 0.63	pCi/L	04/29/21 04:35	05/11/21 16:49	4886104

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: MW-8 PWS ID: Not Supplied

					Radionu	clides				
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#
13982-63-3	Radium-226	7500-Ra B		0.28	1.0	0.29 ± 0.29	pCi/L	04/29/21 04:35	05/07/21 16:49	4886105
15262-20-1	Radium-228	7500-Ra D		0.43	1.0	1.9 ± 0.5	pCi/L	04/29/21 04:35	05/11/21 16:49	4886105
	Combined Radium	calc.	5 *	0.43	1.0	2.19 ± 0.59	pCi/L	04/29/21 04:35	05/11/21 16:49	4886105

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: MW-9 PWS ID: Not Supplied

					Radionu	clides				
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#
13982-63-3	Radium-226	7500-Ra B		0.21	1.0	0.52 ± 0.30	pCi/L	04/29/21 04:35	05/07/21 15:17	4886106
15262-20-1	Radium-228	7500-Ra D		0.36	1.0	0.89 ± 0.39	pCi/L	04/29/21 04:35	05/11/21 16:50	4886106
	Combined Radium	calc.	5 *	0.36	1.0	1.41 ± 0.49	pCi/L	04/29/21 04:35	05/11/21 16:50	4886106

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: MW-10 PWS ID: Not Supplied

					Radionu	clides				
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#
13982-63-3	Radium-226	7500-Ra B		0.27	1.0	0.69 ± 0.37	pCi/L	04/29/21 04:35	05/07/21 15:17	4886107
15262-20-1	Radium-228	7500-Ra D		0.39	1.0	0.68 ± 0.40	pCi/L	04/29/21 04:35	05/11/21 16:50	4886107
	Combined Radium	calc.	5 *	0.39	1.0	1.37 ± 0.54	pCi/L	04/29/21 04:35	05/11/21 16:50	4886107

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

[†] EEA has demonstrated it can achieve these report limits in reagent water, but can not document them in all sample matrices.

Reg Limit Type:	MCL	SMCL	AL
Symbol:	*	۸	!

Lab Definitions

Report #: 516239

Continuing Calibration Check Standard (CCC) / Continuing Calibration Verification (CCV) / Initial Calibration Verification Standard (ICV) / Initial Performance Check (IPC) - is a standard containing one or more of the target analytes that is prepared from the same standards used to calibrate the instrument. This standard is used to verify the calibration curve at the beginning of each analytical sequence, and may also be analyzed throughout and at the end of the sequence. The concentration of continuing standards may be varied, when prescribed by the reference method, so that the range of the calibration curve is verified on a regular basis. CCL, CCM, and CCH are the CCC standards at low, mid, and high concentration levels, respectively.

Internal Standards (IS) - are pure compounds with properties similar to the analytes of interest, which are added to field samples or extracts, calibration standards, and quality control standards at a known concentration. They are used to measure the relative responses of the analytes of interest and surrogates in the sample, calibration standard or quality control standard.

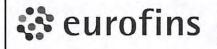
Laboratory Duplicate (LD) - is a field sample aliquot taken from the same sample container in the laboratory and analyzed separately using identical procedures. Analysis of laboratory duplicates provides a measure of the precision of the laboratory procedures.

Laboratory Fortified Blank (LFB) / Laboratory Control Sample (LCS) - is an aliquot of reagent water to which known concentrations of the analytes of interest are added. The LFB is analyzed exactly the same as the field samples. LFBs are used to determine whether the method is in control. FBL, FBM, and FBH are the LFB samples at low, mid, and high concentration levels, respectively.

Laboratory Method Blank (LMB) / **Laboratory Reagent Blank (LRB)** - is a sample of reagent water included in the sample batch analyzed in the same way as the associated field samples. The LMB is used to determine if method analytes or other background contamination have been introduced during the preparation or analytical procedure. The LMB is analyzed exactly the same as the field samples.

Laboratory Trip Blank (LTB) / Field Reagent Blank (FRB) - is a sample of laboratory reagent water placed in a sample container in the laboratory and treated as a field sample, including storage, preservation, and all analytical procedures. The FRB/LTB container follows the collection bottles to and from the collection site, but the FRB/LTB is not opened at any time during the trip. The FRB/LTB is primarily a travel blank used to verify that the samples were not contaminated during shipment.

If applicable, the calculation of the matrix spike (MS) or matrix spike duplicate (MSD) percent recovery is as follows: (MS or MSD value - Sample value) * 100 / spike target / dilution factor = **Recovery** %


Matrix Spike Duplicate Sample (MSD) / Laboratory Fortified Sample Matrix Duplicate (LFSMD) - is a sample aliquot taken from the same field sample source as the Matrix Spike Sample to which known quantities of the analytes of interest are added in the laboratory. The MSD is analyzed exactly the same as the field samples. Analysis of the MSD provides a measure of the precision of the laboratory procedures in a specific matrix. SDL, SDM, and SDH / LFSMDL, LFSMDM, and LFSMDH are the MSD or LFSMD at low, mid, and high concentration levels, respectively.

Matrix Spike Sample (MS) / Laboratory Fortified Sample Matrix (LFSM) - is a sample aliquot taken from field sample source to which known quantities of the analytes of interest are added in the laboratory. The MS is analyzed exactly the same as the field samples. The purpose is to demonstrate recovery of the analytes from a sample matrix to determine if the specific matrix contributes bias to the analytical results. MSL, MSM, and MSH / LFSML, LFSMM, and LFSMH are the MS or LFSM at low, mid, and high concentration levels, respectively.

Quality Control Standard (QCS) / Second Source Calibration Verification (SSCV) - is a solution containing known concentrations of the analytes of interest prepared from a source different from the source of the calibration standards. The solution is obtained from a second manufacturer or lot if the lot can be demonstrated by the manufacturer as prepared independently from other lots. The QCS sample is analyzed using the same procedures as field samples. The QCS is used as a check on the calibration standards used in the method on a routine basis.

Reporting Limit Check (RLC) / Initial Calibration Check Standard (ICCS) - is a procedural standard that is analyzed each day to evaluate instrument performance at or below the minimum reporting limit (MRL).

Surrogate Standard (SS) / Surrogate Analyte (SUR) - is a pure compound with properties similar to the analytes of interest, which is highly unlikely to be found in any field sample, that is added to the field samples, calibration standards, blanks and quality control standards before sample preparation. The SS is used to evaluate the efficiency of the sample preparation process.

Eaton Analytical

110 S. Hill Street PM 4 27 2 424549 South Bend. IN 46617 T: 1.800.332.4345 F: 1.574.233.8207

Batch # 516239

www.EurofinsUS.com/Eaton CHAIN OF CUSTODY RECORD Page 1 of 1 Shaded area for EEA use only STATE (sample origin) PROJECT NAME REPORT TO: SAMPLER (Signature) PO# PWS ID# Jon Mink, Tim Brewer (jmink@trace-labs.com, tbrewer@trace-labs.com) Trace Analyitical Laboratories, Inc., 2241 Black Creek Rd., Muskegon, MI 49444 231-773-5998 MW Sampling- April POPULATION SERVED SOURCE WATER 21D0882 CONTAINERS BILL TO: Yes No 2021 COMPLIANCE TURNAROUND MATRIX CODE MONITORING X Accounts Payable, Trace Analytical Laboratories, Inc., 2241 Black Creek Rd., Muskegon, MI 49444 LAB Number COLLECTION CHLORINATED SAMPLE REMARKS # OF SAMPLING SITE **TEST NAME** DATE TIME AM PM YES NO 3 GW SW 04/23/21 9:15 Radium 226/228 3 GW SW 04/23/21 9:55 Radium 226/228 3 GW SW 04/23/21 10:20 Radium 226/228 3 GW SW 04/23/21 10:50 Radium 226/228 3 GW SW 04/23/21 7:50 Radium 226/228 3 GW SW 04/23/21 8:45 Radium 226/228 3 GW SW 04/23/21 7:30 Radium 226/228 3 GW SW 04/23/21 14:58 Radium 226/228 3 GW SW 04/23/21 14:30 Radium 226/228 3 GW SW 04/23/21 13:00 Radium 226/228 11 12 RELINQUISHED BY:(Signature) RECEIVED BY:(Signature) TIME DATE TIME LAB RESERVES THE RIGHT TO RETURN UNUSED PORTIONS OF NON-AQUEOUS SAMPLES TO CLIENT LAB COMMENTS preserved ppw 04/27/21 AN PM AM PM RELINQUISHED BY (Signature) DATE RECEIVED BY:(Signature) DATE AM PM AM PM RELINQUISHED BY:(Signature) DATE TIME RECEIVED FOR LABORATORY BY: DATE TIME CONDITIONS UPON RECEIPT (check one °C Upon Receipt_ NA 2021 AM PM **MATRIX CODES:** TURN-AROUND TIME (TAT) - SURCHARGES SW = Standard Written: (15 working days) DW-DRINKING WATER IV* = Immediate Verbal: (3 working days) 100% RW-REAGENT WATER RV* = Rush Verbal: (5 working days) IW* =Immediate Written: (3 working days) 125% GW-GROUND WATER Samples received unannounced with less than 48 hours holding time remaining **EW-EXPOSURE WATER** RW* = Rush Written: (5 working days) 75% SP* = Weekend, Holiday CALL SW-SURFACE WATER may be subject to additional charges. STAT* = Less than 48 hours CALL PW-POOL WATER WW-WASTE WATER Please call, expedited service not available for all testing 06-LO-F0435 Issue 6.0 Effective Date: 2016-09-20

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Ple	ase	Sig	jn	Ø]	9	Ø	2	0	8	Ч	n	23	-	No co	Project Name:			Email Address:	Office Phone:	City, State	Mailing Address	Report To	Company	Report) isan	
٥		721	Released By	V 13:06	14:30	1458	7:36	54.3	7:50	10:50	10:20	1 9:55	4-2321 9:15	Date Time Collected Collected	Name: MW Sampling-	Standard, 5-10 Days 3 Day* 1 Days 1 Day	. Caround Requirements.	dress:	0100	City, State, Zip Code:	OCIOSO	Report To: Paul Cederquist	Company Name: Grand Haven Board of Light & Power	Report Results To:	NALVIGAL LABORATORIS, INC	1
In executing this Chain of Custody, the client acknowledges the terms as set forth at www.trace-labs.com/terms-of-agreement.		7/7	Received By	MW-10	MW-9	MW-8	MW-7	MW-6	MW-5	MW-4	MW-3	MW-2	MW-1R	Client Sample ID		S = Soil / Solid W = Water SL = Sludge Sc prior approval. OI = Oil	Matrix Key:		Cell Phone:		A THE STATE OF THE PROPERTY OF THE STATE OF		Light & Power	AND A STATE OF THE	RES.	
stody the client ackno		12/2c/h	/ Date											Metals Field Filtered (Y / N)	Sampled By:	olid WI = Wipes LW = Liquid Waste e :A = Air D = Drinking Water		Billing Email Address:	Phone Number:	City, State. Zip Code:	Silling Address (if different)	Contact Name:	PO #	Bill To:	Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673	CHAIN-
wledges the terms as s		8:45	Time	9 6 1									¥ X	Matrix Number of Containers Cool HCI HNO ₃ Preservation NaOH NaOH		Waste Water		ess:		de:	different)	And the second line is considered and the second se		The statement of the st	Laboratories, Inc. k Road 9444-2673	CHAIN-OF-CUSTODY RECORD
et forth at www.trace-lat	r		Released By	1									×	Total Metal Dissolved I Hardness						A Committee of the second seco		The second section of the sec			Phone 231.773.5998 Fax 888.979.4469 www.trace-labs.com	CORD
ns com/terms-of-agree			•	0 0 1								_ 	× × ×	CI, F, Sulfa Bicarb-Alk, Radium 22 LLHg	Carbo		Analy		and the second s	egister edigin tilber i verger viveregen		Contract of the Contract of th	and specific the specific as a state of		Phone 231.773.5998 Fax 888.979.4469 www.trace-labs.com	
nent			Received By	<								_	×	рН			Analysis Requested		Sampling Time:	МеОН	Soil Volatiles Preserv	Checked By: 76	Logged By:	Trace Use:	D.	Page_
				7.60	7.14	7.18	6.47	7.17	6.76	7.18	6.91	おり	PH-7.25	Remarks		٠				Low Level Lab	Soil Volatiles Preserved (circle if applicable):	,			Trace ID No.	eof
			Time	Ğ.									01	Possible Hea	Ith Haz	ards?	$ \ $									

Pump Used: Peristaltic

Specific (Celsius)

Conductivity

20

.20

20

Water Depth to

49

5

25

7:26

Temperature

-

0.0

15,10

Reading Time

ORP (mV)

Turbidity(NTU)

アルー

22.1

44.9

Oxygen

53

. ЦЗ

Dissolved

모

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP Date: 4.23-21

Depth to Point: 18.81'

Field Personnel:

Sample Tubing Depth: 16'

Purge Start Time: 7:15

Depth to Water: 5.42

Well No.: MW 7

Purge Rate: _

30ml/min

Dissolved Oxygen: 10% Spec. Conductivity: 3% Turbidity: 10% or <1 ORP: +/- 10 mV Temperature: 3%

Stabilization Criteria:

Notes:

Specific

(Celsius)

8.58

9

2

é

500

Temperature

Conductivity

36

Depth to

Reading Time

3H:L

7:47

XH:L

Water

ORP (mV) Oxygen Dissolved

193

201

52-

. F

2

Turbidity(NTU)

J.

50

S

오

6.76

6

9

9

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 5

Depth to Water: 5 97

Date: 4.23.2

Purge Start Time: 7:35 Depth to Point: 11.5'

Field Personnel:

Sample Tubing Depth: 10'

Purge Rate: __ 300 sall Min

Stabilization Criteri
<u>si</u> .

Spec. Conductivity: 3%

Turbidity: 10% or <1 ORP: +/- 10 mV Dissolved Oxygen: 10%

Notes:

Pump Used: Peristaltic

Stabilization Criteria:
Temperature: 3%
Spec. Conductivity: 3%
Dissolved Oxygen: 10%
ORP: +/- 10 mV
Turbidity: 10% or <1

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Depth to **Reading Time** Well No.: MW 6 Client: GHBLP Depth to Water: __ 9 8:43 Date:_ Purge Start Time: 8:30 Depth to Point: 16.55' Purge Rate: 200cl/mic Sample Tubing Depth: 14' Field Personnel:

ORP (mV) 모 Oxygen Specific (Celsius) Water Turbidity(NTU) Dissolved Conductivity Temperature 9.33 50C しる 11.06 559 2.03 1119 1.00 0 200 (202 22.8 9.33 1.00 に上

Pump Used: Peristaltic

Notes:

ORP: +/- 10 mV Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3% Stabilization Criteria:

Turbidity: 10% or <1

ORP (mV)

28

20

20

Turbidity(NTU)

오

7.28

7.25

7.25

Notes:

Dissolved

Specific (Celsius)

Conductivity

S

S

2

Oxygen

5

3

Water Depth to

Temperature

Reading Time

5

0

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Well No.: MW-1R

Depth to Water: ________

Date: 4.23.2

Depth to Point: 18.2ft

Purge Start Time: 9.00

Sample Tubing Depth: 10'

Client: GHBLP

Field Personnel:

T

Purge Rate: 300 ml/min

Pump Used: Peristaltic

Specific (Celsius)

Conductivity

348

S

2

10.65

ORP (mV)

201-

103

Turbidity(NTU)

é.

6

오

, 4

46

6.94

Oxygen

Dissolved

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 2

Depth to Water: 14.62

Depth to

Reading Time

Water

3

14. as

So'll

2.5

2

CS.

Temperature

Date: 4-23-21

Purge Start Time: 9:40 Depth to Point: 23.51'

Field Personnel:

Sample Tubing Depth: 20'

Purge Rate: 300 WLL/Min

ORP: +/- 10 mV Turbidity: 10% or <1

Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3% Stabilization Criteria:

Notes:

Pump Used: Peristaltic

Specific (Celsius)

.90

N

2

0

3.90

Water Depth to

Temperature

88

2

XX

Reading Time

6

ORP (mV) Oxygen

798

86C

32

Dissolved Conductivity

S

いて

シア

Turbidity(NTU)

7.2

4

نو

모

2

2

2

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Depth to Water: _ Well No.: MW 3

Date: 4.23-21

Depth to Point: 20.5'

Field Personnel:

Sample Tubing Depth: 18'

Purge Start Time: 10:05

Purge Rate: 300-(/ini

pH: +/- 0.1 OF DE SP Te

Notes:

Pump Used: Peristaltic

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Depth to Water: _

Well No.: MW 4

Date:

Depth to Point: 18.01'

Purge Start Time: 10:35

Field Personnel:

Sample Tubing Depth: 16'

Purge Rate: 300vul/wiin

Temperature: 3% Stabilization Criteria:

Spec. Conductivity: 3%

Turbidity: 10% or <1 pH: +/- 0.1 Dissolved Oxygen: 10% ORP: +/- 10 mV

Pump Used: Peristaltic

Notes:

рН	Turbidity(NTU)	ORP (mV)	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Depth to Water	Reading Time
	19.9	79J	. 60	2.43	9.64	11.47	ID:US
7.18 7.18	10,0	100	60	2.43 2.43 2.43	9.64 9.64 9.64	11.47 11.47 11.47	10:45 10:46 10:47
7.18	19.9	-92	. 60	2.43	9.64	「ルー	10:47
						ж	

(Celsius)

Temperature

0

5

9

50,

20.9

Specific

196

96

,96

Depth to

Reading Time

Water

89

68,9

6

25

12:56

2:57

ORP (mV) Oxygen

183

1/8

S

1

22

Dissolved Conductivity

S

SI

5

Turbidity(NTU)

S. T.

W

7

W

오

7.60

7.60

7.60

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 10

Depth to Water: 6.65

Date:

Depth to Point: 13.00

Purge Start Time: (고: 니)

Purge Rate:

Field Personnel:

Sample Tubing Depth: | 7 ++ 300md/min

Temperature: 3% Stabilization Criteria:

Spec. Conductivity: 3%

ORP: +/- 10 mV Turbidity: 10% or <1 Dissolved Oxygen: 10%

Notes:

Pump Used: Peristaltic

Reading Time

Depth to Water:

8.49

Well No.: MW 9

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Field Personnel: ES ES

Date: 4-23-21

Purge Start Time: 14:15 Depth to Point: 14.9

Purge Rate: _ Soaul himin

T 100/	ORP: +/- 10 mV	Dissolved Oxygen: 10%	Spec. Conductivity: 3%	Temperature: 3%	Stabilization Criteria:
--------	----------------	-----------------------	------------------------	-----------------	-------------------------

pH: +/- 0.1 Turbidity: 10% or <1

Pump Used: Peristaltic

Notes:

			a de la como						Silvania.	فللفة	1715	Section.	
рН		Turbidity(NTU)		ORP (mV)	Oxygen	Dissolved	ÌΫ	Specific	(Celsius)	Temperature	Water	Depth to	
h1.7	41.7		~100	•	1.66	•	1:25		1250		8.57		元 25 元
HIL HIL HIL	41.7 41.7 41.7		100 -100		1.66 1.66 1.66		1.25 1.25		1250 7.50 12.50		6.57 8.57 8.57		14:25 14:26 14:28
7.14	41.7		5		1.66		1.25		P:50		15,8		14:28
		1 2500										1000	
													e**
						Ž	×.3						
					7 See 1								

Dissolved

Specific (Celsius)

Conductivity

934

934

Oxygen

ORP (mV)

Depth to

Reading Time

N:N

Water

(4,4)

Temperature

S

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Well No.: MW 8 Client: GHBLP Date: 4-23-21 Field Personnel:

Depth to Water:

Depth to Point: 11.85

Purge Start Time: 14:40

Sample Tubing Depth: イプチ)ー

Purge Rate: __ 300ml/min

Temperature: 3% Stabilization Criteria: 오

Turbidity(NTL

Dissolved Oxygen: 10% ORP: +/- 10 mV Spec. Conductivity: 3%

Turbidity: 10% or <1

Pump Used: Peristaltic

Notes:

	5	
7.18	8. 1	-103
7.18	8. –	-103
7.18	 ∝	-103
i -		

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace ID#: 2100882 Date: 4/25/21 Package Des Client Name: GH BLP Time: 11:07	
Cooler Receipt	
Cooler/samples delivered by: Trace courier Hand delivered Name of Commercial courier UPS	of delivery person: <u>Evan</u> Brewel FED EX US Mail
Tracking Number: Not Applicable	
COC Seals present and intact on cooler? Not Applicable No Custody seals signed by Client? No Yes Client custo	Yes ody seal # (if applicable):
Coolant and Temperate	ure
Slurry w/ crushed, cubed, or chip ice? Multiple bags of ice around samples? Ice Packs/ Blue Ice : Representative Sample Ten No Coolant Present: Temp Blank	Cooler Temperature ital Stick Thermometer CF = -0.4°C (20B12743) Thermometer CF = -0.5°C (IR #8) Inperature: 5.6 °C (check one below) ((Stick Thermometer)
Yes No N/A Melt Water: 7.8	°C (Use Digital Stick Thermometer)
General	
ph checked - samples at correct ph and labeled as such?	Comments 726/21 HNO3 added 13:00 1726/21 Didn't mean to cross off.
Notes:	*EMD pH Test Strips Used: pH 0-2.5 Lot: HC029115 Lot: HC729101 Other:
	TRACE Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

September 02, 2021

Mr. Paul Cederquist Grand Haven Board of Light and Power-Monthly MWs 1700 Eaton Drive Grand Haven, MI 49417

Phone: 616-607-1292 Fax: (616) 842-3511

RE: Trace Project

21G1159

Client Project

Monitoring Wells

Dear Mr. Cederquist:

Enclosed are your analytical results. The results of this report relate only to the samples listed in the body of this report.

All reports were examined through Trace's validation process to ensure that requirements for quality and completeness were satisfied. All reported analytical results were obtained in accordance with the methods referenced on the reports. Every practical effort was made to meet the reporting limit specifications for this work, however, some results may have raised reporting limits to correct for percent solids.

For clients that require NELAP Accreditation, Trace certifies that these test results meet all requirements of the NELAP Standard, except for those analytes with a "N" notation. These analytes have not been evaluated by NELAP at Trace's discretion and will not be reported unless requested by client.

If you have questions concerning this report, please contact me at 231.773.5998 or by email at jmink@trace-labs.com.

Sincerely,

Jon Mink Senior Project Manager

Enclosures

NJDEP Accreditation No. MI008

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

SAMPLE SUMMARY

Trace Project ID:

21G1159

Client Project ID:

Monitoring Wells

race ID	Sample ID	Matrix	Collected By	Date Collected	Date Received
1G1159-01	MW-1R	Ground Water	EB-Trace	07/30/21 09:25	07/30/21 15:32
1G1159-02	MW-2	Ground Water	EB-Trace	07/30/21 09:50	07/30/21 15:32
1G1159-03	MW-3	Ground Water	EB-Trace	07/30/21 10:25	07/30/21 15:32
1G1159-04	MW-4	Ground Water	EB-Trace	07/30/21 10:55	07/30/21 15:32
1G1159-05	MW-5	Ground Water	EB-Trace	07/30/21 08:35	07/30/21 15:32
1G1159-06	MW-6	Ground Water	EB-Trace	07/30/21 11:15	07/30/21 15:32
1G1159-07	MW-7	Ground Water	EB-Trace	07/30/21 08:05	07/30/21 15:32
1G1159-08	MW-8	Ground Water	EB-Trace	07/30/21 14:40	07/30/21 15:32
1G1159-09	MW-9	Ground Water	EB-Trace	07/30/21 12:10	07/30/21 15:32
1G1159-10	MW-10	Ground Water	EB-Trace	07/30/21 12:55	07/30/21 15:32

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Page 3 of 54

AN EXPLANATION OF TERMS AND SYMBOLS WHICH MAY OCCUR IN THIS REPORT

DEFINITIONS

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

MS Matrix Spike

MSD Matrix Spike Duplicate
RPD Relative Percent Difference

DUP Matrix Duplicate

RDL Reporting Detection Limit
MCL Maximum Contamination Limit
TIC Tentatively Identified Compound

<, ND or U Indicates the compound was analyzed for but not detected

Indicates a result that exceeds its associated MCL or Surrogate control limits
 Indicates that the laboratory is not accredited by NELAP for this compound

NA Indicates that the compound is not available.

NOTE: Samples for volatiles that have been extracted with a water miscible solvent were corrected for the

total volume of the solvent/water mixture.

Solid matrices Method Blanks are at 100% solids as such results are the same wet or dry.

DATA QUALIFIERS

Trace ID:	21G1159-01		
pH	:: SM 4500-H+ B-11	Note SITE :	The analysis was performed on site at the time of sampling.
Trace ID:	21G1159-02		
<u>Analysis</u>	s: SM 4500-H+ B-11		
рН		Note SITE :	The analysis was performed on site at the time of sampling.
Trace ID:	21G1159-03		
Analysis	:: SM 4500-H+ B-11		
рН		Note SITE :	The analysis was performed on site at the time of sampling.
Trace ID:	21G1159-04		
Analysis	s: SM 4500-H+ B-11		
рН		Note SITE :	The analysis was performed on site at the time of sampling.
Trace ID:	21G1159-05		
Analysis	: SM 4500-H+ B-11		
pH		Note SITE :	The analysis was performed on site at the time of sampling.

Trace ID: 21G1159-06

Analysis: SM 4500-H+ B-11

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

рН		Note SITE :	The analysis was performed on site at the time of sampling.
Trace ID:	21G1159-07		
Analysis	: SM 4500-H+ B-11		
рН		Note SITE :	The analysis was performed on site at the time of sampling.
Trace ID:	21G1159-08		
Analysis	: SM 4500-H+ B-11		
рН		Note SITE :	The analysis was performed on site at the time of sampling.
Trace ID:	21G1159-09		
Analysis	: SM 4500-H+ B-11		
pН		Note SITE :	The analysis was performed on site at the time of sampling.
Trace ID:	21G1159-10		
Analysis	: SM 4500-H+ B-11		
pН		Note SITE :	The analysis was performed on site at the time of sampling.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21G1159
Client Project ID: Monitoring Wells

Trace ID: 21G1159-01 Matrix: Ground Water Date Collected: 07/30/21 09:25 Sample ID: MW-1R Date Received: 07/30/21 15:32 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T112873 Mercury 4.3 ng/L 0.50 07/30/21 dc 08/02/21 Ν dc Analysis Method: EPA 6010D Batch: T112897 0.0020 Beryllium <0.0020 mg/L 1 08/02/21 08/03/21 dc gmr Boron 110 mg/L 1.2 25 08/02/21 gmr 08/04/21 dc Calcium 380 mg/L 12 25 08/02/21 08/04/21 amr dc 0.20 1 08/02/21 08/03/21 Iron 3.3 mg/L gmr dc Lithium 2.3 mg/L 0.010 1 08/02/21 gmr 08/03/21 dc Ν Magnesium 130 mg/L 5.0 25 08/02/21 08/04/21 dc amr 25 08/02/21 08/04/21 Potassium 69 mg/L 25 gmr dc Sodium 410 mg/L 12 25 08/02/21 gmr 08/04/21 dc N <0.020 mg/L 0.020 08/02/21 08/03/21 Zinc gmr dc Analysis Method: EPA 6020B Batch: T112897 0.0014 mg/L 0.00030 1 08/02/21 08/09/21 Antimony gmr acs Arsenic 0.0042 mg/L 0.0010 1 08/02/21 gmr 08/09/21 acs 0.20 mg/L 0.010 08/02/21 08/09/21 Barium 1 gmr acs Cadmium 0.00060 mg/L 0.0010 1 08/02/21 08/09/21 J gmr acs Chromium 0.0027 mg/L 0.00090 1 08/02/21 08/09/21 gmr acs Cobalt 0.0037 mg/L 0.0016 1 08/02/21 gmr 08/09/21 acs <0.0040 mg/L 0.0040 1 08/02/21 08/09/21 Copper gmr acs Lead 0.0075 mg/L 0.0020 1 08/02/21 08/09/21 gmr acs 08/02/21 08/09/21 Manganese 0.57 mg/L 0.025 1 gmr acs Molybdenum 0.0025 mg/L 0.00040 1 08/02/21 08/09/21 N gmr acs Nickel 0.0057 mg/L 0.0050 1 08/11/21 mrh 08/12/21 acs Selenium <0.0020 mg/L 0.0020 08/02/21 08/09/21 gmr acs <0.0010 mg/L Silver 0.0010 1 08/02/21 08/09/21 gmr acs Thallium <0.0010 mg/L 0.0010 1 08/02/21 gmr 08/09/21 acs

CERTIFICATE OF ANALYSIS

0.00080

0.0023 mg/L

1

08/02/21

gmr

08/09/21

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID:	21G1159
Client Project ID:	Monitoring Wells

Trace ID: 21G1159-01	Matrix: Ground Water	Date	Collected: 07/30	/21 09:25					
Sample ID: MW-1R		Date	Received: 07/30	/21 15:32					
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	1500 mg/L	21	25	08/02/21		08/04/21	dc	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T113062									
Beryllium	<0.0010 mg/L	0.0010	1	08/05/21	dc	08/06/21	dc		
Boron	79 mg/L	0.50	10	08/05/21	dc	08/06/21	dc		
Calcium	320 mg/L	5.0	10	08/05/21	dc	08/06/21	dc		
Iron	3.2 mg/L	0.10	1	08/05/21	dc	08/06/21	dc		
Lithium	2.2 mg/L	0.010	1	08/05/21	dc	08/09/21	dc	N	
Magnesium	100 mg/L	2.0	10	08/05/21	dc	08/06/21	dc		
Potassium	58 mg/L	10	10	08/05/21	dc	08/06/21	dc		
Sodium	300 mg/L	5.0	10	08/05/21	dc	08/06/21	dc	N	
Zinc	0.00096 mg/L	0.020	1	08/05/21	dc	08/06/21	dc	J	
Analysis Method: EPA 6020B Batch: T112895									
Antimony	0.00089 mg/L	0.00020	1	08/02/21	ckd	08/06/21	ckd		
Arsenic	0.0038 mg/L	0.0010	1	08/02/21	ckd	08/06/21	ckd		
Barium	0.17 mg/L	0.00060	1	08/02/21	ckd	08/06/21	ckd		
Cadmium	0.000049 mg/L	0.0010	1	08/02/21	ckd	08/06/21	ckd	J	
Chromium	0.0016 mg/L	0.00080	1	08/02/21	ckd	08/06/21	ckd		
Cobalt	0.0011 mg/L	0.0016	1	08/02/21	ckd	08/06/21	ckd	J	
Copper	0.00015 mg/L	0.00080	1	08/02/21	ckd	08/06/21	ckd	J	
Lead	0.00043 mg/L	0.00040	1	08/02/21	ckd	08/06/21	ckd		
Manganese	0.65 mg/L	0.00040	1	08/02/21	ckd	08/06/21	ckd		
Molybdenum	0.0019 mg/L	0.00040	1	08/02/21	ckd	08/06/21	ckd	N	
Nickel	0.0023 mg/L	0.00040	1	08/02/21	ckd	08/06/21	ckd		
Selenium	0.00081 mg/L	0.00087	1	08/02/21	ckd	08/06/21	ckd	J	
Silver	0.000015 mg/L	0.000040	1	08/02/21	ckd	08/06/21	ckd	J	
Thallium	0.000065 mg/L	0.00017	1	08/02/21	ckd	08/06/21	ckd	J	
Vanadium	0.0022 mg/L	0.00080	1	08/02/21	ckd	08/06/21	ckd		

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Client Project ID:	Monitoring Wells
Trace Project ID:	21G1159

Trace ID: 21G1159-01	Matrix: Ground Water	Date Collected: 07/30/21 09:25
Sample ID: MW-1R		Date Received: 07/30/21 15:32

PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
------------	---------------	-----	----------	----------	----	----------	----	-------	-----

METALS, DISSOLVED

WE	-	MIC.	rdv.
VVE	- СГ	113	IRI

Fluoride	12 mg/L	0.50	25	07/30/21	mr	07/31/21	mr
Chloride	230 mg/L	15	100	07/30/21	mr	08/02/21	mr
Sulfate as SO4	940 mg/L	60	100	07/30/21	mr	08/02/21	mr

Analysis	Method:	SM	2320	B-11
-----------------	---------	----	------	------

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T112905								
Bicarbonate Alkalinity as CaCO3 at pH 4.5	980 mg/L	25	5	08/02/21	mr	08/02/21	mr	N
Carbonate Alkalinity as CaCO3 at pH 8.2	<25 mg/L	25	5	08/02/21	mr	08/02/21	mr	N
Analysis Method: SM 2540 C-11								

Batch:	T113011	

Total Dissolved Solids	3200 mg/L	40	4	08/04/21	rg	08/04/21	rg
Analysis Method: SM 4500 H+ P 44							

Analysis Method: SM 4500-H+ B-11

Batch: T112949

pH 8.31 pH Units	1	07/30/21	jm	07/30/21	jm	SITE, N
------------------	---	----------	----	----------	----	---------

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21G1159
Client Project ID: Monitoring Wells

Trace ID: 21G1159-02 Matrix: Ground Water Date Collected: 07/30/21 09:50 Sample ID: MW-2 Date Received: 07/30/21 15:32 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T112873 Mercury 0.92 ng/L 0.50 07/30/21 dc 08/02/21 dc Ν Analysis Method: EPA 6010D Batch: T112897 0.0020 Beryllium <0.0020 mg/L 1 08/02/21 08/03/21 dc gmr Boron 93 mg/L 1.2 25 08/02/21 gmr 08/04/21 dc Calcium 230 mg/L 12 25 08/02/21 08/04/21 amr dc 0.20 1 08/02/21 08/03/21 Iron 24 mg/L gmr dc Lithium 1.1 mg/L 0.010 1 08/02/21 gmr 08/03/21 dc Ν Magnesium 71 mg/L 5.0 25 08/02/21 08/04/21 dc amr 25 08/02/21 08/04/21 Potassium 40 mg/L 25 gmr dc Sodium 270 mg/L 12 25 08/02/21 gmr 08/04/21 dc N <0.020 mg/L 0.020 08/02/21 08/03/21 Zinc gmr dc Analysis Method: EPA 6020B Batch: T112897 Antimony 0.00030 <0.00030 mg/L 1 08/02/21 08/09/21 gmr acs Arsenic 0.015 mg/L 0.0010 1 08/02/21 gmr 08/09/21 acs 0.48 mg/L 0.010 08/02/21 08/09/21 Barium 1 gmr acs Cadmium <0.0010 mg/L 0.0010 1 08/02/21 08/09/21 gmr acs Chromium 0.025 mg/L 0.00090 1 08/02/21 08/09/21 gmr acs Cobalt 0.0041 mg/L 0.0016 1 08/02/21 gmr 08/09/21 acs <0.0040 mg/L 0.0040 1 08/02/21 08/09/21 Copper gmr acs Lead 0.00067 mg/L 0.0020 1 08/02/21 08/09/21 J gmr acs 08/02/21 08/09/21 Manganese 0.83 mg/L 0.025 1 gmr acs Molybdenum 0.0045 mg/L 0.00040 1 08/02/21 08/09/21 gmr acs Ν Nickel 0.015 mg/L 0.0050 1 08/11/21 mrh 08/12/21 acs 08/02/21 08/09/21 Selenium 0.0013 mg/L 0.0020 1 amr acs <0.0010 mg/L 0.0010 08/09/21 Silver 1 08/02/21 gmr acs Thallium <0.0010 mg/L 0.0010 1 08/02/21 gmr 08/09/21 acs

CERTIFICATE OF ANALYSIS

0.00080

0.0026 mg/L

08/02/21

gmr

08/09/21

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Client Project ID:	Monitoring Wells
Trace Project ID:	21G1159

Trace ID: 21G1159-02 Sample ID: MW-2	Matrix: Ground Water		Collected: 07/30 Received: 07/30						
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	880 mg/L	21	25	08/02/21		08/04/21	dc	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T113062									
Beryllium	<0.0010 mg/L	0.0010	1	08/05/21	dc	08/06/21	dc		
Boron	88 mg/L	0.50	10	08/05/21	dc	08/06/21	dc		
Calcium	200 mg/L	5.0	10	08/05/21	dc	08/06/21	dc		
Iron	15 mg/L	0.10	1	08/05/21	dc	08/06/21	dc		
Lithium	1.1 mg/L	0.010	1	08/05/21	dc	08/09/21	dc	N	
Magnesium	63 mg/L	2.0	10	08/05/21	dc	08/06/21	dc		
Potassium	40 mg/L	10	10	08/05/21	dc	08/06/21	dc		
Sodium	240 mg/L	5.0	10	08/05/21	dc	08/06/21	dc	N	
Zinc	0.0023 mg/L	0.020	1	08/05/21	dc	08/06/21	dc	J	
Analysis Method: EPA 6020B Batch: T112895									
Antimony	0.00084 mg/L	0.0010	5	08/02/21	ckd	08/06/21	ckd	J	
Arsenic	0.011 mg/L	0.0010	1	08/02/21	ckd	08/06/21	ckd		
Barium	0.43 mg/L	0.0030	5	08/02/21	ckd	08/06/21	ckd		
Cadmium	0.000020 mg/L	0.0010	1	08/02/21	ckd	08/06/21	ckd	J	
Chromium	0.016 mg/L	0.00080	1	08/02/21	ckd	08/06/21	ckd		
Cobalt	0.0032 mg/L	0.0016	1	08/02/21	ckd	08/06/21	ckd		
Copper	0.00042 mg/L	0.00080	1	08/02/21	ckd	08/06/21	ckd	J	
Lead	0.00055 mg/L	0.0020	5	08/02/21	ckd	08/06/21	ckd	J	
Manganese	0.67 mg/L	0.00040	1	08/02/21	ckd	08/06/21	ckd		
Molybdenum	0.0040 mg/L	0.00040	1	08/02/21	ckd	08/06/21	ckd	N	
Nickel	0.011 mg/L	0.00040	1	08/02/21	ckd	08/06/21	ckd		
Selenium	0.0011 mg/L	0.00087	1	08/02/21	ckd	08/06/21	ckd		
Silver	0.000026 mg/L	0.000040	1	08/02/21	ckd	08/06/21	ckd	J	
Thallium	0.00025 mg/L	0.00087	5	08/02/21	ckd	08/06/21	ckd	J	
.,	0.0044 "								

CERTIFICATE OF ANALYSIS

0.00080

0.0014 mg/L

1

08/02/21

ckd

08/06/21

ckd

21G1159

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

BY

NOTES

MCL

ANALYTICAL RESULTS

Trace ID: 21G1159-02	Matrix: Ground Water	Date				
Sample ID: MW-2		Date Received: 07/30/21 15:32				
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED

VA/ET	ICTOV
VV⊏I	ISTRY

Trace Project ID:

WET CHEMISTRY								
Analysis Method: EPA 300.0 Rev. 2.1 Batch: T112875								
Fluoride	9.0 mg/L	0.10	5	07/30/21	mr	07/30/21	mr	
Chloride	140 mg/L	3.8	25	07/30/21	mr	07/31/21	mr	
Sulfate as SO4	0.81 mg/L	3.0	5	07/30/21	mr	07/30/21	mr	J
Analysis Method: SM 2320 B-11 Batch: T112905								
Bicarbonate Alkalinity as CaCO3 at pH 4.5	2000 mg/L	25	5	08/02/21	mr	08/02/21	mr	N
Carbonate Alkalinity as CaCO3 at pH 8.2	<25 mg/L	25	5	08/02/21	mr	08/02/21	mr	N
Analysis Method: SM 2540 C-11 Batch: T113011								
Total Dissolved Solids	1800 mg/L	40	4	08/04/21	rg	08/04/21	rg	
Analysis Method: SM 4500-H+ B-11 Batch: T112949								
рН	7.38 pH Units		1	07/30/21	jm	07/30/21	jm	SITE, N

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21G1159
Client Project ID: Monitoring Wells

Trace ID: 21G1159-03 Matrix: Ground Water Date Collected: 07/30/21 10:25 Sample ID: MW-3 Date Received: 07/30/21 15:32 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T112873 Mercury 0.64 ng/L 0.50 07/30/21 dc 08/02/21 dc Ν Analysis Method: EPA 6010D Batch: T112897 0.0020 Beryllium <0.0020 mg/L 1 08/02/21 08/03/21 dc gmr Boron 4.8 mg/L 0.050 1 08/02/21 gmr 08/03/21 dc Calcium 570 mg/L 12 25 08/02/21 08/04/21 amr dc 0.20 1 08/02/21 08/03/21 Iron 4.8 mg/L gmr dc Lithium 0.050 mg/L 0.010 1 08/02/21 gmr 08/03/21 dc Ν Magnesium 260 mg/L 5.0 25 08/02/21 08/04/21 dc amr 08/02/21 08/03/21 Potassium 27 mg/L 1.0 1 gmr dc Sodium 150 mg/L 12 25 08/02/21 gmr 08/04/21 dc N <0.020 mg/L 0.020 08/02/21 08/03/21 Zinc gmr dc Analysis Method: EPA 6020B Batch: T112897 Antimony 0.00030 <0.00030 mg/L 1 08/02/21 08/09/21 gmr acs Arsenic 0.0017 mg/L 0.0010 1 08/02/21 gmr 08/09/21 acs 0.48 mg/L 0.010 08/02/21 08/09/21 Barium 1 gmr acs Cadmium <0.0010 mg/L 0.0010 1 08/02/21 08/09/21 gmr acs Chromium 0.0044 mg/L 0.00090 1 08/02/21 08/09/21 gmr acs Cobalt 0.00086 mg/L 0.0016 1 08/02/21 amr 08/09/21 acs J <0.0040 mg/L 0.0040 1 08/02/21 08/09/21 Copper gmr acs <0.0020 mg/L Lead 0.0020 1 08/02/21 gmr 08/09/21 acs 08/02/21 08/09/21 Manganese 2.0 mg/L 0.025 1 gmr acs <0.00040 mg/L 0.00040 08/02/21 08/09/21 Molybdenum 1 gmr Ν acs Nickel 0.0016 mg/L 0.0035 1 08/11/21 mrh 08/12/21 acs J Selenium <0.0020 mg/L 0.0020 08/02/21 08/09/21 gmr acs <0.0010 mg/L 0.0010 08/09/21 Silver 1 08/02/21 gmr acs Thallium <0.0010 mg/L 0.0010 1 08/02/21 gmr 08/09/21 acs

CERTIFICATE OF ANALYSIS

0.00080

0.0019 mg/L

08/02/21

gmr

08/09/21

acs

21G1159

Monitoring Wells

Trace Project ID:

Client Project ID:

Antimony

Arsenic

Barium

Cadmium

Chromium

Cobalt

Copper

Manganese

Molybdenum

Lead

Nickel

Silver

Selenium

Thallium

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace ID: 21G1159-03 Matrix: Ground Water Date Collected: 07/30/21 10:25 Sample ID: MW-3 Date Received: 07/30/21 15:32 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 2500 mg/L 21 25 08/02/21 08/04/21 Ν dc **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T113062 Beryllium <0.0010 mg/L 0.0010 1 08/05/21 dc 08/06/21 dc 4.2 mg/L 0.050 08/05/21 08/06/21 Boron 1 dc dc Calcium 440 mg/L 5.0 10 08/05/21 dc 08/06/21 dc Iron 0.18 mg/L 0.10 1 08/05/21 dc 08/06/21 dc Lithium 0.050 mg/L 0.010 08/05/21 08/09/21 1 dc dc Ν 210 mg/L 08/05/21 08/06/21 Magnesium 2.0 10 dc dc Potassium 24 mg/L 1.0 1 08/05/21 dc 08/06/21 dc Sodium 130 mg/L 5.0 10 08/05/21 dc 08/06/21 dc N 08/05/21 08/06/21 Zinc <0.020 mg/L 0.020 1 dc dc Analysis Method: EPA 6020B Batch: T112895

0.0010

0.0050

0.0030

0.0010

0.0040

0.0080

0.0040

0.0020

0.0020

0.0020

0.0020

0.0044

0.00020

0.00087

0.0040

08/02/21

08/02/21

08/02/21

08/02/21

08/02/21

08/02/21

08/02/21

08/02/21

08/02/21

08/02/21

08/02/21

08/02/21

08/02/21

08/02/21

08/02/21

ckd

08/06/21

08/06/21

08/06/21

08/06/21

08/06/21

08/06/21

08/06/21

08/06/21

08/06/21

08/06/21

08/06/21

08/06/21

08/06/21

08/06/21

08/06/21

J

.I

J

Ν

J.

J

acs

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

0.00078 mg/L

0.0019 mg/L

<0.0010 mg/L

<0.0040 mg/L

0.00084 mg/L

<0.0040 mg/L

<0.0020 mg/L

<0.0020 mg/L

0.0017 mg/L

<0.0044 mg/L

<0.00020 mg/L

<0.00087 mg/L

0.0012 mg/L

1.4 mg/L

0.38 mg/L

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID:	21G1159
Client Project ID:	Monitoring Wells

 Trace ID: 21G1159-03
 Matrix: Ground Water
 Date Collected: 07/30/21 10:25

 Sample ID: MW-3
 Date Received: 07/30/21 15:32

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

рΗ

-								
Batch: T112875								
Fluoride	1.0 mg/L	0.10	5	07/30/21	mr	07/30/21	mr	
Chloride	380 mg/L	7.5	50	07/30/21	mr	08/02/21	mr	
Sulfate as SO4	85 mg/L	30	50	07/30/21	mr	08/02/21	mr	
Analysis Method: SM 2320 B-11 Batch: T112905								
Bicarbonate Alkalinity as CaCO3 at pH 4.5	2000 mg/L	25	5	08/02/21	mr	08/02/21	mr	N
Carbonate Alkalinity as CaCO3 at pH 8.2	<25 mg/L	25	5	08/02/21	mr	08/02/21	mr	N
Analysis Method: SM 2540 C-11 Batch: T113011								
Total Dissolved Solids	2600 mg/L	40	4	08/04/21	rg	08/04/21	rg	
Analysis Method: SM 4500-H+ B-11								
Batch: T112949								

07/30/21

jm

07/30/21

SITE, N

jm

7.39 pH Units

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21G1159
Client Project ID: Monitoring Wells

Trace ID: 21G1159-04 Matrix: Ground Water Date Collected: 07/30/21 10:55 Sample ID: MW-4 Date Received: 07/30/21 15:32 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T112873 Mercury <0.50 ng/L 0.50 07/30/21 dc 08/02/21 dc Ν Analysis Method: EPA 6010D Batch: T112897 0.0020 Beryllium <0.0020 mg/L 1 08/02/21 08/03/21 dc gmr Boron 3.7 mg/L 0.050 1 08/02/21 gmr 08/03/21 dc Calcium 450 mg/L 12 25 08/02/21 08/04/21 amr dc 0.20 1 08/02/21 08/03/21 Iron 6.3 mg/L gmr dc Lithium 0.065 mg/L 0.010 1 08/02/21 gmr 08/03/21 dc Ν Magnesium 110 mg/L 5.0 25 08/02/21 08/04/21 dc amr 08/02/21 08/03/21 Potassium 23 mg/L 1.0 1 gmr dc Sodium 89 mg/L 12 25 08/02/21 gmr 08/04/21 dc N <0.020 mg/L 0.020 08/02/21 08/03/21 Zinc gmr dc Analysis Method: EPA 6020B Batch: T112897 Antimony 0.00030 <0.00030 mg/L 1 08/02/21 08/09/21 gmr acs Arsenic 0.0014 mg/L 0.0010 1 08/02/21 gmr 08/09/21 acs 0.11 mg/L 0.010 08/02/21 08/09/21 Barium 1 gmr acs Cadmium <0.0010 mg/L 0.0010 1 08/02/21 08/09/21 gmr acs Chromium 0.0028 mg/L 0.00090 1 08/02/21 08/09/21 gmr acs Cobalt 0.00069 mg/L 0.0016 1 08/02/21 amr 08/09/21 acs J <0.0040 mg/L 0.0040 1 08/02/21 08/09/21 Copper gmr acs <0.0020 mg/L Lead 0.0020 1 08/02/21 gmr 08/09/21 acs 08/02/21 08/09/21 Manganese 1.1 mg/L 0.025 1 gmr acs Molybdenum 0.0018 mg/L 0.00040 1 08/02/21 08/09/21 N gmr acs Nickel 0.014 mg/L 0.0050 1 08/11/21 mrh 08/12/21 acs Selenium <0.0020 mg/L 0.0020 08/02/21 08/09/21 gmr acs <0.0010 mg/L 0.0010 Silver 1 08/02/21 08/09/21 gmr acs Thallium <0.0010 mg/L 0.0010 1 08/02/21 gmr 08/09/21 acs

CERTIFICATE OF ANALYSIS

0.00080

0.0012 mg/L

08/02/21

gmr

08/09/21

acs

21G1159

Monitoring Wells

Trace Project ID:

Client Project ID:

Chromium

Cobalt

Copper

Manganese

Molybdenum

Lead

Nickel

Silver

Selenium

Thallium

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace ID: 21G1159-04 Matrix: Ground Water Date Collected: 07/30/21 10:55 Sample ID: MW-4 Date Received: 07/30/21 15:32 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 1600 mg/L 21 25 08/02/21 08/04/21 Ν dc **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T113062 Beryllium <0.0010 mg/L 0.0010 08/05/21 dc 08/06/21 dc 3.3 mg/L 0.050 08/05/21 08/06/21 Boron 1 dc dc Calcium 320 mg/L 5.0 10 08/05/21 dc 08/06/21 dc Iron 5.1 mg/L 0.10 1 08/05/21 dc 08/06/21 dc Lithium 0.070 mg/L 0.010 08/05/21 08/09/21 1 dc dc Ν 08/05/21 08/06/21 Magnesium 83 mg/L 2.0 10 dc dc Potassium 22 mg/L 1.0 1 08/05/21 dc 08/06/21 dc Sodium 72 mg/L 5.0 10 08/05/21 dc 08/06/21 dc N 08/05/21 08/06/21 J Zinc 0.00085 mg/L 0.020 1 dc dc Analysis Method: EPA 6020B Batch: T112895 **Antimony** 0.00060 mg/L 0.00020 1 08/02/21 ckd 08/06/21 ckd Arsenic 0.0013 mg/L 0.0010 1 08/02/21 ckd 08/06/21 ckd **Barium** 0.10 mg/L 0.00060 1 08/02/21 ckd 08/06/21 ckd Cadmium <0.0010 mg/L 0.0010 08/02/21 ckd 08/06/21 ckd 0.0019 mg/L 0.00080 1 08/02/21 08/06/21

ckd

08/06/21

08/06/21

08/06/21

08/06/21

08/06/21

08/06/21

08/06/21

08/06/21

08/06/21

08/06/21

08/02/21

08/02/21

08/02/21

08/02/21

08/02/21

08/02/21

08/02/21

08/02/21

08/02/21

08/02/21

ckd

J

Ν

J

CERTIFICATE OF ANALYSIS

0.00038 mg/L

<0.00080 mg/L

<0.00040 mg/L

1.1 mg/L

0.0012 mg/L

0.013 mg/L

<0.00087 mg/L

<0.000040 mg/L

<0.00017 mg/L

0.00078 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

0.0016

0.00080

0.00040

0.00040

0.00040

0.00040

0.00087

0.000040

0.00017

0.00080

1

1

1

1

1

1

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Ν

Ν

ANALYTICAL RESULTS

Trace Project ID:	21G1159
Client Project ID:	Monitoring Wells

Trace ID: 21G1159-04 Matrix: Ground Water Date Collected: 07/30/21 10:55 Sample ID: MW-4 Date Received: 07/30/21 15:32

PARAMETERS RESULTS UNITS DILUTION PREPARED BY ANALYZED BY NOTES MCL RDL

METALS, DISSOLVED

WET CHEMISTRY

Batch: T112875

Analysis Method: EPA 30	00.0 Rev. 2.1
-------------------------	---------------

1.3 mg/L 07/30/21 07/30/21 Fluoride 0.10 5 mr mr Chloride 190 mg/L 7.5 50 07/30/21 08/02/21 mr mr Sulfate as SO4 540 mg/L 30 50 07/30/21 08/02/21 mr mr Analysis Method: SM 2320 B-11 Batch: T112905 Bicarbonate Alkalinity as CaCO3 at pH 4.5 750 mg/L 25 5 08/02/21 mr 08/02/21

Carbonate Alkalinity as CaCO3 at pH 8.2 <25 mg/L 25 5 08/02/21 08/02/21 mr mr

Analysis Method: SM 2540 C-11

Batch: T113011 **Total Dissolved Solids** 320 mg/L 40

08/04/21 rg 08/04/21 rg

Analysis Method: SM 4500-H+ B-11

Batch: T112949

рΗ 7.43 pH Units 07/30/21 07/30/21 SITE, N jm jm

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21G1159
Client Project ID: Monitoring Wells

Trace ID: 21G1159-05 Matrix: Ground Water Date Collected: 07/30/21 08:35 Sample ID: MW-5 Date Received: 07/30/21 15:32 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T112873 Mercury <0.50 ng/L 0.50 07/30/21 dc 08/02/21 dc Ν Analysis Method: EPA 6010D Batch: T112897 0.0020 Beryllium <0.0020 mg/L 1 08/02/21 08/03/21 dc gmr Boron 2.9 mg/L 0.050 1 08/02/21 gmr 08/03/21 dc Calcium 510 mg/L 12 25 08/02/21 08/04/21 amr dc 0.20 1 08/02/21 08/03/21 Iron 12 mg/L gmr dc Lithium 0.11 mg/L 0.010 1 08/02/21 gmr 08/03/21 dc Ν Magnesium 41 mg/L 0.20 1 08/02/21 08/03/21 dc amr 08/02/21 08/03/21 Potassium 10 mg/L 1.0 1 gmr dc 1 Sodium 30 mg/L 0.50 08/02/21 gmr 08/03/21 dc N <0.020 mg/L 0.020 08/02/21 08/03/21 Zinc gmr dc Analysis Method: EPA 6020B Batch: T112897 Antimony 0.00030 <0.00030 mg/L 1 08/02/21 08/09/21 gmr acs Arsenic 0.052 mg/L 0.0010 1 08/02/21 gmr 08/09/21 acs 0.077 mg/L 0.010 08/02/21 08/09/21 Barium 1 gmr acs Cadmium <0.0010 mg/L 0.0010 1 08/02/21 08/09/21 gmr acs gmr Chromium <0.00090 mg/L 0.00090 1 08/02/21 08/09/21 acs Cobalt <0.0016 mg/L 0.0016 08/02/21 gmr 08/09/21 acs <0.0040 mg/L 0.0040 1 08/02/21 08/09/21 Copper gmr acs <0.0020 mg/L Lead 0.0020 1 08/02/21 gmr 08/09/21 acs 08/02/21 08/09/21 Manganese 1.5 mg/L 0.025 1 gmr acs Molybdenum 0.00063 mg/L 0.00040 1 08/02/21 08/09/21 N gmr acs <0.0050 mg/L Nickel 0.0050 1 08/11/21 mrh 08/12/21 acs Selenium <0.0020 mg/L 0.0020 08/02/21 08/09/21 gmr acs <0.0010 mg/L 0.0010 Silver 1 08/02/21 08/09/21 gmr acs Thallium <0.0010 mg/L 0.0010 1 08/02/21 gmr 08/09/21 acs

CERTIFICATE OF ANALYSIS

0.00080

0.00070 mg/L

08/02/21

gmr

08/09/21

acs

J

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21G1159 Client Project ID: Monitoring Wells									
Trace ID: 21G1159-05	Matrix: Ground Water	Date	Collected: 07/30	/21 08:35					
Sample ID: MW-5		Date Received: 07/30/21 15:32							
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	МС
METALS, TOTAL									
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	1500 mg/L	0.82	25	08/02/21		08/04/21	dc	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T113062									
Beryllium	<0.0010 mg/L	0.0010	1	08/05/21	dc	08/06/21	dc		
Boron	2.5 mg/L	0.050	1	08/05/21	dc	08/06/21	dc		
Calcium	410 mg/L	5.0	10	08/05/21	dc	08/06/21	dc		
Iron	11 mg/L	0.10	1	08/05/21	dc	08/06/21	dc		
Lithium	0.12 mg/L	0.010	1	08/05/21	dc	08/09/21	dc	N	
Magnesium	37 mg/L	0.20	1	08/05/21	dc	08/06/21	dc		
Potassium	9.8 mg/L	1.0	1	08/05/21	dc	08/06/21	dc		
Sodium	28 mg/L	0.50	1	08/05/21	dc	08/06/21	dc	N	
Zinc	0.0011 mg/L	0.020	1	08/05/21	dc	08/06/21	dc	J	
Analysis Method: EPA 6020B Batch: T112895									
Antimony	0.00011 mg/L	0.00020	1	08/02/21	ckd	08/06/21	ckd	J	
Arsenic	0.054 mg/L	0.0010	1	08/02/21	ckd	08/06/21	ckd		
Barium	0.096 mg/L	0.00060	1	08/02/21	ckd	08/06/21	ckd		
Cadmium	<0.0010 mg/L	0.0010	1	08/02/21	ckd	08/06/21	ckd		
Chromium	<0.00080 mg/L	0.00080	1	08/02/21	ckd	08/06/21	ckd		
Cobalt	0.00027 mg/L	0.0016	1	08/02/21	ckd	08/06/21	ckd	J	
Copper	<0.00080 mg/L	0.00080	1	08/02/21	ckd	08/06/21	ckd		
Lead	<0.00040 mg/L	0.00040	1	08/02/21	ckd	08/06/21	ckd		
Manganese	1.5 mg/L	0.00040	1	08/02/21	ckd	08/06/21	ckd		
Molybdenum	0.00056 mg/L	0.00040	1	08/02/21	ckd	08/06/21	ckd	N	
Nickel	0.00024 mg/L	0.00040	1	08/02/21	ckd	08/06/21	ckd	J	
Selenium	<0.00087 mg/L	0.00087	1	08/02/21	ckd	08/06/21	ckd		
Silver	<0.000040 mg/L	0.000040	1	08/02/21	ckd	08/06/21	ckd		
	-								

CERTIFICATE OF ANALYSIS

0.00017

0.00080

<0.00017 mg/L

0.00063 mg/L

1

08/02/21

08/02/21

ckd

ckd

08/06/21

08/06/21

ckd

ckd

J

Thallium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Client Project ID:	Monitoring Wells
Trace Project ID:	21G1159

Trace ID: 21G1159-05	Matrix: Ground Water	Date Collected: 07/30/21 08:35
Sample ID: MW-5		Date Received: 07/30/21 15:32

PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
	11200210 011110	INDL	2.20						

METALS, DISSOLVED

WET CHEMISTRY

рΗ

Analysis	Met	hod:	EPA	300.0	Rev. 2.1	
Dot	ah.	T110	075			

Batch: T112875								
Fluoride	3.9 mg/L	0.10	5	07/30/21	mr	07/30/21	mr	
Chloride	24 mg/L	0.75	5	07/30/21	mr	07/30/21	mr	
Sulfate as SO4	690 mg/L	30	50	07/30/21	mr	08/02/21	mr	
Analysis Method: SM 2320 B-11 Batch: T112905								
Bicarbonate Alkalinity as CaCO3 at pH 4.5	590 mg/L	25	5	08/02/21	mr	08/02/21	mr	N
Carbonate Alkalinity as CaCO3 at pH 8.2	<25 mg/L	25	5	08/02/21	mr	08/02/21	mr	N
Analysis Method: SM 2540 C-11 Batch: T113011								
Total Dissolved Solids	1700 mg/L	40	4	08/04/21	rg	08/04/21	rg	
Analysis Method: SM 4500-H+ B-11								
Batch: T112949								

07/30/21

jm

07/30/21

SITE, N

jm

6.96 pH Units

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21G1159
Client Project ID: Monitoring Wells

Trace ID: 21G1159-06 Matrix: Ground Water Date Collected: 07/30/21 11:15 Sample ID: MW-6 Date Received: 07/30/21 15:32 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T112873 Mercury 0.73 ng/L 0.50 07/30/21 dc 08/02/21 dc Ν Analysis Method: EPA 6010D Batch: T112897 0.0020 Beryllium <0.0020 mg/L 1 08/02/21 08/03/21 dc gmr Boron 11 mg/L 0.050 1 08/02/21 gmr 08/03/21 dc Calcium 210 mg/L 12 25 08/02/21 08/04/21 amr dc 0.20 1 08/02/21 08/03/21 Iron 7.2 mg/L gmr dc Lithium 0.19 mg/L 0.010 1 08/02/21 gmr 08/03/21 dc Ν Magnesium 110 mg/L 5.0 25 08/02/21 08/04/21 dc amr 08/02/21 08/03/21 Potassium 33 mg/L 1.0 1 gmr dc Sodium 110 mg/L 12 25 08/02/21 gmr 08/04/21 dc N <0.020 mg/L 0.020 08/02/21 08/03/21 Zinc gmr dc Analysis Method: EPA 6020B Batch: T112897 Antimony 0.00030 <0.00030 mg/L 1 08/02/21 08/09/21 gmr acs Arsenic 0.0010 mg/L 0.0010 1 08/02/21 gmr 08/09/21 acs 0.010 08/02/21 08/09/21 Barium 1.3 mg/L 1 gmr acs Cadmium <0.0010 mg/L 0.0010 1 08/02/21 08/09/21 gmr acs Chromium 0.0017 mg/L 0.00090 1 08/02/21 08/09/21 gmr acs Cobalt <0.0016 mg/L 0.0016 08/02/21 gmr 08/09/21 acs <0.0040 mg/L 0.0040 1 08/02/21 08/09/21 Copper gmr acs <0.0020 mg/L Lead 0.0020 1 08/02/21 gmr 08/09/21 acs 08/02/21 08/09/21 Manganese 0.28 mg/L 0.025 1 gmr acs Molybdenum 0.00059 mg/L 0.00040 1 08/02/21 08/09/21 N gmr acs Nickel <0.0050 mg/L 0.0050 1 08/11/21 mrh 08/12/21 acs Selenium <0.0020 mg/L 0.0020 08/02/21 08/09/21 gmr acs Silver <0.0010 mg/L 0.0010 1 08/02/21 08/09/21 gmr acs Thallium <0.0010 mg/L 0.0010 1 08/02/21 gmr 08/09/21 acs

CERTIFICATE OF ANALYSIS

0.00080

<0.00080 mg/L

08/02/21

gmr

08/09/21

acs

21G1159

Trace Project ID:

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Client Project ID: Monitoring Wells Trace ID: 21G1159-06 Matrix: Ground Water Date Collected: 07/30/21 11:15 Sample ID: MW-6 Date Received: 07/30/21 15:32 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 960 mg/L 21 25 08/02/21 08/04/21 Ν dc **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T113062 Beryllium <0.0010 mg/L 0.0010 08/05/21 dc 08/06/21 dc 9.9 mg/L 0.050 08/05/21 08/06/21 Boron 1 dc dc Calcium 180 mg/L 5.0 10 08/05/21 dc 08/06/21 dc Iron 6.9 mg/L 0.10 1 08/05/21 dc 08/06/21 dc Lithium 0.21 mg/L 0.010 08/05/21 08/09/21 1 dc dc Ν 08/05/21 08/06/21 Magnesium 98 mg/L 2.0 10 dc dc Potassium 30 mg/L 1.0 1 08/05/21 dc 08/06/21 dc Sodium 100 mg/L 5.0 10 08/05/21 dc 08/06/21 dc N 08/05/21 08/06/21 Zinc <0.020 mg/L 0.020 1 dc dc Analysis Method: EPA 6020B Batch: T112895 0.00073 mg/L 08/06/21 **Antimony** 0.00020 1 08/02/21 ckd ckd Arsenic 0.0010 mg/L 0.0010 1 08/02/21 ckd 08/06/21 ckd **Barium** 1.3 mg/L 0.00060 1 08/02/21 ckd 08/06/21 ckd Cadmium <0.0010 mg/L 0.0010 08/02/21 ckd 08/06/21 ckd 0.00057 mg/L 0.00080 1 08/02/21 08/06/21 Chromium ckd ckd J 0.00029 mg/L Cobalt 0.0016 1 08/02/21 ckd 08/06/21 ckd J <0.00080 mg/L 0.00080 08/02/21 ckd 08/06/21 ckd Copper <0.00040 mg/L 0.00040 1 08/02/21 ckd 08/06/21 Lead ckd 08/02/21 0.00040 08/06/21 Manganese 0.24 mg/L 1 ckd ckd Molybdenum 0.00057 mg/L 0.00040 08/02/21 08/06/21 ckd ckd Ν 0.0012 mg/L 0.00040 1 08/02/21 ckd 08/06/21 Nickel ckd <0.00087 mg/L 08/06/21 Selenium 0.00087 08/02/21 ckd ckd

CERTIFICATE OF ANALYSIS

0.000040

0.00017

0.00080

<0.000040 mg/L

<0.00017 mg/L

0.00037 mg/L

08/02/21

08/02/21

08/02/21

1

1

ckd

ckd

ckd

08/06/21

08/06/21

08/06/21

ckd

ckd

ckd

J

Silver

Thallium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID:	21G1159
Client Project ID:	Monitoring Wells

 Trace ID: 21G1159-06
 Matrix: Ground Water
 Date Collected: 07/30/21 11:15

 Sample ID: MW-6
 Date Received: 07/30/21 15:32

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2	.1
Batch: T112875	

Fluoride	1.6 mg/L	0.10	5	07/30/21	mr	07/30/21	mr
Chloride	210 mg/L	3.8	25	07/30/21	mr	07/31/21	mr
Sulfate as SO4	14 mg/L	3.0	5	07/30/21	mr	07/30/21	mr
Analysis Method: SM 2320 B-11 Batch: T112905							
Bicarbonate Alkalinity as CaCO3 at pH 4.5	920 ma/L	25	5	08/02/21	mr	08/02/21	mr

<25 mg/L

Analysis Method: SM 2540 C-11

Batch: T113011

Total Dissolved Solids 1400 mg/L 40

Analysis Method: SM 4500-H+ B-11

Batch: T112949

Carbonate Alkalinity as CaCO3 at pH 8.2

pH 7.49 pH Units 1 07/30/21 jm 07/30/21 jm SITE, N

25

08/02/21

08/04/21

mr

08/02/21

08/04/21

mr

rg

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21G1159
Client Project ID: Monitoring Wells

Trace ID: 21G1159-07 Matrix: Ground Water Date Collected: 07/30/21 08:05 Sample ID: MW-7 Date Received: 07/30/21 15:32 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T112873 Mercury <0.50 ng/L 0.50 07/30/21 dc 08/02/21 dc Ν Analysis Method: EPA 6010D Batch: T112897 0.0020 Beryllium <0.0020 mg/L 1 08/02/21 08/03/21 dc gmr Boron 15 mg/L 0.050 1 08/02/21 gmr 08/03/21 dc Calcium 150 mg/L 12 25 08/02/21 08/04/21 amr dc 0.20 1 08/02/21 08/03/21 Iron 17 mg/L gmr dc Lithium <0.010 mg/L 0.010 1 08/02/21 gmr 08/03/21 dc Ν Magnesium 35 mg/L 0.20 1 08/02/21 08/03/21 dc amr 08/02/21 08/03/21 Potassium 4.6 mg/L 1.0 1 gmr dc Sodium 53 mg/L 12 25 08/02/21 gmr 08/04/21 dc N <0.020 mg/L 0.020 08/02/21 08/03/21 Zinc gmr dc Analysis Method: EPA 6020B Batch: T112897 Antimony 0.00030 <0.00030 mg/L 1 08/02/21 08/09/21 gmr acs Arsenic <0.0010 mg/L 0.0010 1 08/02/21 gmr 08/09/21 acs 0.32 mg/L 0.010 08/02/21 08/09/21 Barium 1 gmr acs Cadmium <0.0010 mg/L 0.0010 1 08/02/21 08/09/21 gmr acs gmr Chromium <0.00090 mg/L 0.00090 1 08/02/21 08/09/21 acs Cobalt 0.00074 mg/L 0.0016 1 08/02/21 amr 08/09/21 J acs <0.0040 mg/L 0.0040 1 08/02/21 08/09/21 Copper gmr acs <0.0020 mg/L Lead 0.0020 1 08/02/21 gmr 08/09/21 acs 08/02/21 08/09/21 Manganese 2.0 mg/L 0.050 2 gmr acs <0.00040 mg/L 0.00040 1 08/02/21 08/09/21 Molybdenum gmr Ν acs <0.0050 mg/L Nickel 0.0050 1 08/11/21 mrh 08/12/21 acs Selenium <0.0020 mg/L 0.0020 08/02/21 08/09/21 gmr acs <0.0010 mg/L 0.0010 Silver 1 08/02/21 08/09/21 gmr acs Thallium <0.0010 mg/L 0.0010 1 08/02/21 gmr 08/09/21 acs

CERTIFICATE OF ANALYSIS

0.00080

0.00061 mg/L

08/02/21

gmr

08/09/21

acs

J

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21G1159

Client Project ID: Monitoring Wells

Trace ID: 21G1159-07 Matrix: Ground Water Date Collected: 07/30/21 08:05 Sample ID: MW-7 Date Received: 07/30/21 15:32 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 520 mg/L 0.82 25 08/02/21 08/04/21 Ν dc **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T113062 Beryllium <0.0010 mg/L 0.0010 1 08/05/21 dc 08/06/21 dc 0.050 08/05/21 08/06/21 Boron 14 mg/L 1 dc dc Calcium 120 mg/L 5.0 10 08/05/21 dc 08/06/21 dc Iron 12 mg/L 0.10 1 08/05/21 dc 08/06/21 dc Lithium 0.0059 mg/L 0.010 08/05/21 08/09/21 J, N 1 dc dc 1 08/05/21 08/06/21 Magnesium 32 mg/L 0.20 dc dc Potassium 4.5 mg/L 1.0 1 08/05/21 dc 08/06/21 dc Sodium 48 mg/L 5.0 10 08/05/21 dc 08/06/21 dc N 08/05/21 08/06/21 J Zinc 0.0013 mg/L 0.020 1 dc dc Analysis Method: EPA 6020B Batch: T112895 0.00071 mg/L **Antimony** 0.00020 1 08/02/21 ckd 08/06/21 ckd Arsenic 0.00049 mg/L 0.0010 1 08/02/21 ckd 08/06/21 ckd J **Barium** 0.26 mg/L 0.00060 1 08/02/21 ckd 08/06/21 ckd Cadmium <0.0010 mg/L 0.0010 08/02/21 ckd 08/06/21 ckd <0.00080 mg/L 0.00080 08/02/21 08/06/21 Chromium 1 ckd ckd Cobalt 0.00055 mg/L 0.0016 1 08/02/21 ckd 08/06/21 ckd J <0.00080 mg/L 0.00080 08/02/21 ckd 08/06/21 ckd Copper <0.00040 mg/L 0.00040 1 08/02/21 ckd 08/06/21 Lead ckd 0.0020 08/02/21 08/06/21 Manganese 1.9 mg/L 5 ckd ckd Molybdenum <0.00040 mg/L 0.00040 08/02/21 ckd 08/06/21 ckd Ν 0.000091 mg/L 0.00040 1 08/02/21 08/06/21 J. Nickel ckd ckd <0.00087 mg/L 08/06/21 Selenium 0.00087 08/02/21 ckd ckd Silver <0.000040 mg/L 0.000040 08/02/21 ckd 08/06/21 ckd <0.00017 mg/L 08/06/21 Thallium 0.00017 1 08/02/21 ckd ckd

CERTIFICATE OF ANALYSIS

0.00080

0.00046 mg/L

1

08/02/21

ckd

08/06/21

ckd

J

21G1159

Trace Project ID:

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Client Project ID: Monitoring Wells									
Trace ID: 21G1159-07 Sample ID: MW-7	Matrix: Ground Water Date Collected: 07/30/21 08:05 Date Received: 07/30/21 15:32								
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, DISSOLVED									
WET CHEMISTRY									
Analysis Method: EPA 300.0 Rev. 2.1 Batch: T112875									
Fluoride	0.082 mg/L	0.10	5	07/30/21	mr	07/30/21	mr	J	
Chloride	13 mg/L	0.75	5	07/30/21	mr	07/30/21	mr		
Sulfate as SO4	26 mg/L	3.0	5	07/30/21	mr	07/30/21	mr		
Analysis Method: SM 2320 B-11 Batch: T112905									
Bicarbonate Alkalinity as CaCO3 at pH 4	.5 620 mg/L	25	5	08/02/21	mr	08/02/21	mr	N	
Carbonate Alkalinity as CaCO3 at pH 8.2	<25 mg/L	25	5	08/02/21	mr	08/02/21	mr	N	
Analysis Method: SM 2540 C-11 Batch: T113011									
Total Dissolved Solids	740 mg/L	40	4	08/04/21	rg	08/04/21	rg		

07/30/21

jm

07/30/21

SITE, N

jm

6.66 pH Units

Analysis Method: SM 4500-H+ B-11

Batch: T112949

рΗ

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21G1159
Client Project ID: Monitoring Wells

Trace ID: 21G1159-08 Matrix: Ground Water Date Collected: 07/30/21 14:40 Sample ID: MW-8 Date Received: 07/30/21 15:32 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T112873 Mercury 0.64 ng/L 0.50 07/30/21 dc 08/02/21 dc Ν Analysis Method: EPA 6010D Batch: T112897 0.0020 Beryllium <0.0020 mg/L 1 08/02/21 08/03/21 dc gmr Boron 1.3 mg/L 0.050 1 08/02/21 gmr 08/03/21 dc Calcium 140 mg/L 12 25 08/02/21 08/04/21 amr dc 0.20 08/02/21 08/03/21 Iron 22 mg/L 1 gmr dc Lithium 0.039 mg/L 0.010 1 08/02/21 gmr 08/03/21 dc Ν Magnesium 22 mg/L 0.20 1 08/02/21 08/03/21 dc amr 08/02/21 08/03/21 Potassium 9.1 mg/L 1.0 1 gmr dc 1 Sodium 26 mg/L 0.50 08/02/21 gmr 08/03/21 dc N <0.020 mg/L 0.020 08/02/21 08/03/21 Zinc gmr dc Analysis Method: EPA 6020B Batch: T112897 Antimony 0.00030 <0.00030 mg/L 1 08/02/21 08/09/21 gmr acs Arsenic 0.0035 mg/L 0.0010 1 08/02/21 gmr 08/09/21 acs 0.83 mg/L 0.010 08/02/21 08/09/21 Barium 1 gmr acs Cadmium <0.0010 mg/L 0.0010 1 08/02/21 08/09/21 gmr acs Chromium 0.00076 mg/L 0.00090 1 08/02/21 08/09/21 J gmr acs Cobalt <0.0016 mg/L 0.0016 08/02/21 gmr 08/09/21 acs <0.0040 mg/L 0.0040 1 08/02/21 08/09/21 Copper gmr acs <0.0020 mg/L Lead 0.0020 1 08/02/21 gmr 08/09/21 acs 08/02/21 08/09/21 Manganese 1.3 mg/L 0.025 1 gmr acs Molybdenum 0.0028 mg/L 0.00040 1 08/02/21 08/09/21 N gmr acs <0.0050 mg/L Nickel 0.0050 1 08/11/21 mrh 08/12/21 acs Selenium <0.0020 mg/L 0.0020 08/02/21 08/09/21 gmr acs <0.0010 mg/L Silver 0.0010 1 08/02/21 08/09/21 gmr acs Thallium <0.0010 mg/L 0.0010 1 08/02/21 gmr 08/09/21 acs

CERTIFICATE OF ANALYSIS

0.00080

<0.00080 mg/L

08/02/21

gmr

08/09/21

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21G1159 Client Project ID: Monitoring Wells									
race ID: 21G1159-08	Matrix: Ground Water	Data	Collected: 07/30	/21 14:40					
Sample ID: MW-8	Matrix: Ground Water		Received: 07/30						
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	МС
METALS, TOTAL									
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	440 mg/L	0.82	25	08/02/21		08/04/21	dc	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T113062									
Beryllium	<0.0010 mg/L	0.0010	1	08/05/21	dc	08/06/21	dc		
Boron	1.2 mg/L	0.050	1	08/05/21	dc	08/06/21	dc		
Calcium	120 mg/L	5.0	10	08/05/21	dc	08/06/21	dc		
Iron	20 mg/L	0.10	1	08/05/21	dc	08/06/21	dc		
Lithium	0.043 mg/L	0.010	1	08/05/21	dc	08/09/21	dc	N	
Magnesium	21 mg/L	0.20	1	08/05/21	dc	08/06/21	dc		
Potassium	8.8 mg/L	1.0	1	08/05/21	dc	08/06/21	dc		
Sodium	24 mg/L	0.50	1	08/05/21	dc	08/06/21	dc	N	
Zinc	0.0018 mg/L	0.020	1	08/05/21	dc	08/06/21	dc	J	
Analysis Method: EPA 6020B Batch: T112895									
Antimony	0.00065 mg/L	0.00020	1	08/02/21	ckd	08/06/21	ckd		
Arsenic	0.0036 mg/L	0.0010	1	08/02/21	ckd	08/06/21	ckd		
Barium	0.81 mg/L	0.00060	1	08/02/21	ckd	08/06/21	ckd		
Cadmium	<0.0010 mg/L	0.0010	1	08/02/21	ckd	08/06/21	ckd		
Chromium	<0.00080 mg/L	0.00080	1	08/02/21	ckd	08/06/21	ckd		
Cobalt	0.00023 mg/L	0.0016	1	08/02/21	ckd	08/06/21	ckd	J	
Copper	<0.00080 mg/L	0.00080	1	08/02/21	ckd	08/06/21	ckd		
Lead	<0.00040 mg/L	0.00040	1	08/02/21	ckd	08/06/21	ckd		
Manganese	1.2 mg/L	0.00040	1	08/02/21	ckd	08/06/21	ckd		
Molybdenum	0.0023 mg/L	0.00040	1	08/02/21	ckd	08/06/21	ckd	N	
Nickel	0.00073 mg/L	0.00040	1	08/02/21	ckd	08/06/21	ckd		
Selenium	<0.00087 mg/L	0.00087	1	08/02/21	ckd	08/06/21	ckd		
Silver	<0.000040 mg/L	0.000040	1	08/02/21	ckd	08/06/21	ckd		
Thallium	<0.00017 mg/L	0.00017	1	08/02/21	ckd	08/06/21	ckd		

CERTIFICATE OF ANALYSIS

0.00080

0.00028 mg/L

1

08/02/21

ckd

08/06/21

ckd

J

21G1159

Trace Project ID:

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Client Project ID: Monitoring Wells										
Trace ID: 21G1159-08 Sample ID: MW-8	Matrix: Ground Water Date Collected: 07/30/21 14:40 Date Received: 07/30/21 15:32									
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL	
METALS, DISSOLVED										
WET CHEMISTRY										
Analysis Method: EPA 300.0 Rev. 2.1 Batch: T112875										
Fluoride	0.38 mg/L	0.10	5	07/30/21	mr	07/30/21	mr			
Chloride	33 mg/L	0.75	5	07/30/21	mr	07/30/21	mr			
Sulfate as SO4	1.8 mg/L	3.0	5	07/30/21	mr	07/30/21	mr	J		
Analysis Method: SM 2320 B-11 Batch: T112905										
Bicarbonate Alkalinity as CaCO3 at pH 4.5	5 440 mg/L	25	5	08/02/21	mr	08/02/21	mr	N		
Carbonate Alkalinity as CaCO3 at pH 8.2	<25 mg/L	25	5	08/02/21	mr	08/02/21	mr	N		
Analysis Method: SM 2540 C-11 Batch: T113011										
Total Dissolved Solids	530 mg/L	40	4	08/04/21	rg	08/04/21	rg			

07/30/21

jm

07/30/21

SITE, N

7.16 pH Units

Analysis Method: SM 4500-H+ B-11

Batch: T112949

рΗ

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21G1159
Client Project ID: Monitoring Wells

Trace ID: 21G1159-09 Matrix: Ground Water Date Collected: 07/30/21 12:10 Sample ID: MW-9 Date Received: 07/30/21 15:32 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T112873 Mercury <0.50 ng/L 0.50 07/30/21 dc 08/02/21 dc Ν Analysis Method: EPA 6010D Batch: T112897 Beryllium <0.0020 mg/L 0.0020 1 08/02/21 08/03/21 dc gmr Boron 6.4 mg/L 0.050 1 08/02/21 gmr 08/03/21 dc Calcium 240 mg/L 12 25 08/02/21 08/04/21 amr dc 0.20 08/02/21 08/03/21 Iron 21 mg/L 1 gmr dc Lithium 0.26 mg/L 0.010 1 08/02/21 gmr 08/03/21 dc Ν Magnesium 37 mg/L 0.20 1 08/02/21 08/03/21 dc amr 08/02/21 08/03/21 Potassium 15 mg/L 1.0 1 gmr dc 1 Sodium 30 mg/L 0.50 08/02/21 gmr 08/03/21 dc N <0.020 mg/L 0.020 08/02/21 08/03/21 Zinc gmr dc Analysis Method: EPA 6020B Batch: T112897 Antimony 0.00030 <0.00030 mg/L 1 08/02/21 08/09/21 gmr acs Arsenic 0.0034 mg/L 0.0010 1 08/02/21 gmr 08/09/21 acs 0.050 08/11/21 08/12/21 Barium 4.8 mg/L 5 acs acs Cadmium <0.0010 mg/L 0.0010 1 08/02/21 08/09/21 gmr acs Chromium 0.0024 mg/L 0.00090 1 08/02/21 08/09/21 gmr acs Cobalt <0.0016 mg/L 0.0016 08/02/21 gmr 08/09/21 acs <0.0040 mg/L 0.0040 1 08/02/21 08/09/21 Copper gmr acs <0.0020 mg/L Lead 0.0020 1 08/02/21 gmr 08/09/21 acs 08/02/21 08/09/21 Manganese 0.61 mg/L 0.025 1 gmr acs Molybdenum 0.026 mg/L 0.00040 1 08/02/21 08/09/21 Ν gmr acs Nickel 0.0032 mg/L 0.0050 1 08/11/21 mrh 08/12/21 acs J Selenium <0.0020 mg/L 0.0020 08/02/21 08/09/21 gmr acs <0.0010 mg/L Silver 0.0010 1 08/02/21 08/09/21 gmr acs Thallium <0.0010 mg/L 0.0010 1 08/02/21 gmr 08/09/21 acs

CERTIFICATE OF ANALYSIS

0.00080

<0.00080 mg/L

08/02/21

gmr

08/09/21

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Frace Project ID: 21G1159 Client Project ID: Monitoring Wells									
Trace ID: 21G1159-09									
Sample ID: MW-9		Date	Received: 07/30	/21 15:32					
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	МС
METALS, TOTAL									
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	750 mg/L	0.82	25	08/02/21		08/04/21	dc	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T113062									
Beryllium	<0.0010 mg/L	0.0010	1	08/05/21	dc	08/06/21	dc		
Boron	5.9 mg/L	0.050	1	08/05/21	dc	08/06/21	dc		
Calcium	200 mg/L	5.0	10	08/05/21	dc	08/06/21	dc		
Iron	19 mg/L	0.10	1	08/05/21	dc	08/06/21	dc		
Lithium	0.30 mg/L	0.010	1	08/05/21	dc	08/09/21	dc	N	
Magnesium	33 mg/L	0.20	1	08/05/21	dc	08/06/21	dc		
Potassium	15 mg/L	1.0	1	08/05/21	dc	08/06/21	dc		
Sodium	28 mg/L	0.50	1	08/05/21	dc	08/06/21	dc	N	
Zinc	0.0023 mg/L	0.020	1	08/05/21	dc	08/06/21	dc	J	
Analysis Method: EPA 6020B Batch: T112895									
Antimony	0.00058 mg/L	0.00020	1	08/02/21	ckd	08/06/21	ckd		
Arsenic	0.0034 mg/L	0.0010	1	08/02/21	ckd	08/06/21	ckd		
Barium	4.6 mg/L	0.0030	5	08/02/21	ckd	08/06/21	ckd		
Cadmium	<0.0010 mg/L	0.0010	1	08/02/21	ckd	08/06/21	ckd		
Chromium	0.0015 mg/L	0.00080	1	08/02/21	ckd	08/06/21	ckd		
Cobalt	0.00039 mg/L	0.0016	1	08/02/21	ckd	08/06/21	ckd	J	
Copper	<0.00080 mg/L	0.00080	1	08/02/21	ckd	08/06/21	ckd		
Lead	<0.00040 mg/L	0.00040	1	08/02/21	ckd	08/06/21	ckd		
Manganese	0.52 mg/L	0.00040	1	08/02/21	ckd	08/06/21	ckd		
Molybdenum	0.023 mg/L	0.00040	1	08/02/21	ckd	08/06/21	ckd	N	
Nickel	0.0011 mg/L	0.00040	1	08/02/21	ckd	08/06/21	ckd		
Selenium	0.00028 mg/L	0.00087	1	08/02/21	ckd	08/06/21	ckd	J	
Silver	<0.000040 mg/L	0.000040	1	08/02/21	ckd	08/06/21	ckd		
Thallium	<0.00017 mg/L	0.00017	1	08/02/21	ckd	08/06/21	ckd		

CERTIFICATE OF ANALYSIS

0.00080

0.00039 mg/L

1

08/02/21

ckd

08/06/21

ckd

J

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Client Project ID:	Monitoring Wells
Trace Project ID:	21G1159

 Trace ID: 21G1159-09
 Matrix: Ground Water
 Date Collected: 07/30/21 12:10

 Sample ID: MW-9
 Date Received: 07/30/21 15:32

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Analysis	Method:	EPA	300.0	Rev. 2.1

Batch: T112875								
Fluoride	2.4 mg/L	0.10	5	07/30/21	mr	07/30/21	mr	
Chloride	13 mg/L	0.75	5	07/30/21	mr	07/30/21	mr	
Sulfate as SO4	21 mg/L	3.0	5	07/30/21	mr	07/30/21	mr	
Analysis Method: SM 2320 B-11 Batch: T112905								
Bicarbonate Alkalinity as CaCO3 at pH 4.5	760 mg/L	25	5	08/02/21	mr	08/02/21	mr	N
Carbonate Alkalinity as CaCO3 at pH 8.2	<25 mg/L	25	5	08/02/21	mr	08/02/21	mr	N
Analysis Method: SM 2540 C-11 Batch: T113011								
Total Dissolved Solids	830 mg/L	40	4	08/04/21	rg	08/04/21	rg	

Analysis Method: SM 4500-H+ B-11

Batch: T112949

pH 7.25 pH Units 1 07/30/21 jm 07/30/21 jm SITE, N

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21G1159
Client Project ID: Monitoring Wells

Trace ID: 21G1159-10 Matrix: Ground Water Date Collected: 07/30/21 12:55 Sample ID: MW-10 Date Received: 07/30/21 15:32 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T112965 Mercury 0.97 ng/L 0.50 08/03/21 dc 08/06/21 dc Ν Analysis Method: EPA 6010D Batch: T112897 0.0020 Beryllium <0.0020 mg/L 1 08/02/21 08/03/21 dc gmr Boron 52 mg/L 1.2 25 08/02/21 gmr 08/04/21 dc Calcium 140 mg/L 12 25 08/02/21 08/04/21 amr dc 0.20 1 08/02/21 08/03/21 Iron 13 mg/L gmr dc Lithium 1.4 mg/L 0.010 1 08/02/21 gmr 08/03/21 dc Ν Magnesium 67 mg/L 5.0 25 08/02/21 08/04/21 dc amr 25 08/02/21 08/04/21 Potassium 41 mg/L 25 gmr dc Sodium 500 mg/L 12 25 08/02/21 gmr 08/04/21 dc N <0.020 mg/L 0.020 08/02/21 08/03/21 Zinc gmr dc Analysis Method: EPA 6020B Batch: T112897 Antimony 0.00030 <0.00030 mg/L 1 08/02/21 08/09/21 gmr acs Arsenic 0.0011 mg/L 0.0010 1 08/02/21 gmr 08/09/21 acs 0.010 08/02/21 08/09/21 Barium 1.4 mg/L 1 gmr acs Cadmium <0.0010 mg/L 0.0010 1 08/02/21 08/09/21 gmr acs Chromium 0.011 mg/L 0.00090 1 08/02/21 08/09/21 gmr acs Cobalt 0.0011 mg/L 0.0016 1 08/02/21 gmr 08/09/21 J acs <0.0040 mg/L 0.0040 1 08/02/21 08/09/21 Copper gmr acs Lead 0.00089 mg/L 0.0020 1 08/02/21 08/09/21 gmr acs 08/02/21 08/09/21 Manganese 0.64 mg/L 0.025 1 gmr acs Molybdenum 0.0071 mg/L 0.00040 1 08/02/21 08/09/21 gmr acs Ν Nickel 0.0041 mg/L 0.0050 1 08/11/21 mrh 08/12/21 acs J. Selenium <0.0020 mg/L 0.0020 08/02/21 08/09/21 gmr acs <0.0010 mg/L 0.0010 Silver 1 08/02/21 08/09/21 gmr acs Thallium <0.0010 mg/L 0.0010 1 08/02/21 gmr 08/09/21 acs

CERTIFICATE OF ANALYSIS

0.00080

0.0018 mg/L

08/02/21

gmr

08/09/21

acs

21G1159

Trace Project ID:

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace ID: 21G1159-10 Sample ID: MW-10	Matrix: Ground Water Date Collected: 07/30/21 12:55 Date Received: 07/30/21 15:32								
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	640 mg/L	21	25	08/02/21		08/04/21	dc	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T113062									
Beryllium	<0.0010 mg/L	0.0010	1	08/05/21	dc	08/06/21	dc		
Boron	42 mg/L	0.50	10	08/05/21	dc	08/06/21	dc		
Calcium	120 mg/L	5.0	10	08/05/21	dc	08/06/21	dc		
Iron	10 mg/L	0.10	1	08/05/21	dc	08/06/21	dc		
Lithium	1.6 mg/L	0.010	1	08/05/21	dc	08/09/21	dc	N	
Magnesium	56 mg/L	2.0	10	08/05/21	dc	08/06/21	dc		
Potassium	38 mg/L	10	10	08/05/21	dc	08/06/21	dc		
Sodium	410 mg/L	5.0	10	08/05/21	dc	08/06/21	dc	N	
Zinc	0.0021 mg/L	0.020	1	08/05/21	dc	08/06/21	dc	J	
Analysis Method: EPA 6020B Batch: T112895									
Antimony	0.00092 mg/L	0.00020	1	08/02/21	ckd	08/06/21	ckd		
Arsenic	0.0013 mg/L	0.0010	1	08/02/21	ckd	08/06/21	ckd		
Barium	1.3 mg/L	0.00060	1	08/02/21	ckd	08/06/21	ckd		
Cadmium	<0.0010 mg/L	0.0010	1	08/02/21	ckd	08/06/21	ckd		
Chromium	0.0078 mg/L	0.00080	1	08/02/21	ckd	08/06/21	ckd		
Cobalt	0.00077 mg/L	0.0016	1	08/02/21	ckd	08/06/21	ckd	J	
Copper	<0.00080 mg/L	0.00080	1	08/02/21	ckd	08/06/21	ckd		
Lead	0.000059 mg/L	0.00040	1	08/02/21	ckd	08/06/21	ckd	J	
Manganese	0.52 mg/L	0.00040	1	08/02/21	ckd	08/06/21	ckd		
Molybdenum	0.0067 mg/L	0.00040	1	08/02/21	ckd	08/06/21	ckd	N	
Nickel	0.0016 mg/L	0.00040	1	08/02/21	ckd	08/06/21	ckd		
Selenium	0.00062 mg/L	0.00087	1	08/02/21	ckd	08/06/21	ckd	J	
Silver	0.000022 mg/L	0.000040	1	08/02/21	ckd	08/06/21	ckd	J	
Thallium	<0.00017 mg/L	0.00017	1	08/02/21	ckd	08/06/21	ckd		
Mana additiona	0.0044 "	0.0000		00/00/04	-11	00/00/04	-11		

CERTIFICATE OF ANALYSIS

0.00080

0.0011 mg/L

1

08/02/21

ckd

08/06/21

ckd

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID:	21G1159
Client Project ID:	Monitoring Wells

 Trace ID: 21G1159-10
 Matrix: Ground Water
 Date Collected: 07/30/21 12:55

 Sample ID: MW-10
 Date Received: 07/30/21 15:32

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Analysis	Method:	EPA	300.0	Rev. 2.1
,a., o.o	mounou.		000.0	

Analysis Method: SM 4500-H+ B-11

Batch: T112949

рΗ

Batch: T112875								
Fluoride	12 mg/L	0.50	25	07/30/21	mr	07/31/21	mr	
Chloride	670 mg/L	15	100	08/04/21	ans	08/04/21	ans	
Sulfate as SO4	0.60 mg/L	3.0	5	07/30/21	mr	07/30/21	mr	J
Analysis Method: SM 2320 B-11 Batch: T112905								
Bicarbonate Alkalinity as CaCO3 at pH 4.5	1000 mg/L	25	5	08/02/21	mr	08/02/21	mr	N
Carbonate Alkalinity as CaCO3 at pH 8.2	<25 mg/L	25	5	08/02/21	mr	08/02/21	mr	N
Analysis Method: SM 2540 C-11 Batch: T113011								
Total Dissolved Solids	1700 mg/L	40	4	08/04/21	rg	08/04/21	rg	

07/30/21

jm

07/30/21

SITE, N

7.70 pH Units

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

QUALITY CONTROL RESULTS

Trace Project ID: 21G1159 Client Project ID: Monitoring Wells

QC Batch: T112873 Analysis Description: Mercury, Total, Low Level QC Batch Method: EPA 1631E Analysis Method: EPA 1631E METHOD BLANK: T112873-BLK1 Blank Reporting Parameter Units Result Notes Limit <0.20 Mercury ng/L 0.20 METHOD BLANK: T112873-BLK2 Blank Reporting Parameter Units Result Notes Limit <0.20 Mercury ng/L 0.20 METHOD BLANK: T112873-BLK3 Blank Reporting Units Parameter Result Notes Limit < 0.20 0.20 Mercury ng/L LABORATORY CONTROL SAMPLE: T112873-BS1 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Notes Limit 25.0 25.5 102 77-123 Mercury ng/L Trace Project ID: 21G1159 Client Project ID: Monitoring Wells QC Batch: T112965 Analysis Description: Mercury, Total, Low Level QC Batch Method: EPA 1631E Analysis Method: EPA 1631E METHOD BLANK: T112965-BLK1 Blank Reporting Parameter Units Notes Result Limit <0.20 Mercury ng/L 0.20 METHOD BLANK: T112965-BLK2 Blank Reporting Units Parameter Notes Result

CERTIFICATE OF ANALYSIS

<0.20

Limit

0.20

ng/L

Mercury

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T112	965-BLK3										
Parameter	Units			Blank Result		Reporting Limit					Notes
Mercury	ng/L			<0.20		0.20					
METHOD BLANK: T112	965-BLK4										
Parameter	Units			Blank Result		Reporting Limit					Notes
Mercury	ng/L			<0.20		0.20					
METHOD BLANK: T112	965-BLK5										
Parameter	Units			Blank Result		Reporting Limit					Notes
Mercury	ng/L			<0.20		0.20					
METHOD BLANK: T112	965-BLK6										
Parameter	Units			Blank Result		Reporting Limit					Notes
Mercury	ng/L			<0.20		0.20					
LABORATORY CONTRO	OL SAMPLE: T112965	-BS1									
Parameter	Units		oike onc.	LCS Resu		LCS % Re		% Rec Limit			Notes
Mercury	ng/L	25	5.0	25.8		103	;	77-123			
LABORATORY CONTRO	OL SAMPLE: T112965	-BS2									
Parameter	Units		oike onc.	LCS Resu		LCS % Re		% Rec Limit			Notes
Mercury	ng/L	25	5.0	24.2	!	97		77-123			
MATRIX SPIKE / MATRI	X SPIKE DUPLICATE:					: 21G1159-					
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Mercury	ng/L	0.968	10.0	9.32	9.04	84	81	71-125	3	24	
			Trac	e Project ID:	21G1159						
			Clien	nt Project ID:	Monitoring	y Wells					

CERTIFICATE OF ANALYSIS

Analysis Description: Magnesium, Total

Analysis Method: EPA 6010D

QC Batch Method: EPA 3015 Microwave Assisted Digestions

QC Batch: T112897

for Liquids

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T112897-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Boron	mg/L	<0.050	0.050	
Beryllium	mg/L	<0.0020	0.0020	
Calcium	mg/L	<0.50	0.50	
Iron	mg/L	<0.20	0.20	
Potassium	mg/L	<1.0	1.0	
Lithium	mg/L	<0.010	0.010	
Magnesium	mg/L	<0.20	0.20	
Sodium	mg/L	<0.50	0.50	
Zinc	mg/L	<0.020	0.020	

LABORATORY CONTROL SAMPLE: T112897-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	0.889	0.883	99	80-120	
Beryllium	mg/L	0.111	0.115	104	80-120	
Calcium	mg/L	8.89	9.09	102	80-120	
Iron	mg/L	8.89	9.19	103	80-120	
Potassium	mg/L	8.89	8.39	94	80-120	
Lithium	mg/L	0.889	0.868	98	80-120	
Magnesium	mg/L	8.89	8.89	100	80-120	
Sodium	mg/L	8.89	8.70	98	80-120	
Zinc	mg/L	0.889	0.911	102	80-120	

Trace Project ID: 21G1159
Client Project ID: Monitoring Wells

QC Batch: T113062 Analysis Description: Potassium, Dissolved
QC Batch Method: Analysis Method: EPA 6010D

METHOD BLANK: T113062-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Boron	mg/L	<0.050	0.050	
Beryllium	mg/L	<0.0010	0.0010	
Calcium	mg/L	<0.50	0.50	
Iron	mg/L	<0.10	0.10	
Potassium	mg/L	<1.0	1.0	
Magnesium	mg/L	<0.20	0.20	
Sodium	mg/L	<0.50	0.50	
Zinc	mg/L	<0.020	0.020	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T113062-BLK2

Parameter	Units	Blank Result	Reporting Limit	Notes
Calcium	mg/L	<0.50	0.50	
Lithium	mg/L	<0.010	0.010	

LABORATORY CONTROL SAMPLE: T113062-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	1.00	0.949	95	80-120	
Beryllium	mg/L	0.0500	0.0465	93	80-120	
Calcium	mg/L	10.0	9.44	94	80-120	
Iron	mg/L	10.0	9.65	96	80-120	
Potassium	mg/L	10.0	9.42	94	80-120	
Magnesium	mg/L	10.0	9.50	95	80-120	
Sodium	mg/L	10.0	9.83	98	80-120	
Zinc	ma/L	1.00	0.946	95	80-120	

LABORATORY CONTROL SAMPLE: T113062-BS2

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Calcium	mg/L	10.0	9.86	99	80-120	
Lithium	mg/L	0.500	0.477	95	80-120	

Trace Project ID: 21G1159 Client Project ID: Monitoring Wells

QC Batch: T112895 Analysis Description: Lead, Dissolved
QC Batch Method: Analysis Method: EPA 6020B

METHOD BLANK: T112895-BLK1

Parameter Units Blank Result Reporting Limit Silver mg/L <0.000040 0.000040 Arsenic mg/L <0.0010 0.0010 Barium mg/L <0.00060 0.00060 Cadmium mg/L <0.00020 0.00020 Cobalt mg/L <0.0016 0.0016 Chromium mg/L <0.00080 0.00080 Copper mg/L <0.00080 0.00080 Manganese mg/L <0.00040 0.00040 Nickel mg/L <0.00040 0.00040					
Arsenic mg/L <0.0010	Parameter	Units			Notes
Barium mg/L <0.00060 0.00060 Cadmium mg/L <0.00020	Silver	mg/L	<0.000040	0.000040	
Cadmium mg/L <0.00020 0.00020 Cobalt mg/L <0.0016	Arsenic	mg/L	<0.0010	0.0010	
Cobalt mg/L <0.0016 0.0016 Chromium mg/L <0.00080	Barium	mg/L	<0.00060	0.00060	
Chromium mg/L <0.00080 0.00080 Copper mg/L <0.00080	Cadmium	mg/L	<0.00020	0.00020	
Copper mg/L <0.00080 0.00080 Manganese mg/L <0.00040	Cobalt	mg/L	<0.0016	0.0016	
Manganese mg/L <0.00040 0.00040 Molybdenum mg/L <0.00040	Chromium	mg/L	<0.00080	0.00080	
Molybdenum mg/L <0.00040 0.00040	Copper	mg/L	<0.00080	0.00080	
,	Manganese	mg/L	<0.00040	0.00040	
Nickel mg/L <0.00040 0.00040	Molybdenum	mg/L	<0.00040	0.00040	
	Nickel	mg/L	<0.00040	0.00040	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T112895-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Lead	mg/L	<0.00040	0.00040	
Antimony	mg/L	<0.00020	0.00020	
Selenium	mg/L	<0.00087	0.00087	
Thallium	mg/L	<0.00017	0.00017	
Vanadium	mg/L	<0.00080	0.00080	

LABORATORY CONTROL SAMPLE: T112895-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Silver	mg/L	0.0600	0.0631	105	80-120	
Arsenic	mg/L	0.0600	0.0644	107	80-120	
Barium	mg/L	0.0600	0.0629	105	80-120	
Cadmium	mg/L	0.0600	0.0628	105	80-120	
Cobalt	mg/L	0.0600	0.0590	98	80-120	
Chromium	mg/L	0.0600	0.0640	107	80-120	
Copper	mg/L	0.0600	0.0623	104	80-120	
Manganese	mg/L	0.0600	0.0635	106	80-120	
Molybdenum	mg/L	0.0600	0.0621	103	80-120	
Nickel	mg/L	0.0600	0.0611	102	80-120	
Lead	mg/L	0.0600	0.0627	104	80-120	
Antimony	mg/L	0.0600	0.0606	101	80-120	
Selenium	mg/L	0.0600	0.0621	103	80-120	
Thallium	mg/L	0.0600	0.0624	104	80-120	
Vanadium	mg/L	0.0600	0.0605	101	80-120	

Trace Project ID: 21G1159 Client Project ID: Monitoring Wells

QC Batch: T112897 QC Batch Method: EPA 3015 Microwave Assisted Digestions for Liquids Analysis Description: Nickel, Total Analysis Method: EPA 6020B

METHOD BLANK: T112897-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Silver	mg/L	<0.0010	0.0010	
Arsenic	mg/L	<0.0010	0.0010	
Barium	mg/L	<0.010	0.010	
Cadmium	mg/L	<0.0010	0.0010	
Cobalt	mg/L	<0.0016	0.0016	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T112897-BLK1

Parameter	Units	Blank Result	Reporting Limit	N
Chromium	mg/L	<0.00090	0.00090	
Copper	mg/L	<0.0040	0.0040	
Manganese	mg/L	<0.025	0.025	
Molybdenum	mg/L	<0.00040	0.00040	
Lead	mg/L	<0.0020	0.0020	
Antimony	mg/L	<0.00030	0.00030	
Selenium	mg/L	<0.0020	0.0020	
Thallium	mg/L	<0.0010	0.0010	
Vanadium	mg/L	<0.00080	0.00080	

LABORATORY CONTROL SAMPLE: T112897-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Silver	mg/L	0.0278	0.0303	109	80-120	
Arsenic	mg/L	0.0556	0.0588	106	80-120	
Barium	mg/L	0.889	0.965	109	80-120	
Cadmium	mg/L	0.0278	0.0288	104	80-120	
Cobalt	mg/L	0.889	0.861	97	80-120	
Chromium	mg/L	0.0278	0.0323	116	80-120	
Copper	mg/L	0.889	0.871	98	80-120	
Manganese	mg/L	0.889	0.937	105	80-120	
Molybdenum	mg/L	0.889	0.913	103	80-120	
Lead	mg/L	0.0556	0.0585	105	80-120	
Antimony	mg/L	0.0556	0.0606	109	80-120	
Selenium	mg/L	0.0556	0.0562	101	80-120	
Thallium	mg/L	0.0556	0.0591	106	80-120	
Vanadium	mg/L	0.889	0.968	109	80-120	

Trace Project ID: 21G1159 Client Project ID: Monitoring Wells

QC Batch: T113253
QC Batch Method: EPA 3015 Microwave Assisted Digestions for Liquids

Analysis Description: Nickel, Total Analysis Method: EPA 6020B

METHOD BLANK: T113253-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Barium	mg/L	<0.010	0.010	
Nickel	mg/L	<0.0050	0.0050	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T113253-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Barium	mg/L	0.889	0.968	109	80-120	
Nickel	mg/L	0.889	0.847	95	80-120	

Trace Project ID: 21G1159 Client Project ID: Monitoring Wells

QC Batch: [CALC]

Analysis Description: Hardness (Metals)

QC Batch Method:

Analysis Method: SM 2340 B-11

Trace Project ID: 21G1159 Client Project ID: Monitoring Wells

QC Batch: T112875 Analysis Description: Sulfate
QC Batch Method: IC Prep W Analysis Method: EPA 300.0 Rev. 2.1

METHOD BLANK: T112875-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Chloride	mg/L	<0.15	0.15	
Fluoride	mg/L	<0.020	0.020	
Sulfate as SO4	mg/L	<0.60	0.60	

LABORATORY CONTROL SAMPLE: T112875-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Chloride	mg/L	5.00	4.90	98	90-110	
Fluoride	mg/L	1.00	1.01	101	90-110	
Sulfate as SO4	mg/L	5.00	4.90	98	90-110	

Trace Project ID: 21G1159 Client Project ID: Monitoring Wells

QC Batch: T113009 Analysis Description: Chloride
QC Batch Method: IC Prep W Analysis Method: EPA 300.0 Rev. 2.1

METHOD BLANK: T113009-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Chloride	ma/l	<0.15	0.15	

Trace Project ID: 21G1159 Client Project ID: Monitoring Wells

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

QC Batch: T112905

QC Batch Method: SM 2320 B-11

Analysis Description: Alkalinity, Bicarbonate

Analysis Method: SM 2320 B-11

LABORATORY CONTROL SAMPLE: T112905-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Bicarbonate Alkalinity as CaCO3 at pH 4.5	mg/L	100	103	103	88-112	
Carbonate Alkalinity as CaCO3 at pH 8.2	mg/L	100	103	103	88-112	

Trace Project ID: 21G1159 Client Project ID: Monitoring Wells

QC Batch: T113011

QC Batch Method: SM 2540 C-11

Analysis Description: Total Dissolved Solids

Analysis Method: SM 2540 C-11

METHOD BLANK: T113011-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Total Dissolved Solids	mg/L	<10	10	

LABORATORY CONTROL SAMPLE: T113011-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Total Dissolved Solids	mg/L	500	515	103	80-120	

Trace Project ID: 21G1159 Client Project ID: Monitoring Wells

QC Batch: T112949

QC Batch Method: *** DEFAULT PREP ***

Analysis Description: pH, SM 4500 Analysis Method: SM 4500-H+ B-11

LABORATORY REPORT

If you have any questions concerning this report, please do not hesitate to call us at $(800)\ 332-4345$ or $(574)\ 233-4777$.

This report may not be reproduced, except in full, without written approval from EEA.

STATE CERTIFICATION LIST

State	Certification	State	Certification
Alabama	40700	Missouri	880
Alaska	IN00035	Montana	CERT0026
Arizona	AZ0432	Nebraska	NE-OS-05-04
Arkansas	IN00035	Nevada	IN00035
California	2920	New Hampshire*	2124
Colorado	IN00035	New Jersey*	IN598
Colorado Radiochemistry	IN00035	New Mexico	IN00035
Connecticut	PH-0132	New York*	11398
Delaware	IN035	North Carolina	18700
Florida(Primary AB)*	E87775	North Dakota	R-035
Georgia	929	Ohio	87775
Hawaii	IN035	Oklahoma	D9508
Idaho	IN00035	Oregon*	4156
Illinois*	200001	Pennsylvania*	68-00466
Illinois Microbiology	17767	Puerto Rico	IN00035
Illinois Radiochemistry	IN00035	Rhode Island	LAO00343
Indiana Chemistry	C-71-01	South Carolina	95005
Indiana Microbiology	M-76-07	South Dakota	IN00035
lowa	098	Tennessee	TN02973
Kansas*	E-10233	Texas*	T104704187
Kentucky	90056	Texas/TCEQ	TX207
Louisiana*	LA014	Utah*	IN00035
Maine	IN00035	Vermont	VT-8775
Maryland	209	Virginia*	460275
Massachusetts	M-IN035	Washington	C837
Michigan	9926	West Virginia	9927 C
Minnesota*	018-999-338	Wisconsin	999766900
Mississippi	IN035	Wyoming	IN035
EPA	IN00035		

*NELAP/TNI Recognized Accreditation Bodies

Revision date: 09/29/2020

110 South Hill Street South Bend, IN 46617 Tel: (574) 233-4777 Fax: (574) 233-8207 1 800 332 4345

Laboratory Report

Client: Trace Analytical Laboratories Report: 526141

Attn: Jon Mink Priority: Standard Written

2241 Black Creek Road Status: Final

Muskegon, MI 49444 PWS ID: Not Supplied

	Sampl	e Information			
EEA ID#	Client ID	Method	Collected Date / Time	Collected By:	Received Date / Time
4971970	MW-1R	7500-Ra B	07/30/21 09:25	Client	08/03/21 09:00
4971970	MW-1R	7500-Ra D	07/30/21 09:25	Client	08/03/21 09:00
4971971	MW-2	7500-Ra B	07/30/21 09:50	Client	08/03/21 09:00
4971971	MW-2	7500-Ra D	07/30/21 09:50	Client	08/03/21 09:00
4971972	MW-3	7500-Ra B	07/30/21 10:25	Client	08/03/21 09:00
4971972	MW-3	7500-Ra D	07/30/21 10:25	Client	08/03/21 09:00
4971973	MW-4	7500-Ra B	07/30/21 10:55	Client	08/03/21 09:00
4971973	MW-4	7500-Ra D	07/30/21 10:55	Client	08/03/21 09:00
4971974	MW-5	7500-Ra B	07/30/21 08:35	Client	08/03/21 09:00
4971974	MW-5	7500-Ra D	07/30/21 08:35	Client	08/03/21 09:00
4971975	MW-6	7500-Ra B	07/30/21 11:15	Client	08/03/21 09:00
4971975	MW-6	7500-Ra D	07/30/21 11:15	Client	08/03/21 09:00
4971976	MW-7	7500-Ra B	07/30/21 08:05	Client	08/03/21 09:00
4971976	MW-7	7500-Ra D	07/30/21 08:05	Client	08/03/21 09:00
4971977	MW-8	7500-Ra B	07/30/21 14:40	Client	08/03/21 09:00
4971977	MW-8	7500-Ra D	07/30/21 14:40	Client	08/03/21 09:00
4971978	MW-9	7500-Ra B	07/30/21 12:10	Client	08/03/21 09:00
4971978	MW-9	7500-Ra D	07/30/21 12:10	Client	08/03/21 09:00
4971979	MW-10	7500-Ra B	07/30/21 12:55	Client	08/03/21 09:00
4971979	MW-10	7500-Ra D	07/30/21 12:55	Client	08/03/21 09:00

Report Summary

Note: In the Method 7500-Ra D analysis, Radium-228 in the FS had a MRL of 1.7 which is outside the acceptance limit of 1.0.

Detailed quantitative results are presented on the following pages. The results presented relate only to the samples provided for analysis.

We appreciate the opportunity to provide you with this analysis. If you have any questions concerning this report, please do not hesitate to call Karen Fullmer at (574) 233-4777.

Note: This report may not be reproduced, except in full, without written approval from EEA.

Kareu Jullmer ASM
Authorized Signature

09/01/2021

Date

Client Name: Trace Analytical Laboratories

Report #: 526141

Title

Sampling Point: MW-1R PWS ID: Not Supplied

	Radionuclides									
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#
13982-63-3	Radium-226	7500-Ra B		0.20	1.0	0.61 ± 0.28	pCi/L	08/06/21 16:15	08/09/21 14:28	4971970
15262-20-1	Radium-228	7500-Ra D		0.49	1.0	0.17 ± 0.47	pCi/L	08/06/21 16:15	08/13/21 16:17	4971970
	Combined Radium	calc.	5 *	0.49	1.0	0.78 ± 0.55	pCi/L	08/06/21 16:15	08/13/21 16:17	4971970

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: MW-2 PWS ID: Not Supplied

					Radionu	clides				
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#
13982-63-3	Radium-226	7500-Ra B		0.37	1.0	0.77 ± 0.45	pCi/L	08/06/21 16:15	08/09/21 14:28	4971971
15262-20-1	Radium-228	7500-Ra D		0.47	1.0	1.5 ± 0.5	pCi/L	08/06/21 16:15	08/13/21 16:17	4971971
	Combined Radium	calc.	5 *	0.47	1.0	2.27 ± 0.69	pCi/L	08/06/21 16:15	08/13/21 16:17	4971971

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: MW-3 PWS ID: Not Supplied

					Radionu	clides				
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#
13982-63-3	Radium-226	7500-Ra B		0.25	1.0	0.82 ± 0.55	pCi/L	08/06/21 16:15	08/17/21 10:48	4971972
15262-20-1	Radium-228	7500-Ra D		1.7	1.0	2.9 ± 1.8	pCi/L	08/23/21 12:30	08/27/21 17:46	4971972
	Combined Radium	calc.	5 *	1.7	1.0	3.72 ± 1.86	pCi/L	08/06/21 16:15	08/27/21 17:46	4971972

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: MW-4 PWS ID: Not Supplied

					Radionu	clides				
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#
13982-63-3	Radium-226	7500-Ra B		0.19	1.0	0.51 ± 0.40	pCi/L	08/06/21 16:15	08/17/21 10:48	4971973
15262-20-1	Radium-228	7500-Ra D		0.45	1.0	0.23 ± 0.44	pCi/L	08/06/21 16:15	08/13/21 16:17	4971973
	Combined Radium	calc.	5 *	0.45	1.0	0.74 ± 0.59	pCi/L	08/06/21 16:15	08/17/21 10:48	4971973

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: MW-5 PWS ID: Not Supplied

					Radionu	clides				
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#
13982-63-3	Radium-226	7500-Ra B		0.39	1.0	0.40 ± 0.56	pCi/L	08/07/21 10:00	08/17/21 10:07	4971974
15262-20-1	Radium-228	7500-Ra D		0.70	1.0	0.90 ± 0.71	pCi/L	08/07/21 10:00	08/13/21 18:06	4971974
	Combined Radium	calc.	5 *	0.70	1.0	1.30 ± 0.90	pCi/L	08/07/21 10:00	08/17/21 10:07	4971974

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: MW-6 PWS ID: Not Supplied

					Radionu	clides				
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#
13982-63-3	Radium-226	7500-Ra B		0.37	1.0	0.70 ± 0.72	pCi/L	08/07/21 10:00	08/17/21 10:07	4971975
15262-20-1	Radium-228	7500-Ra D		0.72	1.0	0.80 ± 0.72	pCi/L	08/07/21 10:00	08/13/21 18:06	4971975
	Combined Radium	calc.	5 *	0.72	1.0	1.50 ± 1.02	pCi/L	08/07/21 10:00	08/17/21 10:07	4971975

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: MW-7 PWS ID: Not Supplied

					Radionu	clides				
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#
13982-63-3	Radium-226	7500-Ra B		0.37	1.0	0.46 ± 0.57	pCi/L	08/07/21 10:00	08/17/21 10:07	4971976
15262-20-1	Radium-228	7500-Ra D		0.74	1.0	1.3 ± 0.8	pCi/L	08/07/21 10:00	08/13/21 18:06	4971976
	Combined Radium	calc.	5 *	0.74	1.0	1.76 ± 0.95	pCi/L	08/07/21 10:00	08/17/21 10:07	4971976

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: MW-8 PWS ID: Not Supplied

					Radionu	clides				
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#
13982-63-3	Radium-226	7500-Ra B		0.28	1.0	1.2 ± 0.7	pCi/L	08/07/21 10:00	08/17/21 10:07	4971977
15262-20-1	Radium-228	7500-Ra D		0.86	1.0	2.2 ± 0.9	pCi/L	08/07/21 10:00	08/13/21 18:06	4971977
	Combined Radium	calc.	5 *	0.86	1.0	3.4 ± 1.1	pCi/L	08/07/21 10:00	08/17/21 10:07	4971977

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: MW-9 PWS ID: Not Supplied

					Radionu	clides				
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#
13982-63-3	Radium-226	7500-Ra B		0.30	1.0	0.26 ± 0.64	pCi/L	08/07/21 10:00	08/17/21 10:07	4971978
15262-20-1	Radium-228	7500-Ra D		0.67	1.0	1.5 ± 0.7	pCi/L	08/07/21 10:00	08/13/21 18:06	4971978
	Combined Radium	calc.	5 *	0.67	1.0	1.76 ± 0.96	pCi/L	08/07/21 10:00	08/17/21 10:07	4971978

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

Sampling Point: MW-10 PWS ID: Not Supplied

					Radionu	clides				
Analyte ID #	Analyte	Method	Reg Limit	MDA 95**	MRL	Result	Units	Preparation Date	Analyzed	EEA ID#
13982-63-3	Radium-226	7500-Ra B		0.33	1.0	0.59 ± 0.68	pCi/L	08/07/21 10:00	08/17/21 10:07	4971979
15262-20-1	Radium-228	7500-Ra D		0.62	1.0	1.9 ± 0.7	pCi/L	08/07/21 10:00	08/13/21 18:06	4971979
	Combined Radium	calc.	5 *	0.62	1.0	2.49 ± 0.97	pCi/L	08/07/21 10:00	08/17/21 10:07	4971979

^{**} Minimum Detectable Activity (MDA95) shall be that concentration which can be counted with a precision of plus or minus 100% at the 95 % confidence level.

[†] EEA has demonstrated it can achieve these report limits in reagent water, but can not document them in all sample matrices.

Reg Limit Type:	MCL	SMCL	AL
Symbol:	*	۸	!

Lab Definitions

Report #: 526141

Continuing Calibration Check Standard (CCC) / Continuing Calibration Verification (CCV) / Initial Calibration Verification Standard (ICV) / Initial Performance Check (IPC) - is a standard containing one or more of the target analytes that is prepared from the same standards used to calibrate the instrument. This standard is used to verify the calibration curve at the beginning of each analytical sequence, and may also be analyzed throughout and at the end of the sequence. The concentration of continuing standards may be varied, when prescribed by the reference method, so that the range of the calibration curve is verified on a regular basis. CCL, CCM, and CCH are the CCC standards at low, mid, and high concentration levels, respectively.

Internal Standards (IS) - are pure compounds with properties similar to the analytes of interest, which are added to field samples or extracts, calibration standards, and quality control standards at a known concentration. They are used to measure the relative responses of the analytes of interest and surrogates in the sample, calibration standard or quality control standard.

Laboratory Duplicate (LD) - is a field sample aliquot taken from the same sample container in the laboratory and analyzed separately using identical procedures. Analysis of laboratory duplicates provides a measure of the precision of the laboratory procedures.

Laboratory Fortified Blank (LFB) / Laboratory Control Sample (LCS) - is an aliquot of reagent water to which known concentrations of the analytes of interest are added. The LFB is analyzed exactly the same as the field samples. LFBs are used to determine whether the method is in control. FBL, FBM, and FBH are the LFB samples at low, mid, and high concentration levels, respectively.

Laboratory Method Blank (LMB) / **Laboratory Reagent Blank (LRB)** - is a sample of reagent water included in the sample batch analyzed in the same way as the associated field samples. The LMB is used to determine if method analytes or other background contamination have been introduced during the preparation or analytical procedure. The LMB is analyzed exactly the same as the field samples.

Laboratory Trip Blank (LTB) / Field Reagent Blank (FRB) - is a sample of laboratory reagent water placed in a sample container in the laboratory and treated as a field sample, including storage, preservation, and all analytical procedures. The FRB/LTB container follows the collection bottles to and from the collection site, but the FRB/LTB is not opened at any time during the trip. The FRB/LTB is primarily a travel blank used to verify that the samples were not contaminated during shipment.

If applicable, the calculation of the matrix spike (MS) or matrix spike duplicate (MSD) percent recovery is as follows: (MS or MSD value - Sample value) * 100 / spike target / dilution factor = **Recovery** %

Matrix Spike Duplicate Sample (MSD) / Laboratory Fortified Sample Matrix Duplicate (LFSMD) - is a sample aliquot taken from the same field sample source as the Matrix Spike Sample to which known quantities of the analytes of interest are added in the laboratory. The MSD is analyzed exactly the same as the field samples. Analysis of the MSD provides a measure of the precision of the laboratory procedures in a specific matrix. SDL, SDM, and SDH / LFSMDL, LFSMDM, and LFSMDH are the MSD or LFSMD at low, mid, and high concentration levels, respectively.

Matrix Spike Sample (MS) / Laboratory Fortified Sample Matrix (LFSM) - is a sample aliquot taken from field sample source to which known quantities of the analytes of interest are added in the laboratory. The MS is analyzed exactly the same as the field samples. The purpose is to demonstrate recovery of the analytes from a sample matrix to determine if the specific matrix contributes bias to the analytical results. MSL, MSM, and MSH / LFSML, LFSMM, and LFSMH are the MS or LFSM at low, mid, and high concentration levels, respectively.

Quality Control Standard (QCS) / Second Source Calibration Verification (SSCV) - is a solution containing known concentrations of the analytes of interest prepared from a source different from the source of the calibration standards. The solution is obtained from a second manufacturer or lot if the lot can be demonstrated by the manufacturer as prepared independently from other lots. The QCS sample is analyzed using the same procedures as field samples. The QCS is used as a check on the calibration standards used in the method on a routine basis.

Reporting Limit Check (RLC) / Initial Calibration Check Standard (ICCS) - is a procedural standard that is analyzed each day to evaluate instrument performance at or below the minimum reporting limit (MRL).

Surrogate Standard (SS) / Surrogate Analyte (SUR) - is a pure compound with properties similar to the analytes of interest, which is highly unlikely to be found in any field sample, that is added to the field samples, calibration standards, blanks and quality control standards before sample preparation. The SS is used to evaluate the efficiency of the sample preparation process.

Eaton Analytical

110 S. Hill Street PM8 3 24 (222714) South Bend, IN 46617 Order # (2233.24345) P. 1.574.233.8207

www.eurofinsUS.com/Eaton	for FEA use	vino			CHAI	NOF	CHAIN OF CUSTODY RECORD	ECORD			Page	b .		
REPORT TO:				SAMPLER (Signature)			# DI SMA	STATE (STATE (sample origin)	PROJECT NAME	#Od			
Jon Mink, Tim Brewer (imink@trace-labs.com, tbrewer@trace-labs.com) Trace Analytical Laboratories, Inc., 2241 Black Creek Rd., Muskegon, MI 49444 231- 773-5998	abs.com, tbrewe ack Creek Rd., N	r@trace-labs.c	ют) Trac 19444 23		N III A				Ψ					Э
BILL TO: Accounts Payable, Trace Analytical Laboratories, Inc., 2241 Black Creek Rd.,	aboratories, Inc.	., 2241 Black C	reek Rd.,	COMPLIANCE	Yes	o _N	POPULATION SERVED		SOURCE WATER		21G1159	ся эиі А ТИ	CODE	MIT GNUOS
LAB Number	ŏ	COLLECTION			SAMPLING SITE		Ē	TEST NAME		SAMPLE REMARKS	₩ -	OE CO	XIATA	AANAU
200,000	DATE	TIME	AM PM							6170	YES NO	# -	W %	T WS
7	07/30/21	9:25	× >	MW-1R			Radium 226/228			7111		-	GW	SW
3 7 972	07/30/21	10:25	× ×				Radium 226/228			DHCZ		-	GW	SW
4 973	07/30/21	10:55	×	MW-4			Radium 226/228			PHCZ		-	GW	SW
blb 3	07/30/21	8:35	×	MW-5			Radium 226/228			bHCZ		-	GW	SW
6 1 975	07/30/21	11:15	×	MW-6			Radium 226/228			DH62		-	GW	SW
1 976	07/30/21	8:05	×	MW-7			Radium 226/228			PHCZ		-	GW	SW
8 477	07/30/21	14:40	×	MW-8			Radium 226/228			PHCZ		-	GW	SW
860 11 678	07/30/21	12:10	×	MW-9			Radium 226/228			ottez		-	GW	SW
blb & 01	07/30/21	12:55	×	MW-10			Radium 226/228			27H0		-	GW	SW
11														
12														
14														
RELINQUISHED BY:(Signature)	(6	DATE 8/2/21	G.S	RECEIVED BY: (Signature)		S/2/2	LAB COMA	LAB RESERVES THE RIGHT TO RETURN UNUSED PORTIONS OF NON-AQUEOUS SAMPLES TO CLIENT HENTS	1T TO RETURN UNUS	SED PORTIONS OF NON-	AQUEOUS SAMPLES	TO CLIEN		
RELINQUISHED BY: (Signature)	(6)	DATE	TIME	RECEIVED BY:(Signature)		DATE	TIME	to was own provided by	5	4	Or 82,71			
RELINQUISHED BY:(Signature)	(6)	DATE	TIME AM	RECEIVED FOR LABORATORY	£ %	OPOS 122	0	CONDITIONS UPON RECEIPT (check one):	eck one):	ပ္	Receipt	NA		
MATRIX CODES: DW-DRINKING WATER RW-REAGENT WATER		TURN-AROUND TIME (TA SW = Standard Written: (15 working RV = Rush Verbal: (5 working days)	UND TII Written: (1	TURN-AROUND TIME (TAT) - SURCHARGES SW = Standard Written: (15 working days) 0% RY = Rush Verbait (5 working days) 50%		/* = Immediate	IV* = Immediate Verbal: (3 working days) IV* = Immediate Written: (3 working days)	100% 125%		Samples received unar	mounced with less			
GW-GROUND WATER EW-EXPOSURE WATER		RW* = Rush Written: (5 working days)	itten: (5 wa	•	S	SP* = Weekend, Holiday	, Holiday	CALL		than 48 hours holding time remaining	lime remaining			

SW-EXPOSURE WATER

WW-NOUR ACE

Now.WASTE WATER

PW-POLD ACE

WWW.WASTE WATER

PW-POLD ACE

WWW.WASTE WATER

PW-POLD ACE

WWW.WASTE WATER

PW-POLD ACE

WWW.WASTE WATER

PRESENCE THE RESIDENCE THE PROPERTY OF THE PROPERTY O

Eurofins Eaton Analytical Run Log

Method: 7500-Ra B	
Run ID: 292640	

Type	Sample Id	Sample Site	Matrix	Instrument ID	Analysis Date	Calibration File
FS	4971970	MW-1R	GW	Na	08/09/2021 14:28	
FS	4971971	MW-2	GW	Πα	08/09/2021 14:28	
LRB	4979297		RW	Πα	08/09/2021 14:28	
LFB	4979298		RW	Πα	08/09/2021 14:28	
MS	4979303	4-WM	GW	Πα	08/09/2021 14:28	
MSD	4979304	WW-4	GW	Na	08/09/2021 14:28	

					QC S	QC Summary Report	y Repo	זינ								
Sample Type	Analyte	Method	MDA95	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery RPD Limits	RPD	RPD Limit	Dil Factor	Extracted	Analyzed	EEA ID#
S	Radium-226	7500-Ra B	0.20	MW-1R		0.61		pCi/L			-		1.0	08/06/2021 16:15	08/06/2021 16:15 08/09/2021 14:28 4971970	4971970
FS	Radium-226	7500-Ra B	0.37	MW-2		0.77		pCi/L	-	-	-	-	1.0	08/06/2021 16:15	08/06/2021 16:15 08/09/2021 14:28 4971971	4971971
LRB	Radium-226	7500-Ra B	0.21	1		0.260		pCi/L	-	ı	:	1	1.0	08/06/2021 16:15	08/06/2021 16:15 08/09/2021 14:28 4979297	4979297
LFB	Radium-226	7500-Ra B	0.19	-		8.8000	8.73	pCi/L	101	90 - 110	1	-	1.0	08/06/2021 16:15	08/06/2021 16:15 08/09/2021 14:28 4979298	4979298
MS	Radium-226	7500-Ra B	0.19	MW-4		9.7200	9.42	pCi/L	103	80 - 120	:	1	1.0	08/06/2021 16:15	08/06/2021 16:15 08/09/2021 14:28 4979303	4979303
MSD	Radium-226	7500-Ra B	0.27	MW-4		9.6000	9.37	pCi/L	103	80 - 120 1.2	1.2	20	1.0	08/06/2021 16:15	1.0 08/06/2021 16:15 08/09/2021 14:28 4979304	4979304

Eurofins Eaton Analytical Run Log Run ID: 293066 Method: 7500-Ra B

Calibration File		
Analysis Date	08/17/2021 10:48	08/17/2021 10:48
Instrument ID	ō	ō
Matrix	GW	ďΜ
Sample Site	MW-3	MW-4
Sample Id	4971972	4971973
Туре	FS	FS

					ac s	QC Summary Report	/ Repo	ırt								
Sample Type	Analyte	Method	MDA95	Client ID	Result Flag	Amount Target	Target	Units	% Recovery Recovery	Recovery RPD Limits	RPD	RPD Dil Limit Factor		Extracted	Analyzed	EEA ID#
FS	Radium-226	7500-Ra B	0.25	MW-3		0.82		pCi/L		-	1	-	1.0	08/06/2021 16:15	1.0 08/06/2021 16:15 08/17/2021 10:48 4971972	4971972
FS	Radium-226	7500-Ra B	0.19	MW-4		0.51		pCi/L		1		1	1.0	8/06/2021 16:15	1.0 08/06/2021 16:15 08/17/2021 10:48 4971973	4971973

Eurofins Eaton Analytical

Run Log Run ID: 293069 Method: 7500-Ra B

Sample Id Sample Site 4971974 MW-5	Sample Sit	Φl	<u>Matrix</u> GW	Instrument ID	Analysis Date 08/17/2021 10:07	Calibration File
	MW-6		GW	ō	08/17/2021 10:07	
	MW-7		В	ਠ	08/17/2021 10:07	
	MW-8		В	ਠ	08/17/2021 10:07	
	WW-9		GW	ਹ	08/17/2021 10:07	
	MW-10		GW	ਹ	08/17/2021 10:07	

					QC S	QC Summary Report	y Repo	ort								
Sample Type	Analyte	Method	MDA95	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery RPD Limits	RPD	RPD Limit	Dil Factor	Extracted	Analyzed	EEA ID#
FS	Radium-226	7500-Ra B	0.39	MW-5		0.40		pCi/L			1		1.0	8/07/2021 10:00	08/07/2021 10:00 08/17/2021 10:07 4971974	4971974
FS.	Radium-226	7500-Ra B	0.37	MW-6		0.70		pCi/L	-	-	-	-	1.0	8/07/2021 10:00	08/07/2021 10:00 08/17/2021 10:07 4971975	4971975
FS	Radium-226	7500-Ra B	0.37	MW-7		0.46		pCi/L		-	1		1.0	8/07/2021 10:00	08/07/2021 10:00 08/17/2021 10:07 4971976	4971976
FS	Radium-226	7500-Ra B	0.28	MW-8		1.2		pCi/L	-	-	ı	-	1.0	8/07/2021 10:00	08/07/2021 10:00 08/17/2021 10:07 4971977	4971977
FS	Radium-226	7500-Ra B	0:30	WW-9		0.26		pCi/L		-	1		1.0	8/07/2021 10:00	08/07/2021 10:00 08/17/2021 10:07 4971978	4971978
FS	Radium-226	7500-Ra B	0.33	MW-10		0.59		pCi/L		-	1	1	1.0 0	8/07/2021 10:00	1.0 08/07/2021 10:00 08/17/2021 10:07 4971979	4971979

Eurofins Eaton Analytical Run Log Run ID: 292914 Method: 7500-Ra D

Type	Sample Id	Sample Site	Matrix	Instrument ID	Analysis Date Calibi	Salibration File
FS	4971970	MW-1R	GW	Πα	08/13/2021 16:17	
FS	4971971	MW-2	GW	Πα	08/13/2021 16:17	
FS	4971973	MW-4	GW	na	08/13/2021 16:17	
MS	4986284	MW-3	GW	na	08/13/2021 16:17	
MSD	4986285	MW-3	GW	na	08/13/2021 16:17	
LFB	4986283		RW	Πα	08/13/2021 16:32	
LRB	4986282		RW	Πα	08/13/2021 16:58	

					ac s	QC Summary Report	y Repo	זין								
Sample Type	Analyte	Method	MDA95	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Dil	Extracted	Analyzed	EEA ID#
FS	Radium-228	7500-Ra D	0.49	MW-1R		0.17		pCi/L			1	1	1.0	08/06/2021 16:15	08/06/2021 16:15 08/13/2021 16:17 4971970	1971970
FS	Radium-228	7500-Ra D	0.47	MW-2		1.5		pCi/L		-	1	-	1.0	08/06/2021 16:15	08/06/2021 16:15 08/13/2021 16:17 4971971	1971971
FS	Radium-228	7500-Ra D	0.45	MW-4		0.23		pCi/L	-	-	:	i	1.0	08/06/2021 16:15	08/06/2021 16:15 08/13/2021 16:17 4971973	1971973
MS	Radium-228	7500-Ra D	0.49	MW-3		9.2100	11.52	pCi/L	73	70 - 130	1	-	1.0	08/06/2021 16:15	08/06/2021 16:15 08/13/2021 16:17 4986284	1986284
MSD	Radium-228	7500-Ra D	0.590	MW-3		11.7000	11.61	pCi/L	101	70 - 130	24	20	1.0	08/06/2021 16:15	08/06/2021 16:15 08/13/2021 16:17 4986285	1986285
LFB	Radium-228	7500-Ra D	0.46			9.0500	8.47	pCi/L	107	80 - 120	1	-	1.0	08/06/2021 16:15	08/06/2021 16:15 08/13/2021 16:32 4986283	1986283
LRB	Radium-228	7500-Ra D	0.48	1		-0.04		pCi/L	1	1	i	1	1.0	08/06/2021 16:15	08/06/2021 16:15 08/13/2021 16:58 4986282	1986282

Eurofins Eaton Analytical Run Log Run ID: 292917 Method: 7500-Ra D

Type	Sample Id	Sample Site	Matrix	Instrument ID	Analysis Date Calibration File	on File
FS	4971974	MW-5	GW	ਹ	08/13/2021 18:06	
FS	4971975	MW-6	GW	ਠ	08/13/2021 18:06	
FS	4971976	MW-7	GW	ਹ	08/13/2021 18:06	
FS	4971977	MW-8	GW	ਹ	08/13/2021 18:06	
FS	4971978	WW-9	ВW	ō	08/13/2021 18:06	
FS	4971979	MW-10	GW	ਹ	08/13/2021 18:06	
LFB	4986296		RW	ਹ	08/13/2021 18:45	
-RB	4986295		RW	ō	08/13/2021 19:01	

					ac s	QC Summary Report	/ Repo	ort								
Sample Type	Analyte	Method	MDA95	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery RPD Limits	-	RPD Limit	Dil Factor	Extracted	Analyzed	EEA ID#
FS	Radium-228	7500-Ra D	0.70	MW-5		06:0		pCi/L	-		1	1	1.0	08/07/2021 10:00	08/07/2021 10:00 08/13/2021 18:06 4971974	1971974
FS	Radium-228	7500-Ra D	0.72	MW-6		080		pCi/L	-	-	1	ī	1.0	08/07/2021 10:00	08/07/2021 10:00 08/13/2021 18:06 4971975	1971975
FS	Radium-228	7500-Ra D	0.74	MW-7		1.3		pCi/L	-		1	i	1.0 0	08/07/2021 10:00	08/07/2021 10:00 08/13/2021 18:06 4971976	971976
FS	Radium-228	7500-Ra D	98.0	MW-8		2.2		pCi/L	-	-	1	1	1.0	08/07/2021 10:00	08/07/2021 10:00 08/13/2021 18:06 4971977	1971977
FS	Radium-228	7500-Ra D	29.0	WW-9		1.5		pCi/L	-	!	ł	i	1.0	08/07/2021 10:00	08/07/2021 10:00 08/13/2021 18:06 4971978	1971978
FS	Radium-228	7500-Ra D	0.62	MW-10		1.9		pCi/L	-	-	1	1	1.0	08/07/2021 10:00	08/07/2021 10:00 08/13/2021 18:06 4971979	1971979
LFB	Radium-228	7500-Ra D	0.43	-		8.5100	8.47	pCi/L	100	80 - 120	ı	i	1.0	08/07/2021 10:00	08/07/2021 10:00 08/13/2021 18:45 4986296	1986296
LRB	Radium-228	7500-Ra D	0.46			0.510		pCi/L	-	-	1	1	1.0	08/07/2021 10:00	1.0 08/07/2021 10:00 08/13/2021 19:01 4986295	1986295

Eurofins Eaton Analytical Run Log Run ID: 293590 Method: 7500-Ra D

Calibration File			
Analysis Date	08/27/2021 13:28	08/27/2021 13:29	08/27/2021 17:46
Instrument ID	ō	ō	ō
Matrix	RW	RW	СW
Sample Site			MW-3
Sample Id	4999670	4999671	4971972
Type	LRB	LFB	FS

					ac s	QC Summary Report	Repo	Ę								
Sample Type	Analyte	Method MDA95	MDA95	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery RPD DII Limits	RPD	RPD Limit	RPD Dil Limit Factor	Extracted	Analyzed	EEA ID#
LRB	Radium-228	7500-Ra D	0.53			-0.57		pCi/L				-	1.0	08/23/2021 12:30	08/23/2021 12:30 08/27/2021 13:28 4999670	0296661
LFB	Radium-228	7500-Ra D	0.67	-		7.3400	8.43	pCi/L	87	80 - 120	ı	ı	1.0	08/23/2021 12:30	1.0 08/23/2021 12:30 08/27/2021 13:29 4999671	1999671
FS	Radium-228	7500-Ra D	1.7	MW-3		2.9		pCi/L	1	1	Π	ī	1.0	08/23/2021 12:30	08/23/2021 12:30 08/27/2021 17:46 4971972	1971972

	Sample Type				
Sample Type Key	Type (Abbr.)				
	Sample Type	Field Sample	Laboratory Fortified Blank	Laboratory Reagent Blank	Matrix Spike
	Type (Abbr.)	FS	LFB	LRB	MS

Matrix Spike Duplicate

MSD

END OF REPORT

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Please	S S		10 N 12:55	01:61	8 / 14:40	7 8:05		5 8:35	-	3 110:25	-0	7-30219:25	Trace Date Time No. Collected Collected	Project Name: MW Sampling	Standard, 5-10 Days 3 Day* 1 Day* 1 Day* Results provided end of business day, requires prior approval.	Turnaround Requirements:	Email Address:	Office Phone:	City, State, Zip Code:	Mailing Address:	Report To: Paul Cederquist	Company Name: Grand Haven Board of Light & Power	Report Results To:	ANALYTICAL LABO	1]1
		×						. 1921-1951		- 70 Ave 5		11113-00	epit , a piterani-	pling	s day, requires prior:	¥!	-2.50	Cell P		- 17		n Board of Light		LABORATORIES, INC.	e, 168
In executing this Chain of Custody, the client acknowledges the terms as set forth at www.trace-labs.com/terms-of-agreement.		A. Received By	MW-10	MW-9	MW-8	MW-7	MW-6	MW-5	MW-4	MW-3	MW-2	MW-1R	Client Sample ID		S = Soil / Solid W = Water SL = Sludge approval. OI = Oil	Matrix Key:		Cell Phone:				& Power		V I	
hady the client acknowledge.	7/30/2	Date										Y	Metals Field Filtered (Y / N)	Sampled By:	lid WI = Wipes LW = Liquid Waste A = Air D = Drinking Water	Υ.	Billing Email Address:	Phone Number:	City, State, Zip Code:	Billing Address (if different):	Contact Name:	PO#	Bill To:	Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673	
wledges the terms	バン2 2 2	Time										₩ 5 ×	Matrix Number of Containers Cool HCI HNO ₃ H ₂ SO ₄ NaOH NAOH		Waste Water		ess:		de:	different):	:			k Road 9444-2673	
		Released By										×	Other T-B,Ca,Fe,		,Ba, Be,Cd,Cr Mo,Ni Se,Ag										f
toon lake nom/ter		d By										×××	T- TI, V,Zn Diss.Metal	, Mn,M s (Sam	and an analysis of the same of									Fnone 231.7/3.5998 Fax 888.979.4469 www.trace-labs.com	22.
- of saraamant		Rece										×	pH LLHg Radiums 2	26/228	3	Analysis Requested		Samı		Soil	Chec	Logg	Trac	m 8	
		eceived By										×	Bicarb-Alk	Carbo	onate-Alk	Requested		Sampling Time:	MeOH Lo	Volatiles Preserved	cked By: /	Logged By:	ce Use:	21	1
	\dashv	Date Time	7.7	7.25	7.16	6.66	7.49	6.96	7,43	7.39	7.3%	pH=8.3	Remarks						Low Level Lab	Soil Volatiles Preserved (circle if applicable):	P				5

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1	₩	bidity(NTU)	ORP (mV)	Dissolved Oxygen	Specific Conductivity	iture	Depth to Water	Reading Time g .	S S S S S S S S S S S S S S S S S S S	Well No.: MW -1R	Client: GHBLP	Trace Analy	
ia: 3% 10%	8.3)	5.6	-83	8	3.56	17.26 [6.61	. 15				tical La	- AT
	8.3)	2	-83	8	3.5%	17.26	6.61	9:18				boratorie	
Notes: Pump Used: Peristaltic	8.3)	S S	-83	. 83	356	17.26	6.61	7:21	mgc Juic Tree G	Depth to Point: 18.2ft	Date: 730 21	es: Low Flow Well Purgi	
									ruige nate:	2	Field Personnel:	Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form	
												Form	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1	7.38	Turbidity(NTU)	ORP (mV) - 92	Dissolved (. 2.)	Specific S_CC	Temperature (Celsius) 3.28	Water (4.83	Reading Time $9:40$	Depth to Water: 4.3	Well No.: MW 2	Client: GHBLP	Trace Analytical	
Notes: Pump Used: Peristaltic	8 7.38 7.38	Q.S 12.4	-92 -92	1.21.2	6 3.66 3.66	8 13.28 13.28	3 14.83 14.83	9:45 9:26	Purge Start Time: 9: 30 Purge Rate: 300 1646/114	Depth to Point: 23.51'	Date: 7-30-21 Field Personnel: ER	Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1	Stabilization Criteria:	рН	Turbidity(NTU)	ORP (mV)	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Depth to Water	Reading Time	Depth to Water:	Well No.: MW 3	Trace Ana	
ty: 3% n: 10%	eria:	7.36	10.1	-96	.79	3.87	17,24	13.03	10:15	\$167		lytical La	
		7.39	(O. i	-96	.79	3.87	14,24	13.03	3 10:18			boratorie	
Pump Used: Peristaltic	Notes:	7.39	10.1	-96	.79	3.87	14.24	18.03	0.2	Purge Start Time: 10:05	Depth to Point: 20.5'	Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form Client: GHBLP Date: 7.30-2 Field Personnel: ∑S	
										Purge Rate: 300/www./	,	ng Field Measuremen	
										Jaki N		nts Form	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1	7.43	Turbidity(NTU)	ORP (mV)	Dissolved 76	Specific R. US	Temperature (Celsius)	Depth to 10.3	Reading Time しいし	Depth to Water:	Well No.: MW 4	Client: GHBLP	Trace Analytical La	
Pump Used: Peristaltic	7.43 7.43	0.	-79 -79	.76.76	2.40 2.46	16.22 16.22	10.31 6.31	10:43 10:46	Purge Start Time: () . ()	Depth to Point: 18.01'	Date: 7 - 30 - 2	Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form	
									Purge Rate: SCO VOCA/CECTO		Field Personnel:	ng Field Measurements Form	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1	PH C 96	Turbidity(NTU) 3, 1	ORP (mV) - 20	Dissolved 79	Specific Conductivity	Temperature 16.45	Depth to S93	Reading Time 8:25	Depth to Water: 56	Well No.: MW 5	Trace Analytical La	
Pump Used: Peristaltic	6.96 6.96 Notes:	3,1 3,1	-20 -20	66' 66'	86:1 26:1	16.43 16.43	5,93 5,93	8:28 8:31	Purge Start Time: 8.15	Depth to Point: 11.5'	Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form Date: 7 30.21 Field Personnel: ES	
									Purge Rate: Socual/utin		ing Field Measurements Form Field Personnel: FS	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Client: GHBLP Well No.: MW 6 Depth to Water: Depth to Water Temperature (Celsius) Specific Conductivity Dissolved Oxygen ORP (mV) Turbidity(NTU) PH Stabilization Cri Temperature: 39 Spec. Conductivi Dissolved Oxyge ORP: +/- 10 mV Turbidity: 10% o pH: +/- 0.1	e Ana
Client: GHBLP Well No.: MW 6 Depth to Water: \$5 Depth to Water \$.93 Temperature (Celsius) Specific Conductivity , \$7 Dissolved Oxygen ORP (mV)	lytical La
7.43 17.78 17	boratori
Date: 7. 30- 21 Depth to Point: 16.55' Purge Start Time: 70.55 Purge Start Time: 70.55 Notes: Notes:	es: Low Flow Well Purg
Purge Rate: 3000000000000000000000000000000000000	Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Stabi Temp Spec. Disso ORP: Turbi	P	Turbi	ORP (mV)	Dissolved Oxygen	Specific Conduct	Tempera (Celsius)	Depth to Water	Readi	, ק	7	Well	Client	Tra	
Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1		Turbidity(NTU)	(mV)	en]	ivity	ture	6	Reading Time	Deptil to water.	to W/2+2 /	Well No.: MW 7	Client: GHBLP	Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form	
1 10% 3%	0.66	28	7	. 26	1.18	12.59	1.95	7:55	Č	0			tical Lab	
	6.66	2.7	4	1.26	1.18	1354		7:58					oratorie	
Notes:	6.66	2.8	7	-36	1.18	13.94	7.95	8:01	ruige State IIIIle.	Diago Charl	Depth to Point: 18.81	Date: 7	s: Low F	
Notes: Pump Used: Peristaltic									- 	Ţ	int: 18.81'	7.30.21	low Wel	
staltic										7		,,	ll Purgin	
									ruige nate:			Field Personnel:_	g Field N	
									(<i>\\</i>		mel: TO	1easurer	
										<i>i i i</i>			nents Fo	
													ř	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1	Stabilization Criteria:	рH	Turbidity(NTU)	ORP (mV)	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Depth to Water	Reading Time	Depth to Water:	Well No.: MW 8	Client: GHBLP	Trace Ana	
% ity: 3% en: 10% or <1	1. 16		= =	N -6N	1.25	.850	18, 10	3.61	14 30	37		s	lytical La	, <u>2</u> 241 =
	91.7			5	1.25	.456	18.10	3.61	14:33				boratorie	
Pump Used: Peristaltic	Notes:	1 =		63	1.25	-850	18.10	2 5.61	14:33	Purge Start Time: 14:20	Depth to Point: 11.85	Date: 7. 30.21	s: Low Flow Well Purg	
										Purge Rate: 300 MM/ MM		Field Personnel:	Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form	
										7		ı	Form	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1	PH 7. 25 Stabilization Criteria:	Turbidity(NTU) 7,2	ORP (mV) _70	Dissolved ST	Specific Sonductivity	Temperature (S.()	Depth to 8.62	Reading Time しみこの	Depth to Water: 8-27	Well No.: MW 9	Client: GHBLP	Trace Analytical L
Pump Used: Peristaltic	7.25 7.25 Notes:	7,2 7.2	-70 -70	,78.75	1.15 1.15	16.01 18.01	8.62 8.62	12:03 12:06	Purge Start Time: \(\(\)\:	Depth to Point: 14.9	Date: <u>7, 30-2/</u>	Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form
									Purge Rate: 200 Las /min		Field Personnel: EB	ing Field Measurements Form

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1	PH 7.7	Turbidity(NTU)	ORP (mV) -146	Dissolved JA9	Specific Conductivity 5,38	ature	Depth to S.S.	Reading Time (るい	Depth to Water: 5.26	Client: GHBLP Well No.: MW 10	Trace Analytical
Notes: Pump Used: Peristaltic	7.7 7.7	6.1 6.1	- 140 - 140	149 . 49	3.38 3.38	7 19.99 19.99	1 5.52 5.52	5 12:48 12:51	Purge Start Time: 12:35 Purge Rate: Spoul/Win	Date: 1300	w Flow Well Purging

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

21G1159, Grand Haven Board of Light						
Grand Haves: Jon Mink	Date: 7/30/21	u	Corrected Temperature		3°C)	
	Date: 7/30/21 Time: 1732 Logged by: MR	Original Observation	mper	(0)	2 0	
	Logged by:	Obse	od Te	IR-9 (CF: +0.1°C)	IR-10 (CF: +0.1 C 20B12743 (CF: -0	Blank Sample
	Package Description:	ginal	recte	(CF:	10 (C)	np Bl
	Cool			8 6	1K-7	Temp
	Package Temp °C Representative Sample Temp	2.9	3.0	. \		
	Representative Sample Temp	10.7	10.8	S		
mple Receipt						
Received on ice or other coolant						
Custody seals present	Yes No Custody seals intact					
Trace Courier Client Drop-off	UPS Fex Ex US	S Mail	Oth	ier		
mple Condition						
No N/A All sample containers arrived u	nbrokon and labolod					
Sufficient sample to run reques						
	ted analyses					
Correct chemical preservative a	idded to samples		. 14.			
Correct chemical preservative a	HNOS COOLED (0) 1550	on 7/30	0/21			
Correct chemical preservative a Samples preserved at Trace Chemical preservation verified,	hdded to samples HAOS COOLD (0) 1550 check EMD pH test strip used (if applic		0/21		O+h o	
Correct chemical preservative a Samples preserved at Trace Chemical preservation verified, PH 0-2.5 (Lot: HC02	hdded to samples HAOS COOLD (0) 1550 check EMD pH test strip used (if applic		0/21		Othe	— r
Correct chemical preservative at Samples preserved at Trace Chemical preservation verified, PH 0-2.5 (Lot: HC02 Air bubbles absent from VOAs	hdded to samples HAOS COOLD (0) 1550 check EMD pH test strip used (if applic		0/21		Othe	r
Correct chemical preservative a Samples preserved at Trace Chemical preservation verified, PH 0-2.5 (Lot: HC02	hdded to samples HAOS COOLD (0) 1550 check EMD pH test strip used (if applic		0/21		Othe	 r
Correct chemical preservative at Samples preserved at Trace Samples preserved at Trace Chemical preservation verified, V pH 0-2.5 (Lot: HC02 Air bubbles absent from VOAs nain of Custody (COC)	hdded to samples HAOS COOLD (0) 1550 check EMD pH test strip used (if applic		0/21		Othe	r
Correct chemical preservative at Samples preserved at Trace Samples preserved at Trace Chemical preservation verified, VpH 0-2.5 (Lot: HCO2 Air bubbles absent from VOAs nain of Custody (COC) No All bottle labels agree with COC	hdded to samples HAOS COOLD (0) 1550 check EMD pH test strip used (if applic		0/21		Othe	r
Correct chemical preservative at Samples preserved at Trace Samples preserved at Trace Chemical preservation verified, PH 0-2.5 (Lot: HC02 Air bubbles absent from VOAs Pain of Custody (COC) All bottle labels agree with COC COC filled out properly	hdded to samples HAOS COOLD (0) 1550 check EMD pH test strip used (if applic		0/21		Othe	r —
Correct chemical preservative at Samples preserved at Trace Samples preserved at Trace Chemical preservation verified, VpH 0-2.5 (Lot: HCO2 Air bubbles absent from VOAs nain of Custody (COC) No All bottle labels agree with COC	hdded to samples HAOS COOLD (0) 1550 check EMD pH test strip used (if applic		0/21		Othe	r
Correct chemical preservative at Samples preserved at Trace Samples preserved at Trace Chemical preservation verified, PH 0-2.5 (Lot: HC02 Air bubbles absent from VOAs Pain of Custody (COC) All bottle labels agree with COC COC filled out properly	hdded to samples HAOS COOLD (0) 1550 check EMD pH test strip used (if applic		0/21		Othe	r
Correct chemical preservative at Samples preserved at Trace Chemical preservation verified, PH 0-2.5 (Lot: HCO2 Air bubbles absent from VOAs Coc Signed by client Coc Samples preservation verified, PH 0-2.5 (Lot: HCO2 Air bubbles absent from VOAs Coc Signed by client	hdded to samples HAOS COOLD (0) 1550 check EMD pH test strip used (if applic		0/21		Othe	r
Correct chemical preservative at Samples preserved at Trace Chemical preservation verified, PH 0-2.5 (Lot: HCO2 Air bubbles absent from VOAs Coc Signed by client Coc Samples preservation verified, PH 0-2.5 (Lot: HCO2 Air bubbles absent from VOAs Coc Signed by client	hdded to samples HAOS COOLD (0) 1550 check EMD pH test strip used (if applic		0/21		Othe	r
Correct chemical preservative at Samples preserved at Trace Chemical preservation verified, PH 0-2.5 (Lot: HCO2 Air bubbles absent from VOAs Coc Signed by client Coc Samples preservation verified, PH 0-2.5 (Lot: HCO2 Air bubbles absent from VOAs Coc Signed by client	hdded to samples HAOS COOLD (0) 1550 check EMD pH test strip used (if applic		0/21		Othe	r
Correct chemical preservative at Samples preserved at Trace Chemical preservation verified, PH 0-2.5 (Lot: HCO2 Air bubbles absent from VOAs Coc Signed by client Coc Samples preservation verified, PH 0-2.5 (Lot: HCO2 Air bubbles absent from VOAs Coc Signed by client	hdded to samples HAOS COOLD (0) 1550 check EMD pH test strip used (if applic		0/21		Othe	r
Correct chemical preservative at Samples preserved at Trace Chemical preservation verified, PH 0-2.5 (Lot: HCO2 Air bubbles absent from VOAs Coc Signed by client Coc Samples preservation verified, PH 0-2.5 (Lot: HCO2 Air bubbles absent from VOAs Coc Signed by client	hdded to samples HAOS COOLD (0) 1550 check EMD pH test strip used (if applic		0/21		Othe	r
Correct chemical preservative at Samples preserved at Trace Chemical preservation verified, PH 0-2.5 (Lot: HCO2 Air bubbles absent from VOAs Coc Signed by client Coc Samples preservation verified, PH 0-2.5 (Lot: HCO2 Air bubbles absent from VOAs Coc Signed by client	hdded to samples HAOS COOLD (0) 1550 check EMD pH test strip used (if applic		0/21		Othe	r

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

November 09, 2021

Mr. Paul Cederquist Grand Haven Board of Light and Power-Monthly MWs 1700 Eaton Drive Grand Haven, MI 49417

RE: Trace Project

roject 21J1032

Client Project

Impoundment Sampling

Dear Mr. Cederquist:

Enclosed are your analytical results. The results of this report relate only to the samples listed in the body of this report.

All reports were examined through Trace's validation process to ensure that requirements for quality and completeness were satisfied. All reported analytical results were obtained in accordance with the methods referenced on the reports. Every practical effort was made to meet the reporting limit specifications for this work, however, some results may have raised reporting limits to correct for percent solids.

For clients that require NELAP Accreditation, Trace certifies that these test results meet all requirements of the NELAP Standard, except for those analytes with a "N" notation. These analytes have not been evaluated by NELAP at Trace's discretion and will not be reported unless requested by client.

If you have questions concerning this report, please contact me at 231.773.5998 or by email at jmink@trace-labs.com.

Sincerely,

Jon Mink Senior Project Manager Enclosures

NJDEP Accreditation No. MI008

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

SAMPLE SUMMARY

Trace Project ID:

21J1032

Client Project ID:

Impoundment Sampling

Trace ID	Sample ID	Matrix	Collected By	Date Collected	Date Received
21J1032-01	Unit 1/2 Near MW-5	Ground Water	TRACE-EB/TB	10/26/21 11:25	10/27/21 08:52
21J1032-02	Unit 1/2 Near SG-2	Ground Water	TRACE-EB/TB	10/26/21 15:25	10/27/21 08:52

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

AN EXPLANATION OF TERMS AND SYMBOLS WHICH MAY OCCUR IN THIS REPORT

DEFINITIONS

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

MS Matrix Spike

MSD Matrix Spike Duplicate
RPD Relative Percent Difference

DUP Matrix Duplicate

RDL Reporting Detection Limit
MCL Maximum Contamination Limit
TIC Tentatively Identified Compound

<, ND or U Indicates the compound was analyzed for but not detected

Indicates a result that exceeds its associated MCL or Surrogate control limits
 Indicates that the laboratory is not accredited by NELAP for this compound

NA Indicates that the compound is not available.

NOTE: Samples for volatiles that have been extracted with a water miscible solvent were corrected for the

total volume of the solvent/water mixture.

Solid matrices Method Blanks are at 100% solids as such results are the same wet or dry.

DATA QUALIFIERS

race ID: 21J1032-01 Analysis: EPA 6020B	
Antimony	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Chromium	Note 206: The MS and MSD recoveries were out of control high. The result for this analyte, in the non-spiked version of the sample, must be considered estimated.
Lead	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Manganese	Note 206: The MS and MSD recoveries were out of control high. The result for this analyte, in the non-spiked version of the sample, must be considered estimated.
Thallium	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Vanadium	Note 206: The MS and MSD recoveries were out of control high. The result for this analyte, in the non-spiked version of the sample, must be considered estimated.
ace ID: 21J1032-02 Analysis: EPA 6020B	
Lead	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Thallium	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.

Trace ID: T116174-MSD1

Analysis: EPA 6010D

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Calcium	Note 226: The MS recovery was out of control, resulting in an out of control RPD between the MS and MSD. Because the background concentration of this analyte is greater than four times the spike amount, no data require qualification.
Analysis: EPA 6020B	
Chromium	Note 206: The MS and MSD recoveries were out of control high. The result for this analyte, in the non-spiked version of the sample, must be considered estimated.
Manganese	Note 206: The MS and MSD recoveries were out of control high. The result for this analyte, in the non-spiked version of the sample, must be considered estimated.
Vanadium	Note 206: The MS and MSD recoveries were out of control high. The result for this analyte, in the non-spiked version of the sample, must be considered estimated.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

Trace ID: 21J1032-01 Matrix: Ground Water Date Collected: 10/26/21 11:25

Sample ID: Unit 1/2 Near MW-5		Date	Received: 10/27/	/21 08:52	Fie	ld pH: 7.11			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: EPA 1631E Batch: T116281									
Mercury	1.5 ng/L	0.50	1	11/01/21	ckd	11/02/21	ckd	N	
Analysis Method: EPA 6010D Batch: T116174									
Beryllium	<0.0020 mg/L	0.0020	1	10/28/21	mrh	11/02/21	ckd		
Boron	1.8 mg/L	0.050	1	10/28/21	mrh	11/02/21	ckd		
Calcium	470 mg/L	5.0	10	10/28/21	mrh	11/02/21	ckd		
Iron	0.28 mg/L	0.20	1	10/28/21	mrh	11/02/21	ckd		
Lithium	0.039 mg/L	0.010	1	10/28/21	mrh	11/02/21	ckd	N	
Magnesium	34 mg/L	0.20	1	10/28/21	mrh	11/02/21	ckd		
Potassium	12 mg/L	1.0	1	10/28/21	mrh	11/02/21	ckd		
Sodium	20 mg/L	0.50	1	10/28/21	mrh	11/02/21	ckd	N	
Zinc	<0.020 mg/L	0.020	1	10/28/21	mrh	11/02/21	ckd		
Analysis Method: EPA 6020B Batch: T116174									
Antimony	0.00047 mg/L	0.00030	1	10/28/21	mrh	11/04/21	acs		
Arsenic	0.0021 mg/L	0.0010	1	10/28/21	mrh	11/04/21	acs		
Barium	0.035 mg/L	0.010	1	10/28/21	mrh	11/04/21	acs		
Cadmium	<0.0010 mg/L	0.0010	1	10/28/21	mrh	11/04/21	acs		
Chromium	0.0017 mg/L	0.00090	1	10/28/21	mrh	11/04/21	acs	206	
Cobalt	0.00086 mg/L	0.0016	1	10/28/21	mrh	11/04/21	acs	J	
Copper	<0.0040 mg/L	0.0040	1	10/28/21	mrh	11/04/21	acs		
Lead	<0.0020 mg/L	0.0020	1	10/28/21	mrh	11/04/21	acs		
Manganese	0.072 mg/L	0.025	1	10/28/21	mrh	11/04/21	acs	206	
Molybdenum	0.0064 mg/L	0.00040	1	10/28/21	mrh	11/04/21	acs	N	
Nickel	0.0032 mg/L	0.0050	1	10/28/21	mrh	11/04/21	acs	J	
Selenium	0.0011 mg/L	0.0020	1	10/28/21	mrh	11/04/21	acs	J	
Silver	<0.0010 mg/L	0.0010	1	10/28/21	mrh	11/04/21	acs		
Thallium	<0.0010 mg/L	0.0010	1	10/28/21	mrh	11/04/21	acs		
Vanadium	0.00094 mg/L	0.00080	1	10/28/21	mrh	11/04/21	acs	206	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1032

Vanadium

Client Project ID: Impoundment Sampling

Trace ID: 21J1032-01 Sample ID: Unit 1/2 Near MW-5	Matrix: Ground Water		Collected: 10/26 Received: 10/27		Fie	ld pH: 7.11			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	1300 mg/L	0.82	10	10/28/21		11/02/21	ckd	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T116098									
Beryllium	<0.0010 mg/L	0.0010	1	10/27/21	ckd	10/29/21	ckd		
Boron	1.8 mg/L	0.050	1	10/27/21	ckd	10/29/21	ckd		
Calcium	480 mg/L	5.0	10	10/27/21	ckd	10/29/21	ckd		
Iron	0.098 mg/L	0.10	1	10/27/21	ckd	10/29/21	ckd	J	
Lithium	0.037 mg/L	0.010	1	10/27/21	ckd	10/29/21	ckd	N	
Magnesium	33 mg/L	0.20	1	10/27/21	ckd	10/29/21	ckd		
Potassium	12 mg/L	1.0	1	10/27/21	ckd	10/29/21	ckd		
Sodium	20 mg/L	0.50	1	10/27/21	ckd	10/29/21	ckd	N	
Zinc	0.0030 mg/L	0.020	1	10/27/21	ckd	10/29/21	ckd	J	
Analysis Method: EPA 6020B Batch: T116167									
Antimony	0.00088 mg/L	0.0010	5	11/08/21	ckd	11/08/21	ckd	402.5, J	
Arsenic	0.0016 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Barium	0.040 mg/L	0.0030	5	11/08/21	ckd	11/08/21	ckd		
Cadmium	<0.0010 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Chromium	<0.00080 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		
Cobalt	0.00058 mg/L	0.0016	1	11/08/21	ckd	11/08/21	ckd	J	
Copper	0.00035 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd	J	
Lead	<0.0020 mg/L	0.0020	5	11/08/21	ckd	11/08/21	ckd	402.5	
Manganese	0.066 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Molybdenum	0.0048 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	N	
Nickel	0.0022 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Selenium	0.00086 mg/L	0.00087	1	11/08/21	ckd	11/08/21	ckd	J	
Silver	<0.000040 mg/L	0.000040	1	11/08/21	ckd	11/08/21	ckd		
Thallium	<0.00087 mg/L	0.00087	5	11/08/21	ckd	11/08/21	ckd	402.5	

CERTIFICATE OF ANALYSIS

0.00080

0.00035 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

J

Page 6 of 23

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID:

21J1032

Client Project ID:

Impoundment Sampling

Trace ID: 21J1032-01

Sample ID: Unit 1/2 Near MW-5

Matrix: Ground Water

Date Collected: 10/26/21 11:25

Date Received: 10/27/21 08:52

Field pH: 7.11

PARAMETERS

RESULTS UNITS

DILUTION RDL

PREPARED

10/27/21

10/29/21

10/29/21

BY ANALYZED

ΒY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Fluoride

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116092

Chloride Sulfate as SO4

3.1 mg/L 28 mg/L 1300 mg/L 0.10 0.75 60

5 10/27/21 100 10/29/21

5

1

ans ans

ans

mr

mr

10/28/21 10/28/21

10/29/21

ans

ans

10/29/21

10/29/21

Ν

Ν

mr

Analysis Method: SM 2540 C-11

Analysis Method: SM 2320 B-11 Batch: T116236

Bicarbonate Alkalinity as CaCO3 at pH 4.5

Carbonate Alkalinity as CaCO3 at pH 8.2

Batch: T116175

Total Dissolved Solids Total Dissolved Solids 1200 mg/L 1800 mg/L

93 mg/L

<10 mg/L

20 20

10

10

2 2 10/28/21 11/01/21 gmr 10/28/21 11/02/21 mr

gmr mr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

Trace ID: 21J1032-02 Matrix: Ground Water Date Collected: 10/26/21 15:25

Sample ID: Unit 1/2 Near SG-2	Date Received: 10/27/21 08:52 Field pH: 8.39								
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: EPA 1631E Batch: T116281									
Mercury	3.3 ng/L	0.50	1	11/01/21	ckd	11/02/21	ckd	N	
Analysis Method: EPA 6010D Batch: T116174									
Beryllium	<0.0020 mg/L	0.0020	1	10/28/21	mrh	11/02/21	ckd		
Boron	4.6 mg/L	0.050	1	10/28/21	mrh	11/02/21	ckd		
Calcium	280 mg/L	5.0	10	10/28/21	mrh	11/02/21	ckd		
Iron	0.25 mg/L	0.20	1	10/28/21	mrh	11/02/21	ckd		
Lithium	0.061 mg/L	0.010	1	10/28/21	mrh	11/02/21	ckd	N	
Magnesium	56 mg/L	0.20	1	10/28/21	mrh	11/02/21	ckd		
Potassium	15 mg/L	1.0	1	10/28/21	mrh	11/02/21	ckd		
Sodium	48 mg/L	0.50	1	10/28/21	mrh	11/02/21	ckd	N	
Zinc	<0.020 mg/L	0.020	1	10/28/21	mrh	11/02/21	ckd		
Analysis Method: EPA 6020B Batch: T116174									
Antimony	0.00045 mg/L	0.00030	1	10/28/21	mrh	11/04/21	acs		
Arsenic	0.0024 mg/L	0.0010	1	10/28/21	mrh	11/04/21	acs		
Barium	0.044 mg/L	0.010	1	10/28/21	mrh	11/04/21	acs		
Cadmium	<0.0010 mg/L	0.0010	1	10/28/21	mrh	11/04/21	acs		
Chromium	0.0013 mg/L	0.00090	1	10/28/21	mrh	11/04/21	acs		
Cobalt	<0.0016 mg/L	0.0016	1	10/28/21	mrh	11/04/21	acs		
Copper	0.0021 mg/L	0.0040	1	10/28/21	mrh	11/04/21	acs	J	
Lead	0.00083 mg/L	0.0020	1	10/28/21	mrh	11/04/21	acs	J	
Manganese	0.082 mg/L	0.025	1	10/28/21	mrh	11/04/21	acs		
Molybdenum	0.0048 mg/L	0.00040	1	10/28/21	mrh	11/04/21	acs	N	
Nickel	0.0037 mg/L	0.0050	1	10/28/21	mrh	11/04/21	acs	J	
Selenium	0.00093 mg/L	0.0020	1	10/28/21	mrh	11/04/21	acs	J	
Silver	<0.0010 mg/L	0.0010	1	10/28/21	mrh	11/04/21	acs		
Thallium	<0.0010 mg/L	0.0010	1	10/28/21	mrh	11/04/21	acs		
Vanadium	0.0014 mg/L	0.00080	1	10/28/21	mrh	11/04/21	acs		

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1032

Thallium

Vanadium

Client Project ID: Impoundment Sampling

Trace ID: 21J1032-02 Sample ID: Unit 1/2 Near SG-2	Matrix: Ground Water		Collected: 10/26/ Received: 10/27/		Fie	ld pH: 8.39			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	940 mg/L	0.82	10	10/28/21		11/02/21	ckd	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T116098									
Beryllium	<0.0010 mg/L	0.0010	1	10/27/21	ckd	10/29/21	ckd		
Boron	4.7 mg/L	0.050	1	10/27/21	ckd	10/29/21	ckd		
Calcium	280 mg/L	5.0	10	10/27/21	ckd	10/29/21	ckd		
Iron	0.056 mg/L	0.10	1	10/27/21	ckd	10/29/21	ckd	J	
Lithium	0.057 mg/L	0.010	1	10/27/21	ckd	10/29/21	ckd	N	
Magnesium	54 mg/L	0.20	1	10/27/21	ckd	10/29/21	ckd		
Potassium	15 mg/L	1.0	1	10/27/21	ckd	10/29/21	ckd		
Sodium	49 mg/L	0.50	1	10/27/21	ckd	10/29/21	ckd	N	
Zinc	0.0013 mg/L	0.020	1	10/27/21	ckd	10/29/21	ckd	J	
Analysis Method: EPA 6020B Batch: T116167									
Antimony	0.0012 mg/L	0.0010	5	11/08/21	ckd	11/08/21	ckd		
Arsenic	0.0018 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Barium	0.061 mg/L	0.0030	5	11/08/21	ckd	11/08/21	ckd		
Cadmium	0.000045 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd	J	
Chromium	<0.00080 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		
Cobalt	0.00023 mg/L	0.0016	1	11/08/21	ckd	11/08/21	ckd	J	
Copper	0.00062 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd	J	
Lead	0.00028 mg/L	0.0020	5	11/08/21	ckd	11/08/21	ckd	402.5, J	
Manganese	0.054 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Molybdenum	0.0042 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	N	
Nickel	0.0017 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Selenium	0.00075 mg/L	0.00087	1	11/08/21	ckd	11/08/21	ckd	J	
Silver	<0.000040 mg/L	0.000040	1	11/08/21	ckd	11/08/21	ckd		

CERTIFICATE OF ANALYSIS

0.00087

0.00080

<0.00087 mg/L

0.00038 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

5

1

11/08/21

11/08/21

ckd

ckd

11/08/21

11/08/21

402.5

J

ckd

ckd

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Date Collected: 10/26/21 15:25

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

Trace ID: 21J1032-02 Matrix: Ground Water

Sample ID: Unit 1/2 Near SG-2 Date Received: 10/27/21 08:52 Field pH: 8.39

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116092

Fluoride 3.1 mg/L 10/27/21 10/28/21 0.10 5 ans ans Chloride 81 mg/L 15 100 10/28/21 10/28/21 ans Sulfate as SO4 770 mg/L 60 100 10/28/21 10/28/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116236

Bicarbonate Alkalinity as CaCO3 at pH 4.5 91 mg/L 10 1 10/29/21 mr 10/29/21 Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <10 mg/L 10 10/29/21 10/29/21 Ν mr mr

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 1500 mg/L 20 2 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

QUALITY CONTROL RESULTS

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116281 Analysis Description: Mercury, Total, Low Level

QC Batch Method: EPA 1631E Analysis Method: EPA 1631E Analysis Method: EPA 1631E

METHOD BLANK: T116281-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/l	<0.20	0.20	

METHOD BLANK: T116281-BLK2

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	na/L	<0.20	0.20	

METHOD BLANK: T116281-BLK3

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/L	<0.20	0.20	

LABORATORY CONTROL SAMPLE: T116281-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Mercury	ng/L	25.0	23.4	94	77-123	

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116098 Analysis Description: Zinc, Dissolved
QC Batch Method: Analysis Method: EPA 6010D

METHOD BLANK: T116098-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Boron	mg/L	0.0023	0.050	J
Beryllium	mg/L	0.000061	0.0010	J
Calcium	mg/L	<0.50	0.50	
Iron	mg/L	<0.10	0.10	
Potassium	mg/L	0.015	1.0	J
Lithium	mg/L	<0.010	0.010	
Magnesium	mg/L	<0.20	0.20	
Sodium	mg/L	<0.50	0.50	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T116098-BLK1

Parameter	Units	Blank Reporting Result Limit	Notes
Zinc	mg/L	<0.020 0.020	

LABORATORY CONTROL SAMPLE: T116098-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	1.00	0.966	97	80-120	
Beryllium	mg/L	0.0500	0.0510	102	80-120	
Calcium	mg/L	10.0	10.3	103	80-120	
Iron	mg/L	10.0	10.4	104	80-120	
Potassium	mg/L	10.0	10.4	104	80-120	
Lithium	mg/L	0.500	0.522	104	80-120	
Magnesium	mg/L	10.0	10.5	105	80-120	
Sodium	mg/L	10.0	10.6	106	80-120	
Zinc	mg/L	1.00	1.04	104	80-120	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116098-MSD1 Original: 21J1032-01

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Boron	mg/L	1.83	1.00	2.78	2.79	95	96	75-125	8.0	20	
Beryllium	mg/L	0	0.0500	0.0476	0.0479	95	96	75-125	0.6	20	
Iron	mg/L	0.0978	10.0	9.84	10.0	97	99	75-125	2	20	
Potassium	mg/L	11.6	10.0	21.8	21.9	102	104	75-125	2	20	
Lithium	mg/L	0.0370	0.500	0.568	0.573	106	107	75-125	0.9	20	
Magnesium	mg/L	33.4	10.0	42.3	42.3	90	90	75-125	0.2	20	
Sodium	mg/L	20.3	10.0	30.8	31.0	105	107	75-125	2	20	
Zinc	mg/L	0.00301	1.00	0.991	1.02	99	102	75-125	3	20	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116098-MSD2 Original: 21J1032-01

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Calcium	mg/L	478	100	576	562	98	84	75-125	16	20	

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116174

Analysis Description: Potassium, Total

QC Batch Method: EPA 3015 Microwave Assisted Digestions

Analysis Method: EPA 6010D

for Liquids

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T116174-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Boron	mg/L	<0.050	0.050	
Beryllium	mg/L	<0.0020	0.0020	
Calcium	mg/L	<0.50	0.50	
Iron	mg/L	<0.20	0.20	
Potassium	mg/L	0.060	1.0	J
Lithium	mg/L	<0.010	0.010	
Magnesium	mg/L	<0.20	0.20	
Sodium	mg/L	<0.50	0.50	
Zinc	mg/L	<0.020	0.020	

LABORATORY CONTROL SAMPLE: T116174-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	0.889	0.830	93	80-120	
Beryllium	mg/L	0.111	0.109	98	80-120	
Calcium	mg/L	8.89	8.74	98	80-120	
Iron	mg/L	8.89	9.02	101	80-120	
Potassium	mg/L	8.89	9.03	102	80-120	
Lithium	mg/L	0.889	0.880	99	80-120	
Magnesium	mg/L	8.89	9.09	102	80-120	
Sodium	mg/L	8.89	9.07	102	80-120	
Zinc	mg/L	0.889	0.894	101	80-120	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116174-MSD1				Original: 21J1032-01							
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Boron	mg/L	1.81	0.889	2.72	2.61	102	90	75-125	13	20	
Beryllium	mg/L	0	0.111	0.113	0.110	101	99	75-125	2	20	
Calcium	mg/L	468	8.89	498	475	342	80	75-125	124	20	226
Iron	mg/L	0.275	8.89	9.42	9.20	103	100	75-125	2	20	
Potassium	mg/L	11.6	8.89	21.7	21.1	113	107	75-125	6	20	
Lithium	mg/L	0.0394	0.889	0.997	0.969	108	105	75-125	3	20	
Magnesium	mg/L	33.6	8.89	42.5	41.6	99	89	75-125	11	20	
Sodium	mg/L	20.0	8.89	30.3	29.6	116	108	75-125	8	20	
Zinc	mg/L	0	0.889	0.909	0.876	102	99	75-125	4	20	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Page 14 of 23

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116167 Analysis Description: Vanadium, Dissolved

QC Batch Method: Analysis Method: EPA 6020B

METHOD BLANK: T116167-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Silver	mg/L	0.000026	0.000040	J
Arsenic	mg/L	<0.0010	0.0010	
Barium	mg/L	<0.00060	0.00060	
Cadmium	mg/L	<0.00020	0.00020	
Cobalt	mg/L	<0.0016	0.0016	
Chromium	mg/L	<0.00080	0.00080	
Copper	mg/L	<0.00080	0.00080	
Manganese	mg/L	<0.00040	0.00040	
Molybdenum	mg/L	<0.00040	0.00040	
Nickel	mg/L	<0.00040	0.00040	
Lead	mg/L	<0.00040	0.00040	
Antimony	mg/L	0.00017	0.00020	J
Selenium	mg/L	<0.00087	0.00087	
Thallium	mg/L	<0.00017	0.00017	
Vanadium	mg/L	<0.00080	0.00080	

LABORATORY CONTROL SAMPLE: T116167-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Silver	mg/L	0.0600	0.0612	102	80-120	
Arsenic	mg/L	0.0600	0.0630	105	80-120	
Barium	mg/L	0.0600	0.0588	98	80-120	
Cadmium	mg/L	0.0600	0.0613	102	80-120	
Cobalt	mg/L	0.0600	0.0604	101	80-120	
Chromium	mg/L	0.0600	0.0629	105	80-120	
Copper	mg/L	0.0600	0.0610	102	80-120	
Manganese	mg/L	0.0600	0.0615	102	80-120	
Molybdenum	mg/L	0.0600	0.0588	98	80-120	
Nickel	mg/L	0.0600	0.0602	100	80-120	
Lead	mg/L	0.0600	0.0616	103	80-120	
Antimony	mg/L	0.0600	0.0577	96	80-120	
Selenium	mg/L	0.0600	0.0630	105	80-120	
Thallium	mg/L	0.0600	0.0617	103	80-120	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T116167-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Vanadium	ma/L	0.0600	0.0581	97	80-120	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116167-MSD1

	Origin	ıal:	21.	J103	2-02
--	--------	------	-----	------	------

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Silver	mg/L	0	0.0500	0.0435	0.0420	87	84	75-125	4	20	
Arsenic	mg/L	0.00177	0.0500	0.0600	0.0573	116	111	75-125	5	20	
Cadmium	mg/L	0.0000452	0.0500	0.0492	0.0482	98	96	75-125	2	20	
Cobalt	mg/L	0.000233	0.0500	0.0459	0.0450	91	89	75-125	2	20	
Chromium	mg/L	0	0.0500	0.0493	0.0481	99	96	75-125	3	20	
Copper	mg/L	0.000624	0.0500	0.0419	0.0408	83	80	75-125	3	20	
Manganese	mg/L	0.0537	0.0500	0.105	0.102	102	97	75-125	5	20	
Molybdenum	mg/L	0.00421	0.0500	0.0585	0.0556	109	103	75-125	6	20	
Nickel	mg/L	0.00170	0.0500	0.0455	0.0445	88	86	75-125	2	20	
Selenium	mg/L	0.000753	0.0500	0.0555	0.0537	109	106	75-125	3	20	
Vanadium	mg/L	0.000380	0.0500	0.0516	0.0499	103	99	75-125	4	20	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116167-MSD2

Original:	21J1	032-02
-----------	------	--------

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Barium	mg/L	0.0610	0.250	0.308	0.306	99	98	75-125	1	20	
Lead	mg/L	0.000275	0.250	0.258	0.257	103	103	75-125	0.3	20	
Antimony	mg/L	0.00115	0.250	0.260	0.259	104	103	75-125	0.7	20	
Thallium	mg/L	0	0.250	0.265	0.262	106	105	75-125	1	20	

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116174

Analysis Description: Selenium, Total

QC Batch Method: EPA 3015 Microwave Assisted Digestions

Analysis Method: EPA 6020B

for Liquids

METHOD BLANK: T116174-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Silver	mg/L	<0.0010	0.0010	
Arsenic	mg/L	<0.0010	0.0010	
Barium	mg/L	<0.010	0.010	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T116174-BLK1

Parameter	Units	Blank Result	Reporting Limit	No	otes
Cadmium	mg/L	<0.0010	0.0010		
Cobalt	mg/L	<0.0016	0.0016		
Chromium	mg/L	<0.00090	0.00090		
Copper	mg/L	<0.0040	0.0040		
Manganese	mg/L	<0.025	0.025		
Molybdenum	mg/L	0.00027	0.00040		J
Nickel	mg/L	<0.0050	0.0050		
_ead	mg/L	<0.0020	0.0020		
Antimony	mg/L	<0.00030	0.00030		
Selenium	mg/L	<0.0020	0.0020		
Γhallium	mg/L	<0.0010	0.0010		
/anadium	mg/L	<0.00080	0.00080		

LABORATORY CONTROL SAMPLE: T116174-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Silver	mg/L	0.0278	0.0333	120	80-120	
Arsenic	mg/L	0.0556	0.0599	108	80-120	
Barium	mg/L	0.889	0.950	107	80-120	
Cadmium	mg/L	0.0278	0.0297	107	80-120	
Cobalt	mg/L	0.889	0.892	100	80-120	
Chromium	mg/L	0.0278	0.0288	104	80-120	
Copper	mg/L	0.890	0.863	97	80-120	
Manganese	mg/L	0.887	0.878	99	80-120	
Molybdenum	mg/L	0.889	0.942	106	80-120	
Nickel	mg/L	0.889	0.840	95	80-120	
Lead	mg/L	0.0556	0.0533	96	80-120	
Antimony	mg/L	0.0556	0.0608	109	80-120	
Selenium	mg/L	0.0556	0.0560	101	80-120	
Thallium	mg/L	0.0556	0.0542	98	80-120	
Vanadium	mg/L	0.889	0.915	103	80-120	

Original: 21J1032-01 MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116174-MSD1

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Silver	mg/L	0	0.0278	0.0308	0.0292	111	105	75-125	5	20	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116174-MSD1

Origina	ŀ	21.	.11	032-01

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Arsenic	mg/L	0.00212	0.0556	0.0711	0.0670	124	117	75-125	6	20	
Barium	mg/L	0.0351	0.889	1.06	0.994	115	108	75-125	7	20	
Cadmium	mg/L	0	0.0278	0.0298	0.0280	107	101	75-125	6	20	
Cobalt	mg/L	0.000863	0.889	1.05	0.997	118	112	75-125	5	20	
Chromium	mg/L	0.00175	0.0278	0.0404	0.0382	139	131	75-125	6	20	206
Copper	mg/L	0	0.890	0.944	0.887	106	100	75-125	6	20	
Manganese	mg/L	0.0718	0.887	1.30	1.22	139	130	75-125	7	20	206
Molybdenum	mg/L	0.00638	0.889	1.03	0.980	115	110	75-125	5	20	
Nickel	mg/L	0.00323	0.889	0.959	0.909	108	102	75-125	5	20	
Lead	mg/L	0	0.0556	0.0499	0.0476	90	86	75-125	5	20	
Antimony	mg/L	0.000470	0.0556	0.0643	0.0600	115	107	75-125	7	20	
Selenium	mg/L	0.00107	0.0556	0.0649	0.0605	115	107	75-125	7	20	
Thallium	mg/L	0	0.0556	0.0519	0.0491	93	88	75-125	6	20	
Vanadium	mg/L	0.000945	0.889	1.35	1.28	152	144	75-125	6	20	206

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: [CALC]
QC Batch Method:

Analysis Description: Hardness (Metals) Analysis Method: SM 2340 B-11

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116092 QC Batch Method: IC Prep W

Analysis Description: Fluoride
Analysis Method: EPA 300.0 Rev. 2.1

METHOD BLANK: T116092-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Chloride	mg/L	<0.15	0.15	
Fluoride	mg/L	<0.020	0.020	

LABORATORY CONTROL SAMPLE: T116092-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Chloride	mg/L	5.00	5.00	100	90-110	
Fluoride	mg/L	1.00	0.992	99	90-110	

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

QC Batch: T116163

QC Batch Method: IC Prep W

Analysis Description: Sulfate

Analysis Method: EPA 300.0 Rev. 2.1

METHOD BLANK: T116163-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Chloride	mg/L	<0.15	0.15	
Sulfate as SO4	mg/L	<0.60	0.60	

LABORATORY CONTROL SAMPLE: T116163-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Chloride	mg/L	5.00	5.11	102	90-110	
Sulfate as SO4	mg/L	5.00	4.88	98	90-110	

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116228 Analysis Description: Sulfate

QC Batch Method: IC Prep W Analysis Method: EPA 300.0 Rev. 2.1

METHOD BLANK: T116228-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Sulfate as SO4	mg/L	<0.60	0.60	

LABORATORY CONTROL SAMPLE: T116228-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Sulfate as SO4	mg/L	5.00	4.89	98	90-110	

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116236 Analysis Description: Alkalinity, Bicarbonate

QC Batch Method: SM 2320 B-11 Analysis Method: SM 2320 B-11

LABORATORY CONTROL SAMPLE: T116236-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Bicarbonate Alkalinity as CaCO3 at pH 4.5	mg/L	100	100	100	88-112	
Carbonate Alkalinity as CaCO3 at pH 8.2	mg/L	100	100	100	88-112	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

SAMPLE DUPLICATE: T116236-DUP1	Original: 21J1032-01

Parameter	Units	Original Result	DUP Result	RPD	Max RPD	Notes
Bicarbonate Alkalinity as CaCO3 at pH 4.5	mg/L	93.1	91.8	1	200	

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116175 Analysis Description: Total Dissolved Solids
QC Batch Method: SM 2540 C-11 SM 2540 C-11

METHOD BLANK: T116175-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Total Dissolved Solids	mg/L	1.0	10	J

LABORATORY CONTROL SAMPLE: T116175-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Total Dissolved Solids	mg/L	500	543	109	80-120	

Trace Project ID: 21J1032

Client Project ID: Impoundment Sampling

QC Batch: T116265 Analysis Description: Total Dissolved Solids
QC Batch Method: SM 2540 C-11 Analysis Method: SM 2540 C-11

METHOD BLANK: T116265-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Total Dissolved Solids	mg/L	9.0	10	J

LABORATORY CONTROL SAMPLE: T116265-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Total Dissolved Solids	mg/L	500	527	105	80-120	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Plea 3)	ise Si	n Released By								10.00	2 11.00 11.00	_	Trace Date Time No. Collected Collected	Project Name: Impound		*Results provided end of busing	3 Day*	Turnaround Requirements: X Standard, 5-10 Days	Email Address:	Office Phone:	City, State, Zip Code:	Mailing Address:	Report To: Paul Cederquist	Company Name: Grand Have	Report Results To:	A RAINTOAL L		
In executing this	1 Bala	By / Repeived By								Office 1/2 Near SG-2	CHAIN IN THE CO.	I hit 1/2 Noo	Client Sample ID	Impoundment Sampling	and any or prive approval.	*Results provided end of business day requires prior approval		nts:		Cell Phone:				Company Name: Grand Haven Board of Light & Power		ABORATORIES, INC.		1 1
Chain of Custody, the client	dedoi	By Date								1 00-2	- AAIM	· MAN E	e D	Sampled By:		SL = Sludge A = Air	į	Matrix Key: S = Soil / Solid WI = V	Billing Email Address:	Phone Number:	City, State, Zip Code:	Billing Add	Contact Name:	PO#.	Bill To:	Muskegon,	Trace Anal	우
acknowledges the terms as se	1 8:262	Time									× ×	7	Metals Field Filtered (Y / N) Matrix Number of Containers Cool HCI HNO ₃ H ₂ SO ₄ NaOH	By: FB	0	A = Air D = Drinking Water	LW = Liquid Waste	WI = Wipes	ail Address:	nber:	Zip Code:	Billing Address (if different):	ame:			224 i black Creek Road Muskegon, MI 49444-2673	Trace Analytical Laboratories, Inc.	CHAIN-OF-CUSTODY RECORD
in executing this Chain of Custody, the client acknowledges the terms as set forth at www.trace-labs.com/terms-of-accement		Released By									×		NaOH S Other T-B,Ca,Fe,S T-Co,Cu, P T-TI, V,Zn, Diss.Metals	b, Li,M Mn,Mg	10,N 3,K,N	i Se, la	Ag				4 300 88				9	Fax 888.979.4469 www.trace-labs.com	Phone 231.773.5998	RECORD
terms-of-personnent		Received By									× × ×		Fluoride,Sul pH LLHg Radiums 22 Bicarb-Alk, (6/228			rides	Analysis Requested		Sampling Time:	меон	Soil Volatile	Checked By:	Logged By:	Trace Use:	1469 / 1s.com	3.5998	
		Data								\$.39	pH= 1.11	1	Remarks					ested		ime:	H Low Level L	Pres	¥ DH	5/2	se:	211032	Trace ID No.	Page 1 of
		; -	+	+	+	+	+	+	+	+	=	+	ossible Healti	n Haza	rds?			$\left\{ \right\}$			Lab .	ë.						

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

21J103	32
Grand Haven E	Board of Light
Project Manager: I	

Sample Log In Checklist

Date: 10-27-2	Ę	ature			4°C)		
Time: 9: 20	Observation	Temperat	ပ္	1°C)	:-0.4		
Logged by: DH	Obse	od Ter	+0.1°C)	CF: 50	743 (CI	Blank	Sample
Package Description:	la la	T T	Ę.	9	1	p Bl	t S
Cooler	Original	Corrected	IR-9	IR-10	20B1	Temp	Client
Package Temp °C	-1.7	-1.6		/			
Representative Sample Temp °C	1.8	1.9		1			1

Sample Receipt		· · · · · · · · · · · · · · · · · · ·
Yes No Received on Ice or other coolant ☐ Ice still present upon receipt ☐ ☐ Custody seals present Yes ☐ Trace Courier ☐ Client Drop-off ☐ UPS	□ No Custody seals intact (if ap	
Sample Condition		
Yes No N/A. All sample containers arrived unbroken a Sufficient sample to run requested analy Correct chemical preservative added to some samples preserved at Trace	ses	
Chemical preservation verified, check EN	/ID pH test strip used (if applicable ☐ pH 11.0-13.0 (Lot: HC	e) 022540)
Chain of Custody (COC)	e	
Yes No All bottle labels agree with COC COC filled out properly COC signed by client	3	
Notes:		
		h 2
Form 70-A.40 Effective 10/2/21	* ************************************	TRACE Analytical Laboratories, In

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

Stabilization Criteria:
Temperature: 3%
Spec. Conductivity: 3%
Dissolved Oxygen: 10%
ORP: +/- 10 mV
Turbidity: 10% or <1
pH: +/- 0.1

Pump Used: Peristaltic

오

ニゲ

Notes:

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ORP (mV) Oxygen Depth to Specific Water Turbidity(NTU) Conductivity (Celsius) Reading Time Client: GHBLP Dissolved Temperature Impoundment ID: Unit by MWS Depth to Point Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form Purge Start Time: 16:55 (= 11.00 0 0 1.00 0 ſ 0 Date: 10-26-21 00 1 Purge Rate: Bowl Sample Tubing Depth: 2017 Field Personnel:

Spec. Conductivity: 3%
Dissolved Oxygen: 10%
ORP: +/- 10 mV
Turbidity: 10% or <1
pH: +/- 0.1

Pump Used: Peristaltic

모

200

8.39

8.39

Stabilization Criteria:

Notes:

Temperature: 3%

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Water Oxygen Specific Turbidity(NTU) ORP (mV) (Celsius) Depth to Dissolved Conductivity Reading Time Client: GHBLP Temperature Impoundment ID: Wir 1/2 by SG2 Purge Start Time: 14:55 Ś 8 63 . | | | 1 . W 2 160 163 W Ń 1 120 00 D 9.87 S į Depth to Point: 8 Date: 10-26-21 5 '.' G Purge Rate: 300ml/min Sample Tubing Depth: 20 台ナ Field Personnel:

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

November 09, 2021

Mr. Paul Cederquist Grand Haven Board of Light and Power-Monthly MWs 1700 Eaton Drive Grand Haven, MI 49417

RE: Trace Project

21J1034

Client Project

MW Sampling

Dear Mr. Cederquist:

Enclosed are your analytical results. The results of this report relate only to the samples listed in the body of this report.

All reports were examined through Trace's validation process to ensure that requirements for quality and completeness were satisfied. All reported analytical results were obtained in accordance with the methods referenced on the reports. Every practical effort was made to meet the reporting limit specifications for this work, however, some results may have raised reporting limits to correct for percent solids.

For clients that require NELAP Accreditation, Trace certifies that these test results meet all requirements of the NELAP Standard, except for those analytes with a "N" notation. These analytes have not been evaluated by NELAP at Trace's discretion and will not be reported unless requested by client.

If you have questions concerning this report, please contact me at 231.773.5998 or by email at jmink@trace-labs.com.

Sincerely,

Jon Mink Senior Project Manager Enclosures

> TNI HABORATORY

NJDEP Accreditation No. MI008

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

SAMPLE SUMMARY

Trace Project ID: 21J1034 Client Project ID: MW Sampling

Trace ID	Sample ID	Matrix	Collected By	Date Collected	Date Received
21J1034-01	MW-1R	Ground Water	TRACE-EB/TB	10/26/21 11:45	10/27/21 09:16
21J1034-02	MW-2	Ground Water	TRACE-EB/TB	10/26/21 13:55	10/27/21 09:16
21J1034-03	MW-3	Ground Water	TRACE-EB/TB	10/26/21 12:35	10/27/21 09:16
21J1034-04	MW-4	Ground Water	TRACE-EB/TB	10/26/21 12:00	10/27/21 09:16
21J1034-05	MW-5	Ground Water	TRACE-EB/TB	10/26/21 10:35	10/27/21 09:16
21J1034-06	MW-6	Ground Water	TRACE-EB/TB	10/26/21 11:00	10/27/21 09:16
21J1034-07	MW-7	Ground Water	TRACE-EB/TB	10/26/21 10:20	10/27/21 09:16
21J1034-08	MW-8	Ground Water	TRACE-EB/TB	10/26/21 15:35	10/27/21 09:16
21J1034-09	MW-9	Ground Water	TRACE-EB/TB	10/26/21 14:30	10/27/21 09:16
21J1034-10	MW-10	Ground Water	TRACE-EB/TB	10/26/21 15:05	10/27/21 09:16

AN EXPLANATION OF TERMS AND SYMBOLS WHICH MAY OCCUR IN THIS REPORT

DEFINITIONS

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

MS Matrix Spike

MSD Matrix Spike Duplicate
RPD Relative Percent Difference

DUP Matrix Duplicate

RDL Reporting Detection Limit
MCL Maximum Contamination Limit
TIC Tentatively Identified Compound

<, ND or U Indicates the compound was analyzed for but not detected

Indicates a result that exceeds its associated MCL or Surrogate control limits
 Indicates that the laboratory is not accredited by NELAP for this compound

NA Indicates that the compound is not available.

NOTE: Samples for volatiles that have been extracted with a water miscible solvent were corrected for the

total volume of the solvent/water mixture.

Solid matrices Method Blanks are at 100% solids as such results are the same wet or dry.

DATA QUALIFIERS

race ID: 21J1034-01 Analysis: EPA 6020B	
Antimony	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Cadmium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Lead	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Silver	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Thallium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
race ID: 21J1034-02 Analysis: EPA 6020B	
Antimony	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Lead	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Thallium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.

Trace ID: 21J1034-03 *Analysis: EPA 6020B*

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Antimony	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Lead	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Thallium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Trace ID: 21J1034-04	
Analysis: EPA 6020B	
Antimony	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Lead	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Thallium	Note 402.5 : The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Trace ID: 21J1034-10	
Analysis: EPA 6020B	
Antimony	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Lead	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Thallium	Note 402.5: The reporting limit was raised due to a dilution required because of sample matrix interference with the internal standards.
Trace ID: T116175-DUP2	
Analysis: SM 2540 C-11	
Total Dissolved Solids	Note 623 : The relative percent difference between the sample and sample duplicate is out of control. The sample result should be considered estimated.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-01 Matrix: Ground Water Date Collected: 10/26/21 11:45 Sample ID: MW-1R Date Received: 10/27/21 09:16 Field pH: 7.80 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury 1.9 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116174 0.0020 Beryllium <0.0020 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 140 mg/L 0.50 10 10/28/21 mrh 11/02/21 ckd Calcium 220 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd 0.20 10/28/21 mrh 11/02/21 Iron 1.7 mg/L 1 ckd 11/02/21 Lithium 2.8 mg/L 0.010 1 10/28/21 mrh ckd Ν Magnesium 120 mg/L 2.0 10 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 92 mg/L 1 1.0 mrh ckd Sodium 480 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 0.00044 mg/L 0.00030 1 10/28/21 11/04/21 Antimony mrh acs Arsenic 0.0046 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs 0.20 mg/L 0.010 10/28/21 11/04/21 Barium 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Chromium 0.0022 mg/L 0.00090 1 10/28/21 mrh 11/04/21 acs Cobalt 0.0022 mg/L 0.0016 1 10/28/21 mrh 11/04/21 acs <0.0040 mg/L 0.0040 1 10/28/21 11/04/21 Copper mrh acs Lead 0.0024 mg/L 0.0020 1 10/28/21 mrh 11/04/21 acs 10/28/21 11/04/21 0.40 mg/L 0.025 1 mrh Manganese acs Molybdenum 0.0016 mg/L 0.00040 1 10/28/21 11/04/21 N mrh acs 11/04/21 Nickel 0.0039 mg/L 0.0050 1 10/28/21 mrh acs J 0.00097 mg/L 10/28/21 11/04/21 Selenium 0.0020 mrh 1 acs 0.0010 11/04/21 Silver <0.0010 mg/L 1 10/28/21 mrh acs Thallium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

0.0017 mg/L

10/28/21

11/04/21

acs

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Page 6 of 54

ANALYTICAL RESULTS

Trace Project ID:	21J1034
Client Project ID:	MW Sampling

Trace ID: 21J1034-01	Matrix: Ground Water	Date	Date Collected: 10/26/21 11:45						
Sample ID: MW-1R		Date Received: 10/27/21 09:16			Field pH: 7.80				
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MC
METALS, TOTAL									
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	1000 mg/L	8.2	10	10/28/21		11/02/21	ckd	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T116098									
Beryllium	<0.0010 mg/L	0.0010	1	10/27/21	ckd	10/29/21	ckd		
Boron	130 mg/L	2.5	50	10/27/21	ckd	10/29/21	ckd		
Calcium	250 mg/L	5.0	10	10/27/21	ckd	10/29/21	ckd		
Iron	1.5 mg/L	0.10	1	10/27/21	ckd	10/29/21	ckd		
Lithium	2.6 mg/L	0.010	1	10/27/21	ckd	10/29/21	ckd	N	
Magnesium	120 mg/L	2.0	10	10/27/21	ckd	10/29/21	ckd		
Potassium	85 mg/L	1.0	1	10/27/21	ckd	10/29/21	ckd		
Sodium	470 mg/L	5.0	10	10/27/21	ckd	10/29/21	ckd	N	
Zinc	0.0013 mg/L	0.020	1	10/27/21	ckd	10/29/21	ckd	J	
Analysis Method: EPA 6020B Batch: T116167									
Antimony	0.00050 mg/L	0.0010	5	11/08/21	ckd	11/08/21	ckd	402.5, J	
Arsenic	0.0040 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Barium	0.21 mg/L	0.0030	5	11/08/21	ckd	11/08/21	ckd		
Cadmium	<0.0010 mg/L	0.0010	5	11/08/21	ckd	11/08/21	ckd	402.5	
Chromium	0.00099 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		
Cobalt	0.00073 mg/L	0.0016	1	11/08/21	ckd	11/08/21	ckd	J	
Copper	<0.00080 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		
Lead	<0.0020 mg/L	0.0020	5	11/08/21	ckd	11/08/21	ckd	402.5	
Manganese	0.29 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Molybdenum	0.0011 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	N	
Nickel	0.0019 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Selenium	0.00066 mg/L	0.00087	1	11/08/21	ckd	11/08/21	ckd	J	
Silver	<0.00020 mg/L	0.00020	5	11/08/21	ckd	11/08/21	ckd	402.5	
Thallium	<0.00087 mg/L	0.00087	5	11/08/21	ckd	11/08/21	ckd	402.5	
Vanadium	0.00092 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-01 Matrix: Group

Matrix: Ground Water Date Collected: 10/26/21 11:45

Sample ID: MW-1R Date Received: 10/27/21 09:16 Field pH: 7.80

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

Fluoride 13 mg/L 100 10/27/21 10/27/21 2.0 ans ans Chloride 230 mg/L 15 100 10/27/21 10/27/21 ans Sulfate as SO4 530 mg/L 60 100 10/27/21 10/27/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116236

Bicarbonate Alkalinity as CaCO3 at pH 4.5 1200 mg/L 10 1 10/29/21 mr 10/29/21 Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <10 mg/L 10 10/29/21 10/29/21 Ν mr mr

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 3600 mg/L 20 2 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-02 Matrix: Ground Water Date Collected: 10/26/21 13:55 Sample ID: MW-2 Date Received: 10/27/21 09:16 Field pH: 6.48 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury 2.8 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116174 0.0020 Beryllium <0.0020 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 100 mg/L 0.50 10 10/28/21 mrh 11/02/21 ckd Calcium 190 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd 0.20 10/28/21 mrh 11/02/21 Iron 22 mg/L 1 ckd 11/02/21 Lithium 1.2 mg/L 0.010 1 10/28/21 mrh ckd Ν Magnesium 62 mg/L 0.20 1 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 50 mg/L 1.0 1 mrh ckd Sodium 300 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony <0.00030 mg/L 0.00030 1 10/28/21 11/04/21 mrh acs Arsenic 0.012 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs 0.50 mg/L 0.010 10/28/21 11/04/21 Barium 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Chromium 0.040 mg/L 0.00090 1 10/28/21 mrh 11/04/21 acs Cobalt 0.0055 mg/L 0.0016 1 10/28/21 mrh 11/04/21 acs 0.0022 mg/L 1 10/28/21 11/04/21 Copper 0.0040 mrh acs J Lead 0.0018 mg/L 0.0020 1 10/28/21 mrh 11/04/21 J acs 10/28/21 11/04/21 0.80 mg/L 0.025 1 mrh Manganese acs Molybdenum 0.0045 mg/L 0.00040 1 10/28/21 11/04/21 mrh acs Ν 11/04/21 Nickel 0.017 mg/L 0.0050 1 10/28/21 mrh acs 10/28/21 11/04/21 Selenium 0.0017 mg/L 0.0020 mrh 1 acs <0.0010 mg/L 11/04/21 Silver 0.0010 1 10/28/21 mrh acs Thallium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

0.0039 mg/L

10/28/21

11/04/21

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-02 Matrix: Ground Water Date Collected: 10/26/21 13:55 Sample ID: MW-2 Date Received: 10/27/21 09:16 Field pH: 6.48 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 740 mg/L 0.82 10 10/28/21 11/02/21 Ν ckd **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T116098 Beryllium <0.0010 mg/L 0.0010 10/27/21 ckd 10/29/21 ckd 98 mg/L 10 10/29/21 Boron 0.50 10/27/21 ckd ckd Calcium 200 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd Iron 22 mg/L 1.0 10 10/27/21 ckd 10/29/21 ckd Lithium 0.010 10/27/21 10/29/21 1.1 mg/L 1 ckd ckd Ν 10/29/21 Magnesium 65 mg/L 2.0 10 10/27/21 ckd ckd Potassium 48 mg/L 10 10 10/27/21 ckd 10/29/21 ckd Sodium 310 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd N Zinc 0.0030 mg/L 0.020 1 10/27/21 10/29/21 J ckd ckd Analysis Method: EPA 6020B Batch: T116167 <0.0010 mg/L 0.0010 5 11/08/21 11/08/21 402.5 Antimony ckd ckd Arsenic 0.012 mg/L 0.0010 1 11/08/21 ckd 11/08/21 ckd **Barium** 0.48 mg/L 0.0030 5 11/08/21 ckd 11/08/21 ckd Cadmium 0.000054 mg/L 0.0010 1 11/08/21 ckd 11/08/21 ckd J 0.028 mg/L 0.00080 1 11/08/21 11/08/21 Chromium ckd ckd 0.0047 mg/L Cobalt 0.0016 1 11/08/21 ckd 11/08/21 ckd 0.00072 mg/L 0.00080 11/08/21 ckd 11/08/21 J Copper ckd 0.0020 5 11/08/21 11/08/21 402.5, J Lead 0.0012 mg/L ckd ckd 0.80 mg/L 0.00040 11/08/21 11/08/21 Manganese 1 ckd ckd Molybdenum 0.0038 mg/L 0.00040 11/08/21 11/08/21 Ν ckd ckd 0.015 mg/L 0.00040 1 11/08/21 11/08/21 Nickel ckd ckd Selenium 0.0013 mg/L 0.00087 1 11/08/21 ckd 11/08/21 ckd Silver 0.000027 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd J <0.00087 mg/L 5 402.5 Thallium 0.00087 11/08/21 ckd 11/08/21 ckd

CERTIFICATE OF ANALYSIS

0.00080

0.0029 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

MCL

ANALYTICAL RESULTS

Date Collected: 10/26/21 13:55

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-02 Matrix: Ground Water

Sample ID: MW-2 Date Received: 10/27/21 09:16 Field pH: 6.48

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

Fluoride 9.4 mg/L 0.50 25 10/27/21 ans 10/27/21 ans Chloride 140 mg/L 3.8 25 10/27/21 10/27/21 ans Sulfate as SO4 3.0 10/27/21 10/27/21 <3.0 mg/L 5 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 2100 mg/L 50 10 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <50 mg/L 50 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 2000 mg/L 40 4 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034 Client Project ID: MW Sampling

Trace ID: 21J1034-03 Matrix: Ground Water Date Collected: 10/26/21 12:35 Sample ID: MW-3 Date Received: 10/27/21 09:16 Field pH: 6.91 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury 0.79 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116174 0.0020 Beryllium <0.0020 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 4.4 mg/L 0.050 1 10/28/21 mrh 11/02/21 ckd Calcium 490 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd 0.20 10/28/21 mrh 11/02/21 Iron 4.5 mg/L 1 ckd 11/02/21 Lithium 0.053 mg/L 0.010 1 10/28/21 mrh ckd Ν Magnesium 200 mg/L 0.20 1 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 21 mg/L 1.0 1 mrh ckd Sodium 140 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony 0.00030 <0.00030 mg/L 1 10/28/21 11/04/21 mrh acs Arsenic 0.0012 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs 0.47 mg/L 0.010 10/28/21 11/04/21 Barium 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Chromium 0.0041 mg/L 0.00090 1 10/28/21 mrh 11/04/21 acs Cobalt 0.0014 mg/L 0.0016 1 10/28/21 mrh 11/04/21 acs J <0.0040 mg/L 0.0040 1 10/28/21 11/04/21 Copper mrh acs <0.0020 mg/L 11/04/21 Lead 0.0020 1 10/28/21 mrh acs 10/28/21 11/04/21 Manganese 2.1 mg/L 0.25 10 mrh acs Molybdenum 0.00012 mg/L 0.00040 1 10/28/21 11/04/21 J, N mrh acs 0.0027 mg/L Nickel 0.0050 1 10/28/21 mrh 11/04/21 acs J Selenium <0.0020 mg/L 0.0020 10/28/21 11/04/21 mrh acs <0.0010 mg/L 0.0010 11/04/21 Silver 1 10/28/21 mrh acs Thallium <0.0010 mg/L 0.0010 10/28/21 11/04/21

CERTIFICATE OF ANALYSIS

0.00080

0.0014 mg/L

1

mrh

10/28/21

acs

acs

11/04/21

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Vanadium

Trace ID: 21J1034-03 Matrix: Ground Water Date Collected: 10/26/21 12:35 Sample ID: MW-3 Date Received: 10/27/21 09:16 Field pH: 6.91 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 2100 mg/L 0.82 10 10/28/21 11/02/21 Ν ckd **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T116098 Beryllium <0.0010 mg/L 0.0010 10/27/21 ckd 10/29/21 ckd 4.3 mg/L 0.050 10/29/21 Boron 1 10/27/21 ckd ckd Calcium 500 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd Iron 4.4 mg/L 0.10 1 10/27/21 ckd 10/29/21 ckd Lithium 0.053 mg/L 0.010 10/27/21 ckd 10/29/21 1 ckd Ν 220 mg/L 10/27/21 10/29/21 Magnesium 2.0 10 ckd ckd Potassium 21 mg/L 1.0 1 10/27/21 ckd 10/29/21 ckd Sodium 140 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd N Zinc 0.00074 mg/L 0.020 1 10/27/21 10/29/21 J ckd ckd Analysis Method: EPA 6020B Batch: T116167 <0.0010 mg/L 0.0010 5 11/08/21 11/08/21 402.5 Antimony ckd ckd 1 Arsenic 0.0011 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd **Barium** 0.45 mg/L 0.0030 5 11/08/21 ckd 11/08/21 ckd Cadmium <0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd 0.0018 mg/L 0.00080 1 11/08/21 Chromium 11/08/21 ckd ckd Cobalt 0.00063 mg/L 0.0016 1 11/08/21 ckd 11/08/21 ckd J 0.00046 mg/L 0.00080 11/08/21 ckd 11/08/21 J Copper ckd <0.0020 mg/L 0.0020 5 11/08/21 ckd 11/08/21 402.5 Lead ckd 0.00040 11/08/21 11/08/21 Manganese 1.6 mg/L 1 ckd ckd Molybdenum 0.00010 mg/L 0.00040 11/08/21 11/08/21 1 ckd ckd J, N 0.0013 mg/L 0.00040 1 11/08/21 ckd 11/08/21 Nickel ckd Selenium 0.00048 mg/L 0.00087 1 11/08/21 ckd 11/08/21 ckd J Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00087 mg/L 5 Thallium 0.00087 11/08/21 ckd 11/08/21 ckd 402.5

CERTIFICATE OF ANALYSIS

0.00080

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

J.

Page 12 of 54

ckd

0.00068 mg/L

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Date Collected: 10/26/21 12:35

Trace Project ID: 21J1034 Client Project ID: MW Sampling

Trace ID: 21J1034-03 Matrix: Ground Water

Sample ID: MW-3 Date Received: 10/27/21 09:16 Field pH: 6.91

PARAMETERS RESULTS UNITS DILUTION PREPARED BY ANALYZED BY NOTES MCL RDL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

Fluoride	0.89 mg/L	0.10	5	10/27/21	ans	10/27/21	ans	
Chloride	330 mg/L	15	100	10/27/21	ans	10/27/21	ans	
Sulfate as SO4	23 mg/L	3.0	5	10/27/21	ans	10/27/21	ans	
Analysis Method: SM 2320 B-11 Batch: T116366								
Bicarbonate Alkalinity as CaCO3 at pH 4.5	2000 mg/L	50	10	11/03/21	ans	11/04/21	ans	N
Carbonate Alkalinity as CaCO3 at pH 8.2	<50 mg/L	50	10	11/03/21	ans	11/04/21	ans	N

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 2500 mg/L 40 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-04 Matrix: Ground Water Date Collected: 10/26/21 12:00 Sample ID: MW-4 Date Received: 10/27/21 09:16 Field pH: 6.74 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury <0.50 ng/L 0.50 11/01/21 ckd 11/02/21 ckd Ν Analysis Method: EPA 6010D Batch: T116174 0.0020 Beryllium <0.0020 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 3.7 mg/L 0.050 1 10/28/21 mrh 11/02/21 ckd Calcium 370 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd 0.20 10/28/21 mrh 11/02/21 Iron 5.2 mg/L 1 ckd 11/02/21 Lithium 0.061 mg/L 0.010 1 10/28/21 mrh ckd Ν Magnesium 89 mg/L 0.20 1 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 22 mg/L 1.0 mrh ckd 1 1 Sodium 81 mg/L 0.50 10/28/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony 0.00030 <0.00030 mg/L 1 10/28/21 11/04/21 mrh acs Arsenic 0.0019 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs 0.12 mg/L 0.010 10/28/21 11/04/21 Barium 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Chromium 0.0033 mg/L 0.00090 1 10/28/21 mrh 11/04/21 acs Cobalt 0.00079 mg/L 0.0016 1 10/28/21 mrh 11/04/21 acs J <0.0040 mg/L 0.0040 1 10/28/21 11/04/21 Copper mrh acs <0.0020 mg/L 11/04/21 Lead 0.0020 1 10/28/21 mrh acs 10/28/21 11/04/21 Manganese 1.1 mg/L 0.025 1 mrh acs Molybdenum 0.0015 mg/L 0.00040 1 10/28/21 11/04/21 N mrh acs Nickel 0.011 mg/L 0.0050 1 10/28/21 mrh 11/04/21 acs Selenium <0.0020 mg/L 0.0020 10/28/21 mrh 11/04/21 acs <0.0010 mg/L 0.0010 11/04/21 Silver 1 10/28/21 mrh acs Thallium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

0.0010 mg/L

10/28/21

11/04/21

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Vanadium

Trace ID: 21J1034-04 Matrix: Ground Water Date Collected: 10/26/21 12:00 Sample ID: MW-4 Date Received: 10/27/21 09:16 Field pH: 6.74 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 1300 mg/L 0.82 10 10/28/21 11/02/21 Ν ckd **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T116098 Beryllium <0.0010 mg/L 0.0010 10/27/21 ckd 10/29/21 ckd 4.1 mg/L 0.050 10/29/21 Boron 1 10/27/21 ckd ckd Calcium 380 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd Iron 5.4 mg/L 0.10 1 10/27/21 ckd 10/29/21 ckd Lithium 0.071 mg/L 0.010 10/27/21 ckd 10/29/21 1 ckd N 90 mg/L 10/27/21 10/29/21 Magnesium 0.20 1 ckd ckd Potassium 21 mg/L 1.0 1 10/27/21 ckd 10/29/21 ckd Sodium 83 mg/L 0.50 1 10/27/21 ckd 10/29/21 ckd N 10/27/21 10/29/21 Zinc <0.020 mg/L 0.020 1 ckd ckd Analysis Method: EPA 6020B Batch: T116167 <0.0010 mg/L 0.0010 5 11/08/21 11/08/21 402.5 Antimony ckd ckd 1 Arsenic 0.0012 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd **Barium** 0.13 mg/L 0.0030 5 11/08/21 ckd 11/08/21 ckd Cadmium <0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd 0.0021 mg/L 0.00080 1 11/08/21 Chromium 11/08/21 ckd ckd 0.00048 mg/L Cobalt 0.0016 1 11/08/21 ckd 11/08/21 ckd J <0.00080 mg/L 0.00080 11/08/21 ckd 11/08/21 Copper ckd <0.0020 mg/L 0.0020 5 11/08/21 ckd 11/08/21 ckd 402.5 Lead 0.00040 11/08/21 11/08/21 Manganese 0.83 mg/L 1 ckd ckd Molybdenum 0.00089 mg/L 0.00040 11/08/21 11/08/21 1 ckd ckd Ν 0.0080 mg/L 0.00040 1 11/08/21 ckd 11/08/21 Nickel ckd <0.00087 mg/L 11/08/21 11/08/21 Selenium 0.00087 1 ckd ckd Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00087 mg/L 5 Thallium 0.00087 11/08/21 ckd 11/08/21 ckd 402.5

CERTIFICATE OF ANALYSIS

0.00080

0.00063 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

J

ckd

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Date Collected: 10/26/21 12:00

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-04 Matrix: Ground Water

Sample ID: MW-4 Date Received: 10/27/21 09:16 Field pH: 6.74

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

Fluoride 1.3 mg/L 0.10 10/27/21 5 ans 10/27/21 ans Chloride 170 mg/L 7.5 50 10/27/21 10/27/21 ans Sulfate as SO4 450 mg/L 30 50 10/27/21 10/27/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 870 mg/L 50 10 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <50 mg/L 50 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 1900 mg/L 40 4 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-05 Matrix: Ground Water Date Collected: 10/26/21 10:35 Sample ID: MW-5 Date Received: 10/27/21 09:16 Field pH: 7.43 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury <0.50 ng/L 0.50 11/01/21 ckd 11/02/21 ckd Ν Analysis Method: EPA 6010D Batch: T116174 0.0014 Beryllium <0.0014 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 3.0 mg/L 0.035 1 10/28/21 mrh 11/02/21 ckd Calcium 340 mg/L 3.5 10 10/28/21 mrh 11/02/21 ckd 10/28/21 mrh 11/02/21 Iron 2.5 mg/L 0.14 1 ckd 11/02/21 Lithium 0.089 mg/L 0.0070 1 10/28/21 mrh ckd Ν Magnesium 37 mg/L 0.14 1 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 9.3 mg/L 0.70 mrh ckd 1 1 Sodium 29 mg/L 0.35 10/28/21 mrh 11/02/21 ckd N <0.014 mg/L 0.014 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony <0.00021 mg/L 0.00021 1 10/28/21 11/04/21 mrh acs Arsenic 0.040 mg/L 0.00070 1 10/28/21 mrh 11/04/21 acs 0.087 mg/L 0.0070 10/28/21 11/04/21 Barium 1 mrh acs <0.00070 mg/L Cadmium 0.00070 1 10/28/21 mrh 11/04/21 acs Chromium 0.0017 mg/L 0.00063 1 10/28/21 mrh 11/04/21 acs Cobalt 0.00069 mg/L 0.0011 1 10/28/21 mrh 11/04/21 acs J <0.0028 mg/L 0.0028 1 10/28/21 11/04/21 Copper mrh acs <0.0014 mg/L 11/04/21 Lead 0.0014 1 10/28/21 mrh acs 11/04/21 Manganese 0.90 mg/L 0.018 1 10/28/21 mrh acs Molybdenum 0.0023 mg/L 0.00028 1 10/28/21 11/04/21 Ν mrh acs Nickel 0.0015 mg/L 0.0035 1 10/28/21 mrh 11/04/21 acs J Selenium <0.0014 mg/L 0.0014 10/28/21 11/04/21 mrh acs <0.00070 mg/L 11/04/21 Silver 0.00070 1 10/28/21 mrh acs Thallium <0.00070 mg/L 0.00070 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00056

0.00089 mg/L

10/28/21

11/04/21

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Vanadium

Trace ID: 21J1034-05 Matrix: Ground Water Date Collected: 10/26/21 10:35 Sample ID: MW-5 Date Received: 10/27/21 09:16 Field pH: 7.43 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 1000 mg/L 0.58 10 10/28/21 11/02/21 Ν ckd **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T116098 Beryllium <0.0010 mg/L 0.0010 10/27/21 ckd 10/29/21 ckd 3.1 mg/L 0.050 10/29/21 Boron 1 10/27/21 ckd ckd Calcium 360 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd Iron 2.0 mg/L 0.10 1 10/27/21 ckd 10/29/21 ckd Lithium 0.092 mg/L 0.010 10/27/21 ckd 10/29/21 1 ckd Ν 10/27/21 10/29/21 Magnesium 39 mg/L 0.20 1 ckd ckd Potassium 9.4 mg/L 1.0 1 10/27/21 ckd 10/29/21 ckd Sodium 30 mg/L 0.50 1 10/27/21 ckd 10/29/21 ckd N 10/27/21 10/29/21 Zinc <0.020 mg/L 0.020 1 ckd ckd Analysis Method: EPA 6020B Batch: T116167 11/08/21 Antimony 0.00010 mg/L 0.00020 1 11/08/21 ckd ckd J Arsenic 0.043 mg/L 0.0010 1 11/08/21 ckd 11/08/21 ckd **Barium** 0.088 mg/L 0.00060 1 11/08/21 ckd 11/08/21 ckd Cadmium <0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd <0.00080 mg/L 0.00080 11/08/21 11/08/21 Chromium 1 ckd ckd Cobalt 0.00021 mg/L 0.0016 1 11/08/21 ckd 11/08/21 ckd J <0.00080 mg/L 0.00080 11/08/21 ckd 11/08/21 ckd Copper <0.00040 mg/L 0.00040 1 11/08/21 ckd 11/08/21 Lead ckd 0.00040 11/08/21 11/08/21 Manganese 0.69 mg/L 1 ckd ckd Molybdenum 0.0016 mg/L 0.00040 11/08/21 11/08/21 1 ckd ckd Ν 0.00017 mg/L 0.00040 1 11/08/21 ckd 11/08/21 J Nickel ckd <0.00087 mg/L 11/08/21 11/08/21 Selenium 0.00087 1 ckd ckd Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00017 mg/L Thallium 0.00017 1 11/08/21 ckd 11/08/21 ckd

CERTIFICATE OF ANALYSIS

0.00080

0.00066 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

J

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-05

Matrix: Ground Water

Date Collected: 10/26/21 10:35

Date Received: 10/27/21 09:16 Field pH: 7.43

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

Sample ID: MW-5

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

Fluoride 3.3 mg/L 10/27/21 0.10 5 ans 10/27/21 ans Chloride 22 mg/L 0.75 5 10/27/21 10/27/21 ans Sulfate as SO4 320 mg/L 15 25 10/27/21 10/27/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 750 mg/L 50 10 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <50 mg/L 50 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 1300 mg/L 40 4 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-06 Matrix: Ground Water Date Collected: 10/26/21 11:00 Sample ID: MW-6 Date Received: 10/27/21 09:16 Field pH: 7.60 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury 0.94 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116174 0.0014 Beryllium <0.0014 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 13 mg/L 0.35 10 10/28/21 mrh 11/02/21 ckd Calcium 200 mg/L 3.5 10 10/28/21 mrh 11/02/21 ckd 10/28/21 mrh 11/02/21 Iron 13 mg/L 0.14 1 ckd 11/02/21 Lithium 0.23 mg/L 0.0070 1 10/28/21 mrh ckd Ν Magnesium 100 mg/L 1.4 10 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 34 mg/L 0.70 1 mrh ckd Sodium 110 mg/L 3.5 10 10/28/21 mrh 11/02/21 ckd N <0.014 mg/L 0.014 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony 0.00021 <0.00021 mg/L 1 10/28/21 11/04/21 mrh acs Arsenic 0.0017 mg/L 0.00070 1 10/28/21 mrh 11/04/21 acs 0.035 10/28/21 11/04/21 Barium 1.6 mg/L 5 mrh acs Cadmium 0.00053 mg/L 0.00070 1 10/28/21 11/04/21 J mrh acs Chromium 0.0029 mg/L 0.00063 1 10/28/21 mrh 11/04/21 acs Cobalt 0.00082 mg/L 0.0011 1 10/28/21 mrh 11/04/21 acs <0.0028 mg/L 0.0028 1 10/28/21 11/04/21 Copper mrh acs Lead 0.0014 mg/L 0.0014 1 10/28/21 mrh 11/04/21 acs 10/28/21 11/04/21 Manganese 0.41 mg/L 0.018 1 mrh acs 0.00076 mg/L Molybdenum 0.00028 1 10/28/21 11/04/21 Ν mrh acs Nickel 0.0022 mg/L 0.0035 1 10/28/21 mrh 11/04/21 acs J Selenium <0.0014 mg/L 0.0014 10/28/21 11/04/21 mrh acs <0.00070 mg/L Silver 0.00070 1 10/28/21 mrh 11/04/21 acs Thallium 0.00030 mg/L 0.00070 1 10/28/21 mrh 11/04/21 J acs

CERTIFICATE OF ANALYSIS

0.00056

0.00083 mg/L

10/28/21

11/04/21

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Vanadium

Trace ID: 21J1034-06 Matrix: Ground Water Date Collected: 10/26/21 11:00 Sample ID: MW-6 Date Received: 10/27/21 09:16 Field pH: 7.60 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 940 mg/L 5.8 10 10/28/21 11/02/21 Ν ckd **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T116098 Beryllium <0.0010 mg/L 0.0010 10/27/21 ckd 10/29/21 ckd 13 mg/L 10 10/29/21 Boron 0.50 10/27/21 ckd ckd Calcium 200 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd Iron 6.9 mg/L 0.10 1 10/27/21 ckd 10/29/21 ckd Lithium 0.22 mg/L 0.010 10/27/21 ckd 10/29/21 1 ckd Ν 10/29/21 Magnesium 110 mg/L 2.0 10 10/27/21 ckd ckd Potassium 36 mg/L 1.0 1 10/27/21 ckd 10/29/21 ckd Sodium 120 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd N 10/29/21 Zinc 0.0027 mg/L 0.020 1 10/27/21 J ckd ckd Analysis Method: EPA 6020B Batch: T116167 11/08/21 Antimony 0.00033 mg/L 0.00020 1 11/08/21 ckd ckd Arsenic 0.0017 mg/L 0.0010 1 11/08/21 ckd 11/08/21 ckd **Barium** 1.5 mg/L 0.00060 1 11/08/21 ckd 11/08/21 ckd Cadmium 0.000072 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd J 0.0011 mg/L 0.00080 1 11/08/21 11/08/21 Chromium ckd ckd 0.00042 mg/L Cobalt 0.0016 1 11/08/21 ckd 11/08/21 ckd J 0.00016 mg/L 0.00080 11/08/21 ckd 11/08/21 Copper ckd <0.00040 mg/L 0.00040 1 11/08/21 ckd 11/08/21 Lead ckd 0.00040 11/08/21 11/08/21 Manganese 0.29 mg/L 1 ckd ckd Molybdenum 0.00069 mg/L 0.00040 11/08/21 11/08/21 ckd ckd Ν 0.0013 mg/L 0.00040 1 11/08/21 ckd 11/08/21 Nickel ckd <0.00087 mg/L 11/08/21 11/08/21 Selenium 0.00087 ckd ckd Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00017 mg/L Thallium 0.00017 1 11/08/21 ckd 11/08/21 ckd

CERTIFICATE OF ANALYSIS

0.00080

0.00029 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

J

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Date Collected: 10/26/21 11:00

Trace Project ID: 21J1034 Client Project ID: MW Sampling

Trace ID: 21J1034-06 Matrix: Ground Water

Sample ID: MW-6 Date Received: 10/27/21 09:16

Field pH: 7.60

PARAMETERS RESULTS UNITS DILUTION PREPARED BY ANALYZED BY NOTES MCL RDL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

F	luoride	1.6 mg/L	0.10	5	10/27/21	ans	10/27/21	ans		
C	Chloride	200 mg/L	7.5	50	10/27/21	ans	10/27/21	ans		
S	Sulfate as SO4	1.3 mg/L	3.0	5	10/27/21	ans	10/27/21	ans	J	
Ana	alysis Method: SM 2320 B-11 Batch: T116366									
E	Bicarbonate Alkalinity as CaCO3 at pH 4.5	960 mg/L	50	10	11/03/21	ans	11/04/21	ans	N	
C	Carbonate Alkalinity as CaCO3 at pH 8.2	<50 mg/L	50	10	11/03/21	ans	11/04/21	ans	Ν	

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 1300 mg/L 40 10/28/21 gmr 10/28/21

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-07 Matrix: Ground Water Date Collected: 10/26/21 10:20 Sample ID: MW-7 Date Received: 10/27/21 09:16 Field pH: 7.01 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury <0.50 ng/L 0.50 11/01/21 ckd 11/02/21 ckd Ν Analysis Method: EPA 6010D Batch: T116174 0.0020 Beryllium <0.0020 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 15 mg/L 0.50 10 10/28/21 mrh 11/02/21 ckd Calcium 130 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd 0.20 10/28/21 11/02/21 Iron 16 mg/L 1 mrh ckd 11/02/21 Lithium <0.010 mg/L 0.010 1 10/28/21 mrh ckd Ν Magnesium 35 mg/L 0.20 1 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 4.5 mg/L 1.0 mrh 1 ckd 1 Sodium 54 mg/L 0.50 10/28/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony 0.00030 <0.00030 mg/L 1 10/28/21 11/04/21 mrh acs Arsenic <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs 0.36 mg/L 0.010 10/28/21 11/04/21 Barium 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Chromium 0.0010 mg/L 0.00090 1 10/28/21 mrh 11/04/21 acs Cobalt 0.00088 mg/L 0.0016 1 10/28/21 mrh 11/04/21 acs J <0.0040 mg/L 0.0040 1 10/28/21 11/04/21 Copper mrh acs <0.0020 mg/L 11/04/21 Lead 0.0020 1 10/28/21 mrh acs 10/28/21 11/04/21 Manganese 2.0 mg/L 0.025 1 mrh acs <0.00040 mg/L 0.00040 10/28/21 11/04/21 Molybdenum 1 mrh Ν acs <0.0050 mg/L Nickel 0.0050 1 10/28/21 mrh 11/04/21 acs Selenium <0.0020 mg/L 0.0020 10/28/21 mrh 11/04/21 acs <0.0010 mg/L 0.0010 Silver 1 10/28/21 mrh 11/04/21 acs Thallium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

0.00067 mg/L

10/28/21

11/04/21

acs

J

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID:	21J1034
Client Project ID:	MW Sampling

Trace ID: 21J1034-07 Sample ID: MW-7	Matrix: Ground Water Date Collected: 10/26/21 10:20 Date Received: 10/27/21 09:16 Field pH: 7.01								
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	470 mg/L	0.82	10	10/28/21		11/02/21	ckd	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T116098									
Beryllium	<0.0010 mg/L	0.0010	1	10/27/21	ckd	10/29/21	ckd		
Boron	16 mg/L	0.25	5	10/27/21	ckd	10/29/21	ckd		
Calcium	130 mg/L	0.50	1	10/27/21	ckd	10/29/21	ckd		
Iron	17 mg/L	0.10	1	10/27/21	ckd	10/29/21	ckd		
Lithium	0.011 mg/L	0.010	1	10/27/21	ckd	10/29/21	ckd	N	
Magnesium	36 mg/L	0.20	1	10/27/21	ckd	10/29/21	ckd		
Potassium	4.7 mg/L	1.0	1	10/27/21	ckd	10/29/21	ckd		
Sodium	56 mg/L	0.50	1	10/27/21	ckd	10/29/21	ckd	N	
Zinc	<0.020 mg/L	0.020	1	10/27/21	ckd	10/29/21	ckd		
Analysis Method: EPA 6020B Batch: T116167									
Antimony	0.00016 mg/L	0.00020	1	11/08/21	ckd	11/08/21	ckd	J	
Arsenic	0.00033 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd	J	
Barium	0.35 mg/L	0.00060	1	11/08/21	ckd	11/08/21	ckd		
Cadmium	<0.0010 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Chromium	<0.00080 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		
Cobalt	0.00073 mg/L	0.0016	1	11/08/21	ckd	11/08/21	ckd	J	
Copper	<0.00080 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		
Lead	<0.00040 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Manganese	1.7 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Molybdenum	<0.00040 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	N	
Nickel	0.00013 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	J	
Selenium	<0.00087 mg/L	0.00087	1	11/08/21	ckd	11/08/21	ckd		
Silver	<0.000040 mg/L	0.000040	1	11/08/21	ckd	11/08/21	ckd		
Thallium	<0.00017 mg/L	0.00017	1	11/08/21	ckd	11/08/21	ckd		
Vanadium	0.00058 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd	J	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-07 Matrix: Ground Water

atrix: Ground Water Date Collected: 10/26/21 10:20

Sample ID: MW-7 Date Received: 10/27/21 09:16 Field pH: 7.01

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

Fluoride 0.094 mg/L 0.10 10/27/21 5 ans 10/27/21 ans J Chloride 14 mg/L 0.75 5 10/27/21 10/27/21 ans Sulfate as SO4 30 mg/L 3.0 5 10/27/21 10/27/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 630 mg/L 50 10 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <50 mg/L 50 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 630 mg/L 40 4 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-08 Matrix: Ground Water Date Collected: 10/26/21 15:35 Sample ID: MW-8 Date Received: 10/27/21 09:16 Field pH: 6.74 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury <0.50 ng/L 0.50 11/01/21 ckd 11/02/21 ckd Ν Analysis Method: EPA 6010D Batch: T116174 0.0020 Beryllium <0.0020 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 1.4 mg/L 0.050 1 10/28/21 mrh 11/02/21 ckd Calcium 130 mg/L 2.5 5 10/28/21 mrh 11/02/21 ckd 0.20 10/28/21 mrh 11/02/21 Iron 29 mg/L 1 ckd 11/02/21 Lithium 0.043 mg/L 0.010 1 10/28/21 mrh ckd Ν Magnesium 25 mg/L 0.20 1 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 9.4 mg/L 1.0 mrh 1 ckd 1 Sodium 27 mg/L 0.50 10/28/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony 0.00030 <0.00030 mg/L 1 10/28/21 11/04/21 mrh acs Arsenic 0.0067 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs 0.010 10/28/21 11/04/21 Barium 1.0 mg/L 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Chromium 0.0012 mg/L 0.00090 1 10/28/21 mrh 11/04/21 acs Cobalt <0.0016 mg/L 0.0016 10/28/21 mrh 11/04/21 acs <0.0040 mg/L 0.0040 1 10/28/21 11/04/21 Copper mrh acs <0.0020 mg/L 11/04/21 Lead 0.0020 1 10/28/21 mrh acs 11/04/21 Manganese 1.5 mg/L 0.025 1 10/28/21 mrh acs Molybdenum 0.0037 mg/L 0.00040 1 10/28/21 11/04/21 N mrh acs <0.0050 mg/L Nickel 0.0050 1 10/28/21 mrh 11/04/21 acs Selenium <0.0020 mg/L 0.0020 10/28/21 11/04/21 mrh acs Silver <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Thallium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

<0.00080 mg/L

10/28/21

11/04/21

acs

mrh

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID:	21J1034
Client Project ID:	MW Sampling

Trace ID: 21J1034-08 Sample ID: MW-8	Matrix: Ground Water	eld pH: 6.74							
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	440 mg/L	0.82	5	10/28/21		11/02/21	ckd	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T116098									
Beryllium	<0.0010 mg/L	0.0010	1	10/27/21	ckd	10/29/21	ckd		
Boron	1.4 mg/L	0.050	1	10/27/21	ckd	10/29/21	ckd		
Calcium	140 mg/L	0.50	1	10/27/21	ckd	10/29/21	ckd		
Iron	28 mg/L	0.10	1	10/27/21	ckd	10/29/21	ckd		
Lithium	0.043 mg/L	0.010	1	10/27/21	ckd	10/29/21	ckd	N	
Magnesium	26 mg/L	0.20	1	10/27/21	ckd	10/29/21	ckd		
Potassium	9.3 mg/L	1.0	1	10/27/21	ckd	10/29/21	ckd		
Sodium	28 mg/L	0.50	1	10/27/21	ckd	10/29/21	ckd	N	
Zinc	0.0015 mg/L	0.020	1	10/27/21	ckd	10/29/21	ckd	J	
Analysis Method: EPA 6020B Batch: T116167									
Antimony	0.00033 mg/L	0.00020	1	11/08/21	ckd	11/08/21	ckd		
Arsenic	0.0062 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Barium	0.96 mg/L	0.00060	1	11/08/21	ckd	11/08/21	ckd		
Cadmium	<0.0010 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Chromium	0.00065 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd	J	
Cobalt	0.00030 mg/L	0.0016	1	11/08/21	ckd	11/08/21	ckd	J	
Copper	<0.00080 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		
Lead	0.000042 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	J	
Manganese	1.3 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Molybdenum	0.0033 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	N	
Nickel	0.0010 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Selenium	<0.00087 mg/L	0.00087	1	11/08/21	ckd	11/08/21	ckd		
Silver	<0.000040 mg/L	0.000040	1	11/08/21	ckd	11/08/21	ckd		
Thallium	<0.00017 mg/L	0.00017	1	11/08/21	ckd	11/08/21	ckd		
Vanadium	0.00038 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd	J	

CERTIFICATE OF ANALYSIS

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034 Client Project ID: MW Sampling

Trace ID: 21J1034-08 Matrix: Ground Water

Date Collected: 10/26/21 15:35

Sample ID: MW-8 Date Received: 10/27/21 09:16 Field pH: 6.74

PARAMETERS RESULTS UNITS DILUTION PREPARED BY ANALYZED BY NOTES MCL RDL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

riuoride	0.42 mg/L	0.10	э	10/2//21	ans	10/2//21	ans	
Chloride	30 mg/L	0.75	5	10/27/21	ans	10/27/21	ans	
Sulfate as SO4	37 mg/L	3.0	5	10/27/21	ans	10/27/21	ans	
Analysis Method: SM 2320 B-11 Batch: T116366								
Bicarbonate Alkalinity as CaCO3 at pH 4.5	450 mg/L	50	10	11/03/21	ans	11/04/21	ans	N
Carbonate Alkalinity as CaCO3 at pH 8.2	<50 mg/L	50	10	11/03/21	ans	11/04/21	ans	N

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 630 mg/L 40 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-09 Matrix: Ground Water Date Collected: 10/26/21 14:30 Sample ID: MW-9 Date Received: 10/27/21 09:16 Field pH: 7.31 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury 0.62 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116174 0.0020 Beryllium <0.0020 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 6.8 mg/L 0.050 1 10/28/21 mrh 11/02/21 ckd Calcium 220 mg/L 2.5 5 10/28/21 mrh 11/02/21 ckd 0.20 10/28/21 mrh 11/02/21 Iron 19 mg/L 1 ckd 11/02/21 Lithium 0.26 mg/L 0.010 1 10/28/21 mrh ckd Ν Magnesium 36 mg/L 0.20 1 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 16 mg/L 1.0 mrh 1 ckd 1 Sodium 32 mg/L 0.50 10/28/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony 0.00030 <0.00030 mg/L 1 10/28/21 11/04/21 mrh acs Arsenic 0.0025 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs 10 10/28/21 11/04/21 Barium 5.0 mg/L 0.10 mrh acs Cadmium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Chromium 0.0029 mg/L 0.00090 1 10/28/21 mrh 11/04/21 acs Cobalt <0.0016 mg/L 0.0016 10/28/21 mrh 11/04/21 acs <0.0040 mg/L 0.0040 1 10/28/21 11/04/21 Copper mrh acs <0.0020 mg/L 11/04/21 Lead 0.0020 1 10/28/21 mrh acs 11/04/21 Manganese 0.72 mg/L 0.025 1 10/28/21 mrh acs Molybdenum 0.017 mg/L 0.00040 1 10/28/21 11/04/21 N mrh acs Nickel <0.0050 mg/L 0.0050 1 10/28/21 mrh 11/04/21 acs Selenium <0.0020 mg/L 0.0020 10/28/21 11/04/21 mrh acs Silver <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Thallium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

<0.00080 mg/L

10/28/21

11/04/21

acs

mrh

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034

Client Project ID: MW Sampling

Vanadium

Trace ID: 21J1034-09 Matrix: Ground Water Date Collected: 10/26/21 14:30 Sample ID: MW-9 Date Received: 10/27/21 09:16 Field pH: 7.31 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 690 mg/L 0.82 5 10/28/21 11/02/21 Ν ckd **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T116098 Beryllium <0.0010 mg/L 0.0010 10/27/21 ckd 10/29/21 ckd 0.050 10/29/21 Boron 6.6 mg/L 1 10/27/21 ckd ckd Calcium 210 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd Iron 18 mg/L 0.10 1 10/27/21 ckd 10/29/21 ckd Lithium 0.27 mg/L 0.010 10/27/21 ckd 10/29/21 1 ckd Ν 10/27/21 10/29/21 Magnesium 36 mg/L 0.20 1 ckd ckd Potassium 15 mg/L 1.0 1 10/27/21 ckd 10/29/21 ckd Sodium 33 mg/L 0.50 1 10/27/21 ckd 10/29/21 ckd N Zinc 0.0013 mg/L 0.020 1 10/27/21 10/29/21 J ckd ckd Analysis Method: EPA 6020B Batch: T116167 11/08/21 Antimony 0.00046 mg/L 0.00020 1 11/08/21 ckd ckd Arsenic 0.0027 mg/L 0.0010 1 11/08/21 ckd 11/08/21 ckd **Barium** 5.1 mg/L 0.0060 10 11/08/21 ckd 11/08/21 ckd Cadmium <0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd 0.0018 mg/L 0.00080 1 11/08/21 Chromium 11/08/21 ckd ckd Cobalt 0.00039 mg/L 0.0016 1 11/08/21 ckd 11/08/21 ckd J <0.00080 mg/L 0.00080 11/08/21 ckd 11/08/21 ckd Copper <0.00040 mg/L 0.00040 1 11/08/21 ckd 11/08/21 Lead ckd 0.55 mg/L 0.00040 11/08/21 11/08/21 Manganese 1 ckd ckd Molybdenum 0.019 mg/L 0.00040 11/08/21 11/08/21 1 ckd ckd Ν 0.00080 mg/L 0.00040 1 11/08/21 11/08/21 Nickel ckd ckd Selenium 0.00037 mg/L 0.00087 1 11/08/21 ckd 11/08/21 ckd J Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00017 mg/L Thallium 0.00017 1 11/08/21 ckd 11/08/21 ckd

CERTIFICATE OF ANALYSIS

0.00080

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

J

Page 30 of 54

0.00031 mg/L

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-09 Matrix: Ground Water

atrix: Ground Water Date Collected: 10/26/21 14:30

Sample ID: MW-9 Date Received: 10/27/21 09:16 Field pH: 7.31

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116121

Fluoride 2.5 mg/L 10/27/21 0.10 5 ans 10/27/21 ans Chloride 13 mg/L 0.75 5 10/27/21 10/27/21 ans Sulfate as SO4 14 mg/L 3.0 5 10/27/21 10/27/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 760 mg/L 50 10 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <50 mg/L 50 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 880 mg/L 40 4 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-10 Matrix: Ground Water Date Collected: 10/26/21 15:05 Sample ID: MW-10 Date Received: 10/27/21 09:16 Field pH: 7.42 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116281 Mercury 0.80 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116174 0.0020 Beryllium <0.0020 mg/L 1 10/28/21 mrh 11/02/21 ckd Boron 52 mg/L 0.50 10 10/28/21 mrh 11/02/21 ckd Calcium 140 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd 0.20 10/28/21 mrh 11/02/21 Iron 10 mg/L 1 ckd 11/02/21 Lithium 1.4 mg/L 0.010 1 10/28/21 mrh ckd Ν Magnesium 65 mg/L 0.20 1 10/28/21 mrh 11/02/21 ckd 10/28/21 11/02/21 Potassium 52 mg/L 1.0 1 mrh ckd Sodium 480 mg/L 5.0 10 10/28/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 10/28/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116174 Antimony <0.00030 mg/L 0.00030 1 10/28/21 11/04/21 mrh acs Arsenic 0.0011 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs 0.010 10/28/21 11/04/21 Barium 1.5 mg/L 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs Chromium 0.011 mg/L 0.00090 1 10/28/21 mrh 11/04/21 acs Cobalt 0.0011 mg/L 0.0016 1 10/28/21 mrh 11/04/21 acs J 0.0050 mg/L 1 10/28/21 11/04/21 Copper 0.0040 mrh acs Lead 0.0012 mg/L 0.0020 1 10/28/21 mrh 11/04/21 J acs 10/28/21 11/04/21 Manganese 0.50 mg/L 0.025 1 mrh acs Molybdenum 0.012 mg/L 0.00040 1 10/28/21 11/04/21 mrh acs Ν Nickel 0.0027 mg/L 0.0050 1 10/28/21 mrh 11/04/21 acs J. Selenium <0.0020 mg/L 0.0020 10/28/21 11/04/21 mrh acs <0.0010 mg/L 11/04/21 Silver 0.0010 1 10/28/21 mrh acs Thallium <0.0010 mg/L 0.0010 1 10/28/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

0.0018 mg/L

10/28/21

11/04/21

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1034
Client Project ID: MW Sampling

Trace ID: 21J1034-10 Matrix: Ground Water Date Collected: 10/26/21 15:05 Sample ID: MW-10 Date Received: 10/27/21 09:16 Field pH: 7.42 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED ΒY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 620 mg/L 0.82 10 10/28/21 11/02/21 Ν ckd **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T116098 Beryllium <0.0010 mg/L 0.0010 1 10/27/21 ckd 10/29/21 ckd 51 mg/L 10/29/21 Boron 0.50 10 10/27/21 ckd ckd Calcium 140 mg/L 0.50 1 10/27/21 ckd 10/29/21 ckd Iron 8.2 mg/L 0.10 1 10/27/21 ckd 10/29/21 ckd Lithium 0.010 10/27/21 ckd 10/29/21 1.4 mg/L 1 ckd Ν 1 10/27/21 10/29/21 Magnesium 65 mg/L 0.20 ckd ckd Potassium 48 mg/L 10 10 10/27/21 ckd 10/29/21 ckd Sodium 490 mg/L 5.0 10 10/27/21 ckd 10/29/21 ckd N Zinc 0.0016 mg/L 0.020 1 10/27/21 10/29/21 J ckd ckd Analysis Method: EPA 6020B Batch: T116167 <0.0010 mg/L 0.0010 5 11/08/21 11/08/21 402.5 Antimony ckd ckd 1 Arsenic 0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd **Barium** 1.3 mg/L 0.0030 5 11/08/21 ckd 11/08/21 ckd Cadmium <0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd 0.0079 mg/L 0.00080 1 11/08/21 Chromium 11/08/21 ckd ckd 0.00080 mg/L Cobalt 0.0016 1 11/08/21 ckd 11/08/21 ckd J 0.00013 mg/L 0.00080 11/08/21 ckd 11/08/21 J Copper ckd <0.0020 mg/L 0.0020 5 11/08/21 ckd 11/08/21 402.5 Lead ckd 0.00040 11/08/21 11/08/21 Manganese 0.37 mg/L 1 ckd ckd Molybdenum 0.0089 mg/L 0.00040 11/08/21 11/08/21 1 ckd ckd Ν 0.0017 mg/L 0.00040 1 11/08/21 11/08/21 Nickel ckd ckd Selenium 0.00058 mg/L 0.00087 1 11/08/21 ckd 11/08/21 ckd J Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00087 mg/L 5 Thallium 0.00087 11/08/21 ckd 11/08/21 ckd 402.5

CERTIFICATE OF ANALYSIS

0.00080

0.0013 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Date Collected: 10/26/21 15:05

Trace Project ID: 21J1034 Client Project ID: MW Sampling

Trace ID: 21J1034-10 Matrix: Ground Water

Sample ID: MW-10

Date Received: 10/27/21 09:16 Field pH: 7.42

PARAMETERS RESULTS UNITS DILUTION PREPARED BY ANALYZED ΒY NOTES MCL RDL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116179

Fluoride 11 mg/L 0.20 10 10/28/21 10/28/21 ans ans Chloride 520 mg/L 15 100 10/28/21 10/28/21 ans Sulfate as SO4 53 mg/L 3.0 5 10/27/21 10/27/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 970 mg/L 50 10 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <50 mg/L 50 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116175

Total Dissolved Solids 2000 mg/L 40 10/28/21 gmr 10/28/21 gmr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

QUALITY CONTROL RESULTS

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116281 Analysis Description: Mercury, Total, Low Level

QC Batch Method: EPA 1631E Analysis Method: EPA 1631E

METHOD BLANK: T116281-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/L	<0.20	0.20	

METHOD BLANK: T116281-BLK2

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/L	<0.20	0.20	

METHOD BLANK: T116281-BLK3

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/L	<0.20	0.20	

LABORATORY CONTROL SAMPLE: T116281-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Mercury	ng/l	25.0	23.4	94	77-123	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116281-MSD1

Original	l:	21J	10	034-	-01
----------	----	-----	----	------	-----

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Mercury	ng/L	1.88	10.0	10.1	9.92	82	80	71-125	2	24	

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116098 Analysis Description: Sodium, Dissolved QC Batch Method: Analysis Method: EPA 6010D

METHOD BLANK: T116098-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Boron	mg/L	0.0023	0.050	J
Beryllium	mg/L	0.000061	0.0010	J
Calcium	mg/L	<0.50	0.50	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T116098-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Iron	mg/L	<0.10	0.10	
Potassium	mg/L	0.015	1.0	J
Lithium	mg/L	<0.010	0.010	
Magnesium	mg/L	<0.20	0.20	
Sodium	mg/L	<0.50	0.50	
Zinc	mg/L	<0.020	0.020	

LABORATORY CONTROL SAMPLE: T116098-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	1.00	0.966	97	80-120	
Beryllium	mg/L	0.0500	0.0510	102	80-120	
Calcium	mg/L	10.0	10.3	103	80-120	
Iron	mg/L	10.0	10.4	104	80-120	
Potassium	mg/L	10.0	10.4	104	80-120	
Lithium	mg/L	0.500	0.522	104	80-120	
Magnesium	mg/L	10.0	10.5	105	80-120	
Sodium	mg/L	10.0	10.6	106	80-120	
Zinc	mg/L	1.00	1.04	104	80-120	

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116174
QC Batch Method: EPA 3015 Microwave Assisted Digestions

Analysis Description: Lithium, Total

for Liquids

Analysis Method: EPA 6010D

METHOD BLANK: T116174-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Boron	mg/L	<0.050	0.050	
Beryllium	mg/L	<0.0020	0.0020	
Calcium	mg/L	<0.50	0.50	
Iron	mg/L	<0.20	0.20	
Potassium	mg/L	0.060	1.0	J
Lithium	mg/L	<0.010	0.010	
Magnesium	mg/L	<0.20	0.20	
Sodium	mg/L	<0.50	0.50	
Zinc	mg/L	<0.020	0.020	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T116174-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	0.889	0.830	93	80-120	
Beryllium	mg/L	0.111	0.109	98	80-120	
Calcium	mg/L	8.89	8.74	98	80-120	
Iron	mg/L	8.89	9.02	101	80-120	
Potassium	mg/L	8.89	9.03	102	80-120	
Lithium	mg/L	0.889	0.880	99	80-120	
Magnesium	mg/L	8.89	9.09	102	80-120	
Sodium	mg/L	8.89	9.07	102	80-120	
Zinc	mg/L	0.889	0.894	101	80-120	

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116167 QC Batch Method: Analysis Description: Barium, Dissolved

Analysis Method: EPA 6020B

METHOD BLANK: T116167-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Silver	mg/L	0.000026	0.000040	J
Arsenic	mg/L	<0.0010	0.0010	
Barium	mg/L	<0.00060	0.00060	
Cadmium	mg/L	<0.00020	0.00020	
Cobalt	mg/L	<0.0016	0.0016	
Chromium	mg/L	<0.00080	0.00080	
Copper	mg/L	<0.00080	0.00080	
Manganese	mg/L	<0.00040	0.00040	
Molybdenum	mg/L	<0.00040	0.00040	
Nickel	mg/L	<0.00040	0.00040	
Lead	mg/L	<0.00040	0.00040	
Antimony	mg/L	0.00017	0.00020	J
Selenium	mg/L	<0.00087	0.00087	
Thallium	mg/L	<0.00017	0.00017	
Vanadium	mg/L	<0.00080	0.00080	

LABORATORY CONTROL SAMPLE: T116167-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Silver	mg/L	0.0600	0.0612	102	80-120	
Arsenic	mg/L	0.0600	0.0630	105	80-120	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T116167-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Barium	mg/L	0.0600	0.0588	98	80-120	
Cadmium	mg/L	0.0600	0.0613	102	80-120	
Cobalt	mg/L	0.0600	0.0604	101	80-120	
Chromium	mg/L	0.0600	0.0629	105	80-120	
Copper	mg/L	0.0600	0.0610	102	80-120	
Manganese	mg/L	0.0600	0.0615	102	80-120	
Molybdenum	mg/L	0.0600	0.0588	98	80-120	
Nickel	mg/L	0.0600	0.0602	100	80-120	
Lead	mg/L	0.0600	0.0616	103	80-120	
Antimony	mg/L	0.0600	0.0577	96	80-120	
Selenium	mg/L	0.0600	0.0630	105	80-120	
Thallium	mg/L	0.0600	0.0617	103	80-120	
Vanadium	mg/L	0.0600	0.0581	97	80-120	

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116174

QC Batch Method: EPA 3015 Microwave Assisted Digestions

for Liquids

Analysis Description: Selenium, Total Analysis Method: EPA 6020B

METHOD BLANK: T116174-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Silver	mg/L	<0.0010	0.0010	
Arsenic	mg/L	<0.0010	0.0010	
Barium	mg/L	<0.010	0.010	
Cadmium	mg/L	<0.0010	0.0010	
Cobalt	mg/L	<0.0016	0.0016	
Chromium	mg/L	<0.00090	0.00090	
Copper	mg/L	<0.0040	0.0040	
Manganese	mg/L	<0.025	0.025	
Molybdenum	mg/L	0.00027	0.00040	J
Nickel	mg/L	<0.0050	0.0050	
Lead	mg/L	<0.0020	0.0020	
Antimony	mg/L	<0.00030	0.00030	
Selenium	mg/L	<0.0020	0.0020	
Thallium	mg/L	<0.0010	0.0010	
Vanadium	mg/L	<0.00080	0.00080	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T116174-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Silver	mg/L	0.0278	0.0333	120	80-120	
Arsenic	mg/L	0.0556	0.0599	108	80-120	
Barium	mg/L	0.889	0.950	107	80-120	
Cadmium	mg/L	0.0278	0.0297	107	80-120	
Cobalt	mg/L	0.889	0.892	100	80-120	
Chromium	mg/L	0.0278	0.0288	104	80-120	
Copper	mg/L	0.890	0.863	97	80-120	
Manganese	mg/L	0.887	0.878	99	80-120	
Molybdenum	mg/L	0.889	0.942	106	80-120	
Nickel	mg/L	0.889	0.840	95	80-120	
Lead	mg/L	0.0556	0.0533	96	80-120	
Antimony	mg/L	0.0556	0.0608	109	80-120	
Selenium	mg/L	0.0556	0.0560	101	80-120	
Thallium	mg/L	0.0556	0.0542	98	80-120	
Vanadium	mg/L	0.889	0.915	103	80-120	

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: [CALC] QC Batch Method:

Analysis Description: Hardness (Metals) Analysis Method: SM 2340 B-11

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116121

QC Batch Method: IC Prep W

Analysis Description: Sulfate

Analysis Method: EPA 300.0 Rev. 2.1

METHOD BLANK: T116121-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Chloride	mg/L	<0.15	0.15	
Fluoride	mg/L	<0.020	0.020	
Sulfate as SO4	mg/L	<0.60	0.60	

LABORATORY CONTROL SAMPLE: T116121-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Chloride	mg/L	5.00	5.02	100	90-110	
Fluoride	mg/L	1.00	1.02	102	90-110	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

1	ARORATORY	CONTROL	SAMPLE:	T116121-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Sulfate as SO4	mg/L	5.00	5.14	103	90-110	

MATRIX SPIKE: T116121-MS1 Original: 21J1034-01

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Unit	Notes
Chloride	mg/L	233	500	794	112	80-120	
Fluoride	mg/L	12.6	100	107	94	80-120	
Sulfate as SO4	mg/L	533	500	1120	118	80-120	

MATRIX SPIKE: T116121-MS2 Original: 21J1034-07

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Unit	Notes
Chloride	mg/L	13.9	25.0	39.6	103	80-120	
Fluoride	mg/L	0.0942	5.00	4.60	90	80-120	
Sulfate as SO4	mg/L	29.6	25.0	54.1	98	80-120	

Trace Project ID: 21J1034
Client Project ID: MW Sampling

QC Batch: T116179 Analysis Description: Fluoride

QC Batch Method: IC Prep W Analysis Method: EPA 300.0 Rev. 2.1

METHOD BLANK: T116179-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Chloride	mg/L	<0.15	0.15	
Fluoride	ma/L	<0.020	0.020	

LABORATORY CONTROL SAMPLE: T116179-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Chloride	mg/L	5.00	5.03	101	90-110	
Fluoride	mg/L	1.00	1.01	101	90-110	

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116236 Analysis Description: Alkalinity, Bicarbonate

QC Batch Method: SM 2320 B-11 Analysis Method: SM 2320 B-11

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T116236-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Bicarbonate Alkalinity as CaCO3 at pH 4.5	mg/L	100	100	100	88-112	
Carbonate Alkalinity as CaCO3 at pH 8.2	mg/L	100	100	100	88-112	

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116366

QC Batch Method: SM 2320 B-11

Analysis Description: Alkalinity, Carbonate

Analysis Method: SM 2320 B-11

LABORATORY CONTROL SAMPLE: T116366-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Bicarbonate Alkalinity as CaCO3 at pH 4.5	mg/L	100	97.3	97	88-112	
Carbonate Alkalinity as CaCO3 at pH 8.2	mg/L	100	97.3	97	88-112	

SAMPLE DUPLICATE: T116366-DUP1

Original: 21J1034-02

Parameter	Units	Original Result	DUP Result	Max RPD RPD	Notes
Bicarbonate Alkalinity as CaCO3 at pH 4.5	mg/L	2150	218	163 200	
Carbonate Alkalinity as CaCO3 at pH 8.2	mg/L	0	<5.0	200	

Trace Project ID: 21J1034 Client Project ID: MW Sampling

QC Batch: T116175 QC Batch Method: SM 2540 C-11 Analysis Description: Total Dissolved Solids

Analysis Method: SM 2540 C-11

METHOD BLANK: T116175-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Total Dissolved Solids	mg/L	1.0	10	J

LABORATORY CONTROL SAMPLE: T116175-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Total Dissolved Solids	ma/L	500	543	109	80-120	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

SAMPLE DUPLICATE: T116175-DUP2

Original: 21J1034-01

Parameter	Units	Original Result	DUP Result	RPD	Max RPD	Notes	_
Total Dissolved Solids	mg/L	3600	2800	25	10	623	

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Р	leas	e Si	gn										0	Trace No. Co	Project Name:	1 Day* *Results provided end of business day, requires prior approval	Standar 3 Day*	Turnaround Requirements:	Email Address:	Office Phone:	City, State, Zip Code:	Mailing Address:	Report To: Paul Cederquist	Company Name: Grand Haven Board of Light & Power	Report Results To:). N	
		M		6								-	10:26:21	Date Collected)ay* ovided ei	⊠ Standard, 5-10 Days	ınd Re	:SS:	i.	Zip Code	ress:	Paul C	ame: G	esults		1
		Ĭ,	Released By	15:05	14:30	15:35	10:30	00:11	16:35	12:00	12:35	13:55	11:45	Time Collected	MW Sampling	nd of bus	-10 Days	quirem					ederqu	rand H	To:		1
			sed By	2	0	Š	0		01	0	S	S	S	8	ampl	siness da		ents:					list	aven E		b II	111
a l															ing	ay, requi								Soard o			
	(7							Z 200				-			res prior				Cell				of Light		BORATORIES,	
In exec	,		0	_										Clier		approva				Cell Phone:				& Pow		ă M	
uting this		2	Receive	MW-10	MW-9	MW-8	MW-7	MW-6	MW-5	MW-4	MW-3	MW-2	MW-1R	Client Sample ID	la C									/er		1"1	t
Chain c		/	Med By				14						~	Ë		SL = Sludge OI = Oil	S = S	Matr									
f Custod																sludge sil	S = Soil / Solid	Matrix Key:								88 :	. 1
In executing this Chain of Custody, the client acknowledges the terms as set forth at www.trace-labs.com/terms-of-agreement.	•	IZ QQ	D												Sampled By:	ם אַ קַ			Billing E	Phone Number:	City, Sta	Billing Address (if different):	Contact Name:	PO#	Bill To:	2241 Black Creek Road Muskegon, MI 49444-2673	}
ent ackn		12	ate	<	_							_	~	Metals Field Filtered (Y / N)	d By:	A = Air D = Drinking Water	WI = Wipes		Billing Email Address:	lumber:	City, State, Zip Code:	ddress (Name:		×	ick Cre	HAIN
owledge		8126	Time	~								_	∀	Matrix Number of	33	g Water	Macto		ress:		ode:	f differer				ek Roa 19444-2	CHAIN-OF-CUSTODY RECORD
s the ter	4	6 2)	9	-									×	Cool HCI	E C							īţ):				2673	USTO
ms as se												_	×	HCI Preservation										i.		5	DYR
t forth at			Rel								-		×	Other T-B,Ca,Fe,	Sb.As.	Ba. Be.Cd.	Cr	П									COR
www.tra			Released By										×	T- Co,Cu, F			_									Fax	
ce-labs.			Υ,	-						_		_	×	T- TI, V,Zn, Diss.Metals			-									Frone 231.73.5998 Fax 888.979.4469 www.trace-labs.com	3
com/tern					_		-		_				×	Fluoride,Su												9.4469 abs.co	1
ıs-of-agr			6	<u>-</u>	_	_		_	_				X	рН	4.4.4.			Ana			-					3 8	}
eement.			Rece	-									×	LLHg Radiums 22	26/228			lysis F		Sam		Soil	Che	Logo	Tra		
			eceived By	<									×	Bicarb-Alk,	Carbo	nate-Alk		Analysis Requested		Sampling Time:	МеОН	Volatiles	Checked By:	.ogged By:	Trace Use:	2	
																	- '.	ted		Э	,	Preserv		Ċ	i.	5	Page_
Ī			,	<															1 8		Low Level	ed (circle	H	Ž		Trace ID No.	
			Date	7.	7	6	7	L,		6	6	6	pH=7.%0	Remarks							72	Soil Volatiles Preserved (circle if applicable):				T No.	의
			Time	2 L	$\overline{\sim}$	74	101	8	5	74		841	7.80	Possible Heal							Lab	able):					-

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

21.11034 San	nple Log in Checklist			
Grand Haven Board of Light Project Manager: Jon Mink	Date: 10-27-21	Original Observation	Corrected Temperature	c) °C) -0.4°C)
	Logged by: DH	psen	Tem	IR-9 (CF: +0.1°C) IR-10 (CF: +0.1°C) 20812743 (CF: -0 Temp Blank Client Sample
	Package Description:	alol	ted	IR-9 (CF: +0.1' IR-10 (CF: +0.7 20B12743 (CF Temp Blank Client Sample
		rigin	orrec	9 (C
	Cooler		-1.6	R R M P D
	Package Temp °C Representative Sample Temp °C	1.8	1.9	
Sample Receipt				
es No				
Received on ice or other coolant				
☐	Yes \ \ \ No \ Custody seals intact (if app	licable)		
	UPS Fed Ex US Mail	Ĺ	Oth	er .
Sample Condition				
es No N/A	ken and labeled			
All sample containers arrived unbrol Sufficient sample to run requested a	383			
Correct chemical preservative added	d to samples			1
	See below			
Chemical preservation verified, chec PH 0-2.5 (Lot: HC029115	ck EMD pH test strip used (if applicable) pH 11.0-13.0 (Lot: HC02)	2540)		Other
Air bubbles absent from VOAs	ph 11.0-13.0 (Lot. Neo2	2340)		
<u> </u>	•			
Chain of Custody (COC)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
/es No ✓				
COC filled out properly				
COC signed by client				
Notes:	3-E, 04-E, 05-E,	06 -	F	10-F
			L ,	· · · ·
at 10:00 on 10/27/21				
1/01/1/1				
Na OH added to DH 10/37/3				
11.00 0 10	1 1-1 (12':1			
HNO2 Preserved radiums 10	127/21 @ 13.11			
orm 70-A.40		r.		Analytical Laboratories

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW -1R

Depth to Water: 6.23

Depth to Point: 18.2ft

Purge Start Time: 1.25

Field Personnel:

Purge Rate: _

Stabilization Criteria:

Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3%

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Pump Ušed: Peristaltic

Notes:

Turbidity(NTU)	1.01 1.01 1.01	3,44 3,44 3,44	17.07 17.07 17.07	11:38 11:41 11:44

Turbidity: 10% or <1 pH: +/- 0.1

Pump Used: Peristaltic

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 2

Depth to Water: 14.71

ate: <u>()</u> みし、

Depth to Point: 23.51'
Purge Start Time: 13.35

Field Personnel: ______

Purge Rate: 300w-L/M

Stabilization Criteria: Temperature: 3%

Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV

Notes:

Depth to Water 15.21 15.23 15.23 Temporature		3	24.7 0.0 -129 -171 14.17	14.17 14.17 14.17 1.12 4.12 4.12 1.12 4.12 4.12 1.14 17 14.17	1.42 4.12 14.17 1.00 0.0 0.0 1.12 4.12 4.12 1.12 4.13 4.13 1.14 7.17 14.17	
lme			15.2	15.23	15.21	Water
	,	7	13:81	13:50	13:47	Reading Ime

(Celsius)

36

5

36

9851

Temperature

Specific

3.96

3.96

96

Depth to

Reading Time

Water

72

Ø

. در.

3

8

Oxygen

7

F

Dissolved Conductivity

ORP (mV)

100

1

1

2

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP Field Personnel:

Depth to Point: 20.5'

Depth to Water: _ Well No.: MW 3

Purge Start Time: \2:

0

Purge Rate: _ 300ml/min

Stabilization Criteria: Temperature: 3%

모

6

6

6

. _0

-0

2

Turbidity(NTU)

S

6

Dissolved Oxygen: 10% Spec. Conductivity: 3%

ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1

Notes:

Pump Used: Peristaltic

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Depth to Point: 18.01'

Purge Start Time: 11:40

Depth to Water:

Well No.: MW 4

Field Personnel:

Purge Rate: 3001WL/Min

Stabilization Criteria:

Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10%

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Pump Used: Peristaltic

Notes:

	Γ.			T = 22	Γ .		
pН	Turbidity(NTU)	F1981 F 200 21	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Depth to Water	Reading Time
6.74	0	-116	14.	2.56 2.56 2.56	16.68	674	
6.74 6.74 6.74	0.0	-116	.47	2.56	16.68 16.88 16.68	11.03	11:57 12:06
6.74	0.0	1	. H8	2.56	16.68	11.03	12:06
						**	
		3-3-400					

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 5

Depth to Water: 265

Depth to Point: 11.5'

Date: 10- 26-2

Purge Start Time: 10:15

Field Personnel:

Purge Rate:

(Celsius)

6.02

Temperature

Specific

76

Water Depth to

w

6

Reading Time

. 25

16.02 76 871

公丁 -)48 7.43

ORP (mV)

Oxygen

Dissolved Conductivity

Turbidity(NTU)

17.41 7.43

얼

Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3%

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Notes:

Stabilization Criteria:

Pump Used: Peristaltic

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Well No.: MW 6 Client: GHBLP Field Personnel:

Depth to Point: 16.55'

Purge Start Time: 10:40

Depth to Water:

Purge Rate:

Stabilization Criteria:

Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3%

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Pump Used: Peristaltic

Notes:

рH	Turbidity(NTU)	ORP (mV)		Ϊŧ	Temperature (Celsius)	Depth to Water	Reading Time
7.60	3	18	57	2.06	17.59	9.31	W:55
7.60 7.60 7.60	, 4	-18	.57 .57	2.06 2.06 2.06	17.59 17.59 17.59	9.31 9.31	10:53 10:56
7.60		-)8	.57	2.66	17.59	9.31	10:56
						8	

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673

Conductivity Specific (Celsius)

15,24

15.24 15.24

5

Temperature

Depth to

Reading Time

B: 15

Water

ORP (mV)

7

Turbidity(NTU)

1

모

7.0

Oxygen

Dissolved

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Date: 10 - 26 - 21

Client: GHBLP

Well No.: MW 7

Depth to Water: 5.25

Purge Start Time: 10:00

Depth to Point: 18.81'

Field Personnel:

Purge Rate:

ORP: +/- 10 mV Turbidity: 10% or <1 Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3%

Notes:

Stabilization Criteria:

Pump Used: Peristaltic

Specific (Celsius)

. Se N

ORP (mV)

137

137

10

Turbidity(NTU)

0.0

Oxygen

0.0

.

Dissolved Conductivity 231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Date: 16-26-21

Field Personnel:_

Purge Rate: _

Well No.: MW 8

Depth to Water: 4.04

Depth to

Reading Time

25

15:28

5

S

Water

.86

4.86

4.8%

Temperature

Purge Start Time: (5). 10 Depth to Point: 11.85

Stabilization Criteria:

모

Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3%

ORP: +/- 10 mV Turbidity: 10% or <1

Notes:

Pump Used: Peristaltic

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Depth to Water: 8.49 Well No.: MW 9

8

工

Depth to Point: 14.9

Purge Start Time: 14' 10

Date: 10-26-21

Field Personnel:

Purge Rate:_

Depth to ORP (mV) Oxygen Water 오 Turbidity(NTU) Conductivity Specific (Celsius) Dissolved Temperature Reading Time N 5

\$J

6

92

0.

2

a.

W

Stabilization Criteria:

Notes:

_

S

S

1

S

二

5

I

5

1

2

10

0

56

56

2

S

Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3%

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Pump Used: Peristaltic

ORP: +/- 10 mV Dissolved Oxygen: 10%

Turbidity: 10% or <1 pH: +/- 0.1

Specific (Celsius)

ORP (mV) Oxygen

Dissolved Conductivity

25

20

Turbidity(NTU)

198

198

198

엄

7.42

7.42

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 10

Depth to Water: 5.32

Depth to

Reading Time

SS:14

14:58

5

Water

.07

107

Temperature

90

90

Date: 10-26-2

Depth to Point: 13.00

Field Personnel:

Purge Start Time: 14:45

Purge Rate: 3000000 min

Spec. Conductivity: 3% Temperature: 3% Stabilization Criteria:

Notes:

Pump Used: Peristaltic

November 30, 2021

Mr. Paul Cederquist Grand Haven Board of Light and Power-Monthly MWs 1700 Eaton Drive Grand Haven, MI 49417

RE: Trace Project 2

21J1032 & 21J1034

Client Project

Impoundment & MW Sampling

Dear Mr. Cederquist:

Enclosed are your analytical results. The results of this report relate only to the samples listed in the body of this report.

All reports were examined through Trace's validation process to ensure that requirements for quality and completeness were satisfied. All reported analytical results were obtained in accordance with the methods referenced on the reports. Every practical effort was made to meet the reporting limit specifications for this work, however, some results may have raised reporting limits to correct for percent solids.

The results were obtained from Eurofins.

For clients that require NELAC Accreditation, Trace certifies that these test results meet all requirements of the NELAC Standard, except for those analytes with a "N" notation. These analytes have not been evaluated by NELAC at Trace's discretion and will not be reported unless requested by client.

If you have questions concerning this report, please contact me at 231.773.5998 or by email at jmink@trace-labs.com.

Sincerely,

Jon Mink

Senior Project Manager

Enclosures

NJDEP Accreditation No. MI008

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673

SAMPLE SUMMARY

Trace Project ID:

21J1032

Client Project ID:

Impoundment Sampling

Trace ID	Sample ID	Matrix	Collected By	Date Collected	Date Received
21J1032-01	Unit 1/2 Near MW-5	Ground Water	TRACE-EB/TB	10/26/21 11:25	10/27/21 08:52
21J1032-02	Unit 1/2 Near SG-2	Ground Water	TRACE-EB/TB	10/26/21 15:25	10/27/21 08:52

SAMPLE SUMMARY

Trace Project ID:

21J1034

Client Project ID:

MW Sampling

Trace ID	Sample ID	Matrix	Collected By	Date Collected	Date Received
21J1034-01	MW-1R	Ground Water	TRACE-EB/TB	10/26/21 11:45	10/27/21 09:16
21J1034-02	MW-2	Ground Water	TRACE-EB/TB	10/26/21 13:55	10/27/21 09:16
21J1034-03	MW-3	Ground Water	TRACE-EB/TB	10/26/21 12:35	10/27/21 09:16
21J1034-04	MW-4	Ground Water	TRACE-EB/TB	10/26/21 12:00	10/27/21 09:16
21J1034-05	MW-5	Ground Water	TRACE-EB/TB	10/26/21 10:35	10/27/21 09:16
21J1034-06	MW-6	Ground Water	TRACE-EB/TB	10/26/21 11:00	10/27/21 09:16
21J1034-07	MW-7	Ground Water	TRACE-EB/TB	10/26/21 10:20	10/27/21 09:16
21J1034-08	MW-8	Ground Water	TRACE-EB/TB	10/26/21 15:35	10/27/21 09:16
21J1034-09	MW-9	Ground Water	TRACE-EB/TB	10/26/21 14:30	10/27/21 09:16
21J1034-10	MW-10	Ground Water	TRACE-EB/TB	10/26/21 15:05	10/27/21 09:16

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673

AN EXPLANATION OF TERMS AND SYMBOLS WHICH MAY OCCUR IN THIS REPORT

DEFINITIONS

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

MS Matrix Spike

MSD Matrix Spike Duplicate
RPD Relative Percent Difference

DUP Matrix Duplicate

RDL Reporting Detection Limit
MCL Maximum Contamination Limit
TIC Tentatively Identified Compound

<, ND or U Indicates the compound was analyzed for but not detected

* Indicates a result that exceeds its associated MCL or Surrogate control limits

N Indicates that the compound has not been evaluated by NELAC

NA Indicates that the compound is not available.

Environment Testing America

ANALYTICAL REPORT

Eurofins Eaton Analytical - South Bend 110 S Hill Street South Bend, IN 46617 Tel: (574)233-4777

Laboratory Job ID: 810-6209-1

Client Project/Site: Trace-21J1034 & 21J1032

Revision: 1

For:

Trace Analytical Laboratories 2241 Black Creek Road Muskegon, Michigan 49444

Attn: Jon Mink

Karew Fullner

Authorized for release by: 11/29/2021 6:14:27 PM

Karen Fullmer, Project Manager (574)233-4777

karen.fullmer@eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

Δ

5

6

0

9

10

12

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032 Laboratory Job ID: 810-6209-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	12
QC Association Summary	15
Lab Chronicle	16
Certification Summary	20
Method Summary	21
Sample Summary	22
Chain of Custody	23
Receipt Checklists	27

-6

4

5

7

9

10

12

13

Definitions/Glossary

Client: Trace Analytical Laboratories Job ID: 810-6209-1

Project/Site: Trace-21J1034 & 21J1032

Qualifiers

Rad Qualifier Qu

Qualifier Description

U Result is less than the sample detection limit.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

4

Ę

0

0

0

10

13

Case Narrative

Client: Trace Analytical Laboratories
Project/Site: Trace-21J1034 & 21J1032

Job ID: 810-6209-1

Job ID: 810-6209-1

Laboratory: Eurofins Eaton Analytical - South Bend

Narrative

Job Narrative 810-6209-1

Comments

No additional comments.

Revision

The report being provided is a revision of the original report sent on 11/22/2021. The report (revision 1) is being revised due to: Project was logged in as drinking water matrix by accident. Report revised to change matrix..

Receipt

The samples were received on 10/28/2021 9:45 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 14.0° C and 14.2° C.

RAD

Method SM7500 Ra D: The barium carrier recovery is outside the upper control limit (110%) <OR> lower control for the following sample(s): 6209-A-11-D Re-analysis is required.

Method SM7500 Ra D: The barium carrier recovery 69.2mg is outside the established limits of 40.5-64.8mg for the following sample: MW-9 (810-6209-11). Re-analysis is required.

Method SM7500 Ra D: The barium carrier recovery 69.2mg is outside the established limits of 40.5-64.8mg for the following sample: MW-9 (810-6209-11). Re-analysis is required.Insufficient sample was available for re-analysis and matrix is dirty; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

0

8

9

10

12

13

Detection Summary

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032	Job ID: 810-6209-1
Client Sample ID: Unit 1/2 Near MW-5	Lab Sample ID: 810-6209-1
No Detections.	
Client Sample ID: Unit 1/2 Near SG-2	Lab Sample ID: 810-6209-2
No Detections.	
Client Sample ID: MW-1R	Lab Sample ID: 810-6209-3
No Detections.	
Client Sample ID: MW-2	Lab Sample ID: 810-6209-4
No Detections.	
Client Sample ID: MW-3	Lab Sample ID: 810-6209-5
No Detections.	
Client Sample ID: MW-4	Lab Sample ID: 810-6209-6
No Detections.	
Client Sample ID: MW-5	Lab Sample ID: 810-6209-7
No Detections.	
Client Sample ID: MW-6	Lab Sample ID: 810-6209-8
No Detections.	
Client Sample ID: MW-7	Lab Sample ID: 810-6209-9
No Detections.	
Client Sample ID: MW-8	Lab Sample ID: 810-6209-10
No Detections.	
Client Sample ID: MW-9	Lab Sample ID: 810-6209-11
No Detections.	
Client Sample ID: MW-10	Lab Sample ID: 810-6209-12
_	

This Detection Summary does not include radiochemical test results.

No Detections.

Job ID: 810-6209-1

Client Sample ID: Unit 1/2 Near MW-5 Lab Sample ID: 810-6209-1

Date Collected: 10/26/21 11:25

Matrix: Ground Water
Date Received: 10/28/21 09:45

Method: 7500 Ra D	- Radium	226 Radi	um 228 Coi	mbined						
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.000	U	0.72719		1.00	0.620	pCi/L		11/12/21 13:20	1
+ 228										

Method: SM7	500 Ra B - Radi	um-226								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.290	U	0.380		1.00	0.410	pCi/L	11/02/21 14:10	11/05/21 10:31	1
Method: SM7	500 Ra D - Radi	um-228								

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	0.500	U	0.620		1.00	0.620	pCi/L	11/02/21 14:13	11/11/21 14:44	1

Client Sample ID: Unit 1/2 Near SG-2

Lab Sample ID: 810-6209-2

Date Collected: 10/26/21 15:25
Date Received: 10/28/21 09:45
Matrix: Ground Water

Method: 7500 Ra D	- Radium	226 Radi	u m 228 Co i	mbined						
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.000	U	0.60745		1.00	0.550	pCi/L		11/12/21 13:20	1

Method: SM7500 R	a B - Radi	um-226								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.310	U	0.330		1.00	0.330	pCi/L	11/02/21 14:10	11/05/21 10:31	1

_ Method: SM7500 R	a D - Radi	um-228								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	-0.410	U	0.510		1.00	0.550	pCi/L	11/02/21 14:13	11/11/21 14:44	1

Client Sample ID: MW-1R	Lab Sample ID: 810-6209-3
Date Collected: 10/26/21 11:45	Matrix: Ground Water
Date Received: 10/28/21 09:45	

Method: 7500 Ra D	- Radium	226 Radii	um 228 Co	mbined						
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.410		0.51088		1.00	0.410	pCi/L		11/12/21 13:20	1

Project/Site: Trace-21J1034 & 21J1032

Client Sample ID: MW-1R Lab Sample ID: 810-6209-3

Date Collected: 10/26/21 11:45 Matrix: Ground Water

Date Received: 10/28/21 09:45

Method: SM7500	Ra B -	Radium-226
----------------	--------	------------

		Uncert.	Uncert.					
Analyte	Result Qua	alifier (2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.410	0.330		1.00	0.310 pCi/L	11/02/21 14:10	11/05/21 10:31	1

Total

Count

Count

Method: SM7500 Ra D - Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	0.0800	U	0.390		1.00	0.410	pCi/L	11/02/21 14:13	11/11/21 14:44	1

Client Sample ID: MW-2

Date Collected: 10/26/21 13:55

Lab Sample ID: 810-6209-4

Matrix: Ground Water

Date Received: 10/28/21 09:45

-Method: 7500 Ra D - Radium 226 Radium 228 Combined

Method. 7300 Ka D	- Naululli	ZZO Kauli	uiii 220 CO	IIIDIIIEU						
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	2.27		0.91351		1.00	0.610	pCi/L		11/12/21 13:20	1

Method: SM7500 Ra B - Radium-226

			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Ra-226	1.00		0.680		1.00	0.610 pCi/L	11/02/21 14:10	11/05/21 10:31	1

Total

Method: SM7500 Ra D - Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	1.27		0.610		1.00	0.580	pCi/L	11/02/21 14:13	11/11/21 14:44	1

Client Sample ID: MW-3

Date Collected: 10/26/21 12:35

Lab Sample ID: 810-6209-5

Matrix: Ground Water

Date Collected: 10/26/21 12:35 Date Received: 10/28/21 09:45

Method: 7500 Ra D - Radium 226 Radium 228 Combined

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.01		0.68593		1.00	0.540	pCi/L		11/12/21 13:20	1

Method: SM7500 Ra B - Radium-226

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.310	U	0.490		1.00	0.540	pCi/L	11/02/21 14:10	11/05/21 10:31	1

Client Sample ID: MW-3 Lab Sample ID: 810-6209-5

Date Collected: 10/26/21 12:35 Matrix: Ground Water

Date Received: 10/28/21 09:45

Method:	SM7500	Ra D -	Radium-228

			Count	iotai						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	1.01		0.480		1.00	0.460	pCi/L	11/02/21 14:13	11/11/21 14:44	1

Client Sample ID: MW-4 Lab Sample ID: 810-6209-6

Date Collected: 10/26/21 12:00 Matrix: Ground Water

Date Received: 10/28/21 09:45

Method: 7500 Ra D - Radium 226 Radium 228 Combined

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.87		0.67209		1.00	0.460	pCi/L		11/12/21 13:20	1
226 + 228										

Method: SM7500 Ra B - Radium-226

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC (Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.910		0.460		1.00	0.360	pCi/L	11/02/21 14:10	11/05/21 10:31	1
	Analyte	Analyte Result	Analyte Result Qualifier	Count Uncert. Analyte Result Qualifier (2σ+/-)	Count Total Uncert. Uncert. Analyte Result Qualifier (2\sigmu+/-) (2\sigmu+/-)	Count Total Uncert. Uncert. Analyte Result Qualifier (2σ+/-) (2σ+/-) RL	Count Total Uncert. Uncert. Analyte Result Qualifier (2σ+/-) (2σ+/-) RL MDC	Count Total Uncert. Uncert. Analyte Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit	Count Total Uncert. Uncert. Analyte Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared	Count Total Uncert. Uncert. Analyte Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared Analyzed

Method: SM7500 Ra D - Radium-228

		Count	Total					
		Uncert.	Uncert.					
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Ra-228	0.960	0.490		1.00	0.460 pCi/L	11/02/21 14:13	11/11/21 14:44	1

Client Sample ID: MW-5

Date Collected: 10/26/21 10:35

Lab Sample ID: 810-6209-7

Matrix: Ground Water

Date Collected: 10/26/21 10:35 Date Received: 10/28/21 09:45

Method: 7500 Ra D - Radium 226 Radium 228 Combined

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.000	U	0.60539		1.00	0.530	pCi/L		11/12/21 13:20	1

Method: SM7500 Ra B - Radium-226

			Count	iotai						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac	
Ra-226	0.160	U	0.310		1.00	0.350 pCi/L	11/02/21 14:10	11/05/21 10:31	1	

Method: SM7500 Ra D - Radium-228

			Count	iotai					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Ra-228	0.340	U	0.520		1.00	0.530 pCi/L	11/02/21 14:13	11/11/21 14:44	1

Job ID: 810-6209-1

Client Sample ID: MW-6 Date Collected: 10/26/21 11:00 Date Received: 10/28/21 09:45 Lab Sample ID: 810-6209-8

Matrix: Ground Water

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.000	U	0.76485		1.00	0.630	pCi/L		11/12/21 13:20	1
+ 228										

Method: SM7500 Ra B - Radium-226

mothodi omi oco itt	a D Itaai	u							
			Count	Total					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.0600	U	0.570		1.00	0.370 pCi/L	11/02/21 14:10	11/12/21 11:43	1

Method: SM7500 Ra D - Radium-228

				Count	Total						
				Uncert.	Uncert.						
	Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Į	Ra-228	-2.15	U	0.510		1.00	0.630	pCi/L	11/02/21 14:13	11/11/21 14:44	1

Client Sample ID: MW-7 Lab Sample ID: 810-6209-9

Date Collected: 10/26/21 10:20 **Matrix: Ground Water** Date Received: 10/28/21 09:45

Method: 7500 Ra D - Radium 226 Radium 228 Combined

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.33		0.70434		1.00	0.490	pCi/L		11/12/21 13:20	1
226 + 228										

Method: SM7500 Ra B - Radium-226

		Count	Total					
		Uncert.	Uncert.					
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.790	0.550		1.00	0.490 pCi/L	11/02/21 14:10	11/05/21 10:31	1

Method: SM7500 Ra D - Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	0.540		0.440		1.00	0.440	pCi/L	11/02/21 14:13	11/11/21 14:44	1

Client Sample ID: MW-8 Lab Sample ID: 810-6209-10

Date Collected: 10/26/21 15:35 **Matrix: Ground Water** Date Received: 10/28/21 09:45

Method: 7500 Ra D - Radium 226 Radium 228 Combine	Method	: 7500 Ra D	- Radium	226 Radium	228	Combined
---	--------	-------------	----------	------------	-----	----------

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.860		0.63640		1.00	0.530	pCi/L		11/12/21 13:20	1

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032

Client Sample ID: MW-8 Lab Sample ID: 810-6209-10

Date Collected: 10/26/21 15:35 **Matrix: Ground Water**

Date Received: 10/28/21 09:45

Method: SM7500 Ra B - Radi

			Journe	. ota.					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.860		0.450		1.00	0.350 pCi/L	11/02/21 14:10	11/05/21 10:31	1

Total

Count

Method: SM7500 Ra D - Radium-228

			Count	Total							
			Uncert.	Uncert.							
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac	
Ra-228	-1.22	U	0.450		1.00	0.530	pCi/L	11/02/21 14:13	11/11/21 14:44	1	

Client Sample ID: MW-9 Lab Sample ID: 810-6209-11 **Matrix: Ground Water**

Date Collected: 10/26/21 14:30 Date Received: 10/28/21 09:45

Method: 7500 Ra D - Radium 226 Radium 228 Combined

Method. 7 300 Ra D	- Itaululli	ZZU Maui	uiii 220 00	IIIDIIIEU						
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	2.56		0.69527		1.00	0.470	pCi/L		11/11/21 16:33	1

Method: SM7500 Ra B - Radium-226

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.840		0.450		1.00	0.370	pCi/L	11/02/21 14:16	11/05/21 11:46	1

Method: SM7500 Ra D - Radium-228

Ra-228	1.72		0.530		1.00	0.470 pCi/L	11/02/21 14:19	11/11/21 12:18	1
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
			Uncert.	Uncert.					
			Count	Total					

Client Sample ID: MW-10 Lab Sample ID: 810-6209-12 **Matrix: Ground Water**

Date Collected: 10/26/21 15:05 Date Received: 10/28/21 09:45

Method: 7500 Ra D - Radium 226 Radiu	ım 228 Com	oined
	Count	Total

			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium	2.03		0.71505		1.00	0.500 pCi/L		11/11/21 16:33	1

226 + 228

Method: SM7500 Ra B - Radium-226

		Count	iotai					
		Uncert.	Uncert.					
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.930	0.480		1.00	0.380 pCi/L	11/02/21 14:16	11/05/21 11:46	1

Client Sample Results

Client: Trace Analytical Laboratories Job ID: 810-6209-1

Project/Site: Trace-21J1034 & 21J1032

Client Sample ID: MW-10 Lab Sample ID: 810-6209-12

Date Collected: 10/26/21 15:05

Date Received: 10/28/21 09:45

Matrix: Ground Water

Method: SM75	00 Ra D - Radi	um-228								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	1.10		0.530		1.00	0.500	pCi/L	11/02/21 14:19	11/11/21 12:18	1

4

_

8

9

11

13

Client: Trace Analytical Laboratories

Job ID: 810-6209-1

Project/Site: Trace-21J1034 & 21J1032

Method: SM7500 Ra B - Radium-226

Lab Sample ID: MB 810-6416/1-A

Matrix: Drinking Water Analysis Batch: 7018

Client Sample ID: Method Blank

I imits

90 - 110

Analyzed

Prep Type: Total/NA Prep Batch: 6416

Count Total мв мв Uncert. Uncert.

LCS LCS

MS MS

Result Qual

8.080

Count

8.170

Result Qual

8.630

Qual

Result

8 750

Result Qual

7.940

Analyte Result Qualifier $(2\sigma + / -)$ Ra-226 0.07000 U 0.250

Spike

Added

8.73

Spike

Added

Added

8.95

9 11

 $(2\sigma + / -)$

11/02/21 14:10 11/05/21 10:31

Client Sample ID: Lab Control Sample

Dil Fac

Prep Type: Total/NA Prep Batch: 6416

Lab Sample ID: LCS 810-6416/2-A

Matrix: Drinking Water Analysis Batch: 7018

Total

RL

1.00

MDC Unit

0.310 pCi/L

RL

1.00

RL

1 00

Uncert. $(2\sigma + / -)$

MDC Unit

0.370 pCi/L

%Rec 91

Prepared

%Rec.

Lab Sample ID: 810-6209-9 MS

Matrix: Ground Water Analysis Batch: 7018

Analyte

Ra-226

Analyte

Ra-226

Analyte

Analyte

Ra-226

Total

Uncert. $(2\sigma + / -)$

MDC Unit 0.360 pCi/L %Rec Limits 96

%Rec.

Prep Type: Total/NA

Prep Batch: 6416

Client Sample ID: MW-7

Lab Sample ID: 810-6209-9 MSD

Sample Sample

Result Qual

Result Qual

0 790

Matrix: Ground Water Analysis Batch: 7018

Total Uncert.

 $(2\sigma + / -)$

Prep Batch: 6416

Prep Type: Total/NA

Prep Batch: 6420

Prep Type: Total/NA

Client Sample ID: MW-7

Sample Sample Spike MSD MSD

Ra-226 0.790

RL1.00

MDC Unit %Rec 0.330 pCi/L

%Rec. Limits 80 - 120

Client Sample ID: Method Blank

80 - 120

RPD RPD Limit

Lab Sample ID: MB 810-6420/1-A

Matrix: Drinking Water Analysis Batch: 7017

Total

MB MB Uncert. Uncert. Result Qualifier $(2\sigma + / -)$ 0.5800 0.400

 $(2\sigma + / -)$

RI 1.00 0.350

RL

1.00

RL

1.00

MDC Unit pCi/L

Prepared 11/02/21 14:16

Analyzed

11/05/21 11:46

Dil Fac

Lab Sample ID: LCS 810-6420/2-A

Matrix: Drinking Water

Matrix: Ground Water

Analysis Batch: 7017

Analysis Batch: 7017

8.73

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 6420

LCS LCS **Spike** Added Result Qual

Analyte

Ra-226

Lab Sample ID: 810-6209-11 MS

Total

Client Sample ID: MW-9 Prep Type: Total/NA Prep Batch: 6420

Added

9.04

Total

Uncert.

 $(2\sigma + / -)$

%Rec.

Spike MS MS Sample Sample

Analyte Result Qual Ra-226 0.840

Uncert. $(2\sigma + / -)$

MDC Unit 0.400 pCi/L

MDC Unit

0.360 pCi/L

%Rec

%Rec

94

Limits 80 - 120

%Rec.

Limits

90 - 110

Eurofins Eaton Analytical - South Bend

2

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032 Job ID: 810-6209-1

Method: SM7500 Ra B - Radium-226

Method: SM7500 Ra B - Radium-226

Lab Sample ID: 810-6209-11 MSD

Client Sample ID: MW-9

Matrix: Ground Water
Analysis Batch: 7017
Prep Batch: 6420

Total Spike MSD MSD %Rec. **RPD** Sample Sample Uncert. RPD Analyte Result Qual Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Limit Ra-226 0.840 8.86 7.400 1.00 0.350 pCi/L 80 - 120 15 20

Method: SM7500 Ra D - Radium-228

Lab Sample ID: MB 810-6417/1-A

Matrix: Drinking Water

Analysis Batch: 7201

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 6417

Count Total MB MB Uncert. Uncert. $(2\sigma + / -)$ Analyte Result Qualifier $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac 11/02/21 14:13 11/11/21 15:31 Ra-228 -0.3600 U 0.390 1.00 0.440 pCi/L

Lab Sample ID: LCS 810-6417/2-A Client Sample ID: Lab Control Sample Matrix: Drinking Water Prep Type: Total/NA

Matrix: Drinking Water

Analysis Batch: 7201

Prep Batch: 6417

Total

Spike LCS LCS Uncert. %Rec. **Analyte** Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits 80 - 120 Ra-228 8.84 7.400 1.00 0.370 pCi/L 84

Lab Sample ID: 810-6209-10 MS

Matrix: Ground Water

Analysis Batch: 7201

Client Sample ID: MW-8

Prep Type: Total/NA

Prep Batch: 6417

Total Sample Sample Spike MS MS Uncert. %Rec. Result Qual Added RL **MDC** Unit %Rec **Analyte** Result Qual $(2\sigma + / -)$ Limits -1.22 U Ra-228 8.98 8.550 1.00 0.370 pCi/L 70 - 130

Lab Sample ID: 810-6209-10 MSD

Matrix: Ground Water

Client Sample ID: MW-8

Prep Type: Total/NA

Analysis Batch: 7201 Prep Batch: 6417

Total Sample Sample Spike MSD MSD Uncert. %Rec. **RPD** Analyte Result Qual Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits **RPD** Limit Ra-228 -1.22 U 9.15 8.240 1.00 0.490 pCi/L 70 - 130 20 90

Lab Sample ID: MB 810-6421/1-A Client Sample ID: Method Blank

Matrix: Drinking Water Prep Type: Total/NA
Analysis Batch: 7161 Prep Batch: 6421

Count Total MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Ra-228 0.1000 U 0.430 1.00 0.450 pCi/L 11/02/21 14:19 11/11/21 12:18

QC Sample Results

Client: Trace Analytical Laboratories Job ID: 810-6209-1

Project/Site: Trace-21J1034 & 21J1032

Method: SM7500 Ra D - Radium-228 (Continued)

Lab Sample ID: LCS 810-6421/2-A	Client Sample ID: Lab Control Sample
Matrix: Drinking Water	Prep Type: Total/NA
Analysis Batch: 7161	Prep Batch: 6421

A	nalysis Batch: 7161								Prep Bate	ch: 642
					Total					
		Spike	LCS	LCS	Uncert.				%Rec.	
Aı	nalyte	Added	Result	Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits	
Ra	a-228	8.84	9.590		- <u> </u>	1.00	0.470 pCi/L	108	80 - 120	

4

6

8

10

11

13

QC Association Summary

Client: Trace Analytical Laboratories Job ID: 810-6209-1 Project/Site: Trace-21J1034 & 21J1032

Rad

Prep Batch: 6416

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
810-6209-1	Unit 1/2 Near MW-5	Total/NA	Ground Water	RAD Prep	
810-6209-2	Unit 1/2 Near SG-2	Total/NA	Ground Water	RAD Prep	
810-6209-3	MW-1R	Total/NA	Ground Water	RAD Prep	
810-6209-4	MW-2	Total/NA	Ground Water	RAD Prep	
810-6209-5	MW-3	Total/NA	Ground Water	RAD Prep	
810-6209-6	MW-4	Total/NA	Ground Water	RAD Prep	
810-6209-7	MW-5	Total/NA	Ground Water	RAD Prep	
810-6209-8	MW-6	Total/NA	Ground Water	RAD Prep	
810-6209-9	MW-7	Total/NA	Ground Water	RAD Prep	
810-6209-10	MW-8	Total/NA	Ground Water	RAD Prep	
MB 810-6416/1-A	Method Blank	Total/NA	Drinking Water	RAD Prep	
LCS 810-6416/2-A	Lab Control Sample	Total/NA	Drinking Water	RAD Prep	
810-6209-9 MS	MW-7	Total/NA	Ground Water	RAD Prep	
810-6209-9 MSD	MW-7	Total/NA	Ground Water	RAD Prep	

Prep Batch: 6417

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
810-6209-1	Unit 1/2 Near MW-5	Total/NA	Ground Water	RAD Prep	_
810-6209-2	Unit 1/2 Near SG-2	Total/NA	Ground Water	RAD Prep	
810-6209-3	MW-1R	Total/NA	Ground Water	RAD Prep	
810-6209-4	MW-2	Total/NA	Ground Water	RAD Prep	
810-6209-5	MW-3	Total/NA	Ground Water	RAD Prep	
810-6209-6	MW-4	Total/NA	Ground Water	RAD Prep	
810-6209-7	MW-5	Total/NA	Ground Water	RAD Prep	
810-6209-8	MW-6	Total/NA	Ground Water	RAD Prep	
810-6209-9	MW-7	Total/NA	Ground Water	RAD Prep	
810-6209-10	MW-8	Total/NA	Ground Water	RAD Prep	
MB 810-6417/1-A	Method Blank	Total/NA	Drinking Water	RAD Prep	
LCS 810-6417/2-A	Lab Control Sample	Total/NA	Drinking Water	RAD Prep	
810-6209-10 MS	MW-8	Total/NA	Ground Water	RAD Prep	
810-6209-10 MSD	MW-8	Total/NA	Ground Water	RAD Prep	

Prep Batch: 6420

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
810-6209-11	MW-9	Total/NA	Ground Water	RAD Prep	
810-6209-12	MW-10	Total/NA	Ground Water	RAD Prep	
MB 810-6420/1-A	Method Blank	Total/NA	Drinking Water	RAD Prep	
LCS 810-6420/2-A	Lab Control Sample	Total/NA	Drinking Water	RAD Prep	
810-6209-11 MS	MW-9	Total/NA	Ground Water	RAD Prep	
810-6209-11 MSD	MW-9	Total/NA	Ground Water	RAD Prep	

Prep Batch: 6421

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
810-6209-11	MW-9	Total/NA	Ground Water	RAD Prep	
810-6209-12	MW-10	Total/NA	Ground Water	RAD Prep	
MB 810-6421/1-A	Method Blank	Total/NA	Drinking Water	RAD Prep	
LCS 810-6421/2-A	Lab Control Sample	Total/NA	Drinking Water	RAD Prep	

Page 15 of 27

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032

Client Sample ID: Unit 1/2 Near MW-5

Date Collected: 10/26/21 11:25 Date Received: 10/28/21 09:45 Lab Sample ID: 810-6209-1

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D			7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7018	11/05/21 10:31	JB	EA SB
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Client Sample ID: Unit 1/2 Near SG-2 Lab Sample ID: 810-6209-2

Date Collected: 10/26/21 15:25 Date Received: 10/28/21 09:45 Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D			7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7018	11/05/21 10:31	JB	EA SB
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Client Sample ID: MW-1R

Date Collected: 10/26/21 11:45

Lab Sample ID: 810-6209-3

Matrix: Ground Water

Date Collected: 10/26/21 11:45 Date Received: 10/28/21 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D		1	7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7018	11/05/21 10:31	JB	EA SB
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Client Sample ID: MW-2

Date Collected: 10/26/21 13:55

Lab Sample ID: 810-6209-4

Matrix: Ground Water

Date Collected: 10/26/21 13:55 Date Received: 10/28/21 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D		1	7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7018	11/05/21 10:31	JB	EA SB
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Eurofins Eaton Analytical - South Bend

Page 16 of 27

Job ID: 810-6209-1

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032

Client Sample ID: MW-3

Lab Sample ID: 810-6209-5

Matrix: Ground Water

Date Collected: 10/26/21 12:35 Date Received: 10/28/21 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D			7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7018	11/05/21 10:31	JB	EA SB
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Lab Sample ID: 810-6209-6

Matrix: Ground Water

Date Collected: 10/26/21 12:00 Date Received: 10/28/21 09:45

Client Sample ID: MW-4

Batch **Batch** Dilution Batch **Prepared Prep Type** Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA 7500 Ra D EA SB Analysis 7233 11/12/21 13:20 JB Total/NA RAD Prep 6416 11/02/21 14:10 ML EA SB Prep Total/NA Analysis SM7500 Ra B 7018 11/05/21 10:31 JB EA SB 1 Total/NA EA SB Prep RAD Prep 6417 11/02/21 14:13 ML EA SB Total/NA Analysis SM7500 Ra D 1 7201 00 (Start) 11/11/21 14:44 (End) 11/11/21 17:44

Client Sample ID: MW-5

Date Collected: 10/26/21 10:35

Date Received: 10/28/21 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D			7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7018	11/05/21 10:31	JB	EA SB
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Client Sample ID: MW-6

Date Collected: 10/26/21 11:00 Date Received: 10/28/21 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D		1	7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7223		JB	EA SB
					(Start)	11/12/21 11:43		
					(End)	11/12/21 12:13		

Eurofins Eaton Analytical - South Bend

Page 17 of 27

11/29/2021 (Rev. 1)

Lab Sample ID: 810-6209-7 **Matrix: Ground Water** Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032

Client Sample ID: MW-6

Date Collected: 10/26/21 11:00 Date Received: 10/28/21 09:45 Lab Sample ID: 810-6209-8

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Lab Sample ID: 810-6209-9

Matrix: Ground Water

Date Collected: 10/26/21 10:20 Date Received: 10/28/21 09:45

Client Sample ID: MW-7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D			7233	11/12/21 13:20	JB	EA SB
Total/NA	Prep	RAD Prep			6416	11/02/21 14:10	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7018	11/05/21 10:31	JB	EA SB
Total/NA	Prep	RAD Prep			6417	11/02/21 14:13	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7201		00	EA SB
					(Start)	11/11/21 14:44		
					(End)	11/11/21 17:44		

Client Sample ID: MW-8

Lab Sample ID: 810-6209-10

Date Collected: 10/26/21 15:35

Matrix: Ground Water

Date Received: 10/28/21 09:45

Batch Dilution Batch Batch Prepared **Prep Type** Type Method **Factor** Number or Analyzed Analyst Run Lab Total/NA 7500 Ra D 11/12/21 13:20 JB Analysis 7233 EA SB Total/NA RAD Prep 6416 11/02/21 14:10 ML EA SB Prep Total/NA SM7500 Ra B EA SB Analysis 1 7018 11/05/21 10:31 JB Total/NA 6417 11/02/21 14:13 ML EA SB Prep RAD Prep Total/NA Analysis SM7500 Ra D 1 7201 00 EA SB (Start) 11/11/21 14:44

Client Sample ID: MW-9 Lab Sample ID: 810-6209-11

(End) 11/11/21 17:44

Date Collected: 10/26/21 14:30 Date Received: 10/28/21 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D			7165	11/11/21 16:33	JB	EA SB
Total/NA	Prep	RAD Prep			6420	11/02/21 14:16	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7017	11/05/21 11:46	JB	EA SB
Total/NA	Prep	RAD Prep			6421	11/02/21 14:19	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7161	11/11/21 12:18	00	EA SB

Eurofins Eaton Analytical - South Bend

Page 18 of 27

Matrix: Ground Water

Lab Chronicle

Client: Trace Analytical Laboratories Job ID: 810-6209-1

Project/Site: Trace-21J1034 & 21J1032

Client Sample ID: MW-10 Lab Sample ID: 810-6209-12

Matrix: Ground Water

Date Collected: 10/26/21 15:05 Date Received: 10/28/21 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D		1	7165	11/11/21 16:33	JB	EA SB
Total/NA	Prep	RAD Prep			6420	11/02/21 14:16	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7017	11/05/21 11:46	JB	EA SB
Total/NA	Prep	RAD Prep			6421	11/02/21 14:19	ML	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7161	11/11/21 12:18	00	EA SB

Laboratory References:

EA SB = Eurofins Eaton Analytical - South Bend, 110 S Hill Street, South Bend, IN 46617, TEL (574)233-4777

3

4

6

8

9

10

Accreditation/Certification Summary

Client: Trace Analytical Laboratories Job ID: 810-6209-1

Project/Site: Trace-21J1034 & 21J1032

Laboratory: Eurofins Eaton Analytical - South Bend

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
Michigan		State	9926	03-22-22
The following analyte the agency does not		report, but the laboratory is not c	ertified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
7500 Ra D		Ground Water	Combined Radium 226 + 228	3
7500 Ra D SM7500 Ra B	RAD Prep	Ground Water Ground Water	Combined Radium 226 + 228 Ra-226	3

4

7

0

10

11

40

Method Summary

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032 Job ID: 810-6209-1

Method	Method Description	Protocol	Laboratory
7500 Ra D	Radium 226 Radium 228 Combined	SM	EA SB
SM7500 Ra B	Radium-226	SM	EA SB
SM7500 Ra D	Radium-228	SM	EA SB
RAD Prep	Preparation, Radiologicals	None	EA SB

Protocol References:

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

EA SB = Eurofins Eaton Analytical - South Bend, 110 S Hill Street, South Bend, IN 46617, TEL (574)233-4777

3

4

5

6

ŏ

4 0

11

40

Sample Summary

Client: Trace Analytical Laboratories Project/Site: Trace-21J1034 & 21J1032

Job I	D:	810)-620	09-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
810-6209-1	Unit 1/2 Near MW-5	Ground Water	10/26/21 11:25	10/28/21 09:45
810-6209-2	Unit 1/2 Near SG-2	Ground Water	10/26/21 15:25	10/28/21 09:45
810-6209-3	MW-1R	Ground Water	10/26/21 11:45	10/28/21 09:45
810-6209-4	MW-2	Ground Water	10/26/21 13:55	10/28/21 09:45
810-6209-5	MW-3	Ground Water	10/26/21 12:35	10/28/21 09:45
810-6209-6	MW-4	Ground Water	10/26/21 12:00	10/28/21 09:45
810-6209-7	MW-5	Ground Water	10/26/21 10:35	10/28/21 09:45
310-6209-8	MW-6	Ground Water	10/26/21 11:00	10/28/21 09:45
810-6209-9	MW-7	Ground Water	10/26/21 10:20	10/28/21 09:45
810-6209-10	MW-8	Ground Water	10/26/21 15:35	10/28/21 09:45
810-6209-11	MW-9	Ground Water	10/26/21 14:30	10/28/21 09:45
810-6209-12	MW-10	Ground Water	10/26/21 15:05	10/28/21 09:45

Eaton Analytical

110 S. Hill Street South Bend, IN 46617 T: 1.800.332.4345

F: 1.574.233.8207

Order#

Batch #

						010-04	209 Chair	1 of Custod	ıy							
www.EurofinsUS.com/Eaton						LHAU	N (1 =					Page		of		
Shaded area for	or EEA us	e only				CHAI	N OF	C0310	או אביטו							
REPORT TO:					SAMPLER (Signature)				PWS ID#	STATE (sample origin)	PROJECT NAME	PC	D#			
Jon Mink, Tim Brewer (jmink@trace-lat Analyitical Laboratories, Inc., 2241 Bla 773-5998	os.com, tbrew ck Creek Rd.,	ver@trace-labs.o , Muskegon, Mi	com) 49444	Trace 4 231-						МІ		21J10	134.8	- 10		ш
BILL TO:					Yes		No	POPU	LATION SERVED	SOURCE WATER		21J1		H.S		TIME
Accounts Payable, Trace Analytical La Muskegon, MI 49444	boratories, Inc	c., 2241 Black (Creek	Rd.,	COMPLIANCE MONITORING									CONTAINERS	X CODE	TURNAROUND
LAB Number	C	COLLECTION	l		SAMPLING SITE				TEST NA	ME	SAMPLE REMARKS	CHLORI	INATED	OF C	MATRIX	N. N.
	DATE	TIME	AM	PM					p	Accent	able	YES	NO	#	Ž	2
1	10/26/21	11:25	x		Unit 1/2 Near MW-5(FF)			Radium 226	6/228	1			x	1	GW	SW
2	10/26/21	15:25		x	Unit 1/2 Near SG-2(FF)			Radium 226	6/228				x	1	GW	SW
3	10/26/21	11:45	x		MW-1R(FF)			Radium 220	6/228				x	1	GW	sw
4	10/26/21	13:55		x	MW-2(FF)			Radium 220	6/228				x	1	GW	SW
5 (4) 11 (4) (4) (5) (6) (7) (8) (7) (8) (7) (8) (8)	10/26/21	12:35		x	MW-3(FF)			Radium 220	6/228				x	1	GW	sw
6	10/26/21	12:00		x	MW-4(FF)			Radium 220	5/228				x	1	GW	sw
7 Company Company	10/26/21	10:35	x		MW-5(FF)			Radium 220	5/228				x	1	GW	sw
8	10/26/21	11:00	х		MW-6(FF)	Į.		Radium 22	6/228				x	1	GW	sw
9 (2.14) 1.14 (4.14) (4.14)	10/26/21	10:20	x		MW-7(FF)			Radium 22	5/228				x	1	GW	sw
10	10/26/21	15:35		x	MW-8(FF)	2		Radium 22	5/228				x	1	GW	sw
11 of the second continues of the second	10/26/21	14:30		x	MW-9(FF)			Radium 22	5/228	,			х	1	GW	sw
12	10/26/21	15:05		x	MW-10(FF)			Radium 22	5/228				x	1	GW	SW
13																
14																
RELINQUISHED BY:(Signature)		DATE	T	IME	RECEIVED BY:(Signature)		DATE	dium 226/	LAB RESERV	ES THE RIGHT TO RETURN UNI	JSED PORTIONS OF NON-	AQUEOUS	SAMPLES 1	LO CLIEN.	т	\neg
11111		10/	B	:24		- 11			LAB COMMENTS			157,50	1977		1	W 6
WY		1927/21	AM	[PM	Fedex	- 10		AM PM	1 11	_ 17 ~ ~	oh/o	1	garacture.	14	410	
RELINQUISHED BY:(Signature)		DATE			RECEIVED BY:(Signature)		DATE	TIME	111111	5 7754	CIVO	U	_	76	رسار	
Feder				Loss				A44 594				(IR 03) 3	iac	7
RELINQUISHED BY:(Signature)		DATE		IME	RECEIVED FOR LABORATORY BY:		DATE	TIME			112			/	0	0
			AM	PM	Stelle	- 10	282	0944 AM PM	CONDITIONS UPON R	et/Blue Ambient	4.0 °C Upon	Receipt_	X	N/A	951	28
MATRIX CODES:		TURN-ARC			E (TAT) - SURCHARGES											
DW-DRINKING WATER RW-REAGENT WATER		SW = Standar			*	IV	= Immediat	e Verbal: (3 wo								
GW-GROUND WATER		RV* = Rush Ve			• • •			e Written: (3 w			Samples received una					
EW-EXPOSURE WATER SW-SURFACE WATER		RW* = Rush W	/ritten:	(5 worl	king days) 75%		P" = Weeken		CALL		may be subject to add					
PW-POOL WATER WW-WASTE WATER		* Please cal	II, exp	oedite	ed service not available for all testing	S.	IAI" = Less	than 48 hours	CALL		06-LO-F0435 Issue	60 F#	ective Da	te: 2010	3-09-20	

06-LO-F0435 Issue 6.0 Effective Date: 2016-09-20

	eu	rof	Fi	ns
00	_ 0.			

Eaton Analytical

110 S. Hill Street South Bend, IN 46617 T: 1.800.332.4345 F: 1.574.233.8207

Order # Batch #

www.EurofinsUS.com/Eaton						C	HAIN OF	CHIST	ODY RECO	PD		D-		-4		
Shaded area fo	r EEA us	se only					I IAIN OI	0031	ODT RECO	ND .		Pag	e	01		_
REPORT TO:					SAMPLER (Signature)			PWS ID #	STATE (sample origin)	PROJECT NAME		PO#			T
Jon Mink, Tim Brewer (jmink@trace-lab: Analytical Laboratories, Inc., 2241 Blac 773-5998										МІ						
BILL TO: Accounts Payable, Trace Analytical Lab Muskegon, MI 49444	oratories, In	nc., 2241 Black	Creek	Rd.,	COMPLIANCE MONITORING	Yes	No	POF	PULATION SERVED	SOURCE WATER			J1034 & IJ1032	CONTAINERS	MATRIX CODE	TURNAROUND TIME
LAB Number	C	COLLECTION	4		S	AMPLING SITE			TEST NA	AME	SAMPLE REMARKS	СНГС	RINATE	OF CO	TRIX	RNAR
	DATE	TIME	AM	PM								YES	NO	#	₹	1 2
1	10/28/21	11:25	×		Unit 1/2 Near MW-5			Radium 2	26/228				×	1	GW	SW
2	10/26/21	15:25		×	Unit 1/2 Near SG-2			Radium 2	26/228				×	1	GW	sw
3	10/26/21	11:45	×		MW-1R			Radium 2	26/228			and the second	×	1	GW	SW
4	10/26/21	13:55		x	MW-2			Radium 2	26/228			-	x	1	GW	SW
5	10/26/21	12:35		×	MW-3			Radium 2:	26/228				×	1	GW	sw
6	10/26/21	12:00		x	MW-4			Radium 2	26/228		i i	-	×	1	GW	sw
7	10/26/21	10:35	×		MW-5			Radium 2	26/228				×	1	GW	SW
8	10/26/21	11:00	×		MW-6			Radium 2	26/228				x	1	GW	sw
9	10/26/21	10:20	×		MW-7			Radium 2	26/228				×	1	GW	sw
10	10/26/21	15:35		x	MW-8			Radium 2	26/228				×	1	GW	SW
11	10/26/21	14:30		х	MW-9	•		Radium 2	26/228				×	1	GW	SW
12	10/26/21	15:05		×	MW-10			Radium 2	26/228				×	1	GW	sw
13				-												
14 RELINQUISHED BY:(Signature)		DATE	TI	ME	RECEIVED BY:(Signa	ature)	DATE	dium 226/	LAB RESERV	VES THE RIGHT TO RETURN UN	USED PORTIONS OF NON-A	VQUEOU:	SAMPLES	TO CLIEN	π	
			-	PM	1			111 011	可以有关的证明	於於此地震院						
RELINQUISHED BY:(Signature)		DATE			RECEIVED BY:(Signa	ature)	DATE	TIME								
RELINQUISHED BY:(Signature)		DATE		PM ME	RECEIVED FOR LABO	RATORY BY:	DATE	AM PM		NAMES OF THE PROPERTY OF THE						
,				Ι					CONDITIONS UPON F	RECEIPT (check one): et/Blue Ambient	°C Upon I	Receipt		NA		
MATRIX CODES:		TURN-ARC		PM TIM	L E (TAT) - SURCHARG	ES		AM PM	Committee of the second	TO STORY OF STREET STATE STREET, STREE	market of warming		(Control of		201420852	
DW-DRINKING WATER RW-REAGENT WATER GW-GROUND WATER EW-EXPOSURE WATER SW-SURFACE WATER PRA-POOL WATER		SW = Standar RV" = Rush Ve RW" = Rush Ve	rbal: (5	works	ng days) 50%		IV" = Immediat IV" =Immediat SP" = Weeken	te Written: (3 w	working days) 125% CALL		Samples received unanthan 48 hours holding to	me rema	aining			
WW-WASTE WATER Sample analysis will be provided acc	andian Ar M				d service not available						06-LO-F0435 Issue 6	.0 Eff	ective Da	te: 2016	-09-20	

Spurgeon, Sheri

From:

Fullmer, Karen

Sent:

Monday, November 01, 2021 1:37 PM

To:

Spurgeon, Sheri

Subject:

FW: Revised chain of custody for J6209

Attachments:

Eurofins COC-Revised for Trace Labs 21J1034 and 21J1032.pdf

Sheri,

Here is a revised COC for Job 6209.

Best regards,

Karen Fullmer

Analytical Service Manager

Eurofins Eaton Analytical, LLC

110 South Hill Street South Bend, IN 46617

Office: +1 574-472-5513 Mobile: +1 574-309-8853

E-Mail: karen.fullmer@eurofinset.com Website: www.EurofinsUS.com/Env

From: Britani Wright <b wright@trace-labs.com>
Sent: Thursday, October 28, 2021 5:27 PM

To: Fullmer, Karen < Karen.Fullmer@eurofinset.com >; Jon Mink < jmink@trace-labs.com >

Subject: Revised chain of custody

EXTERNAL EMAIL*

Hi Karen,

I've attached a revised Chain of Custody for the radium samples that we sent in yesterday afternoon-for Trace Labs ID#'s 21J1034 & 21J1032. The only thing that needs to be changed is that the (FF) after each sampling site ID needs to be removed. Sorry for the inconvenience.

Thank you,

Britani Wright

1

Page 25 of 27

11/29/2021 (Rev. 1)

-

Л

5

6

0

9

10

12

13

3

C: 616-916-4328 bwright@trace-labs.com

Trace Analytical Laboratories, Inc. 2241 Black Creek Rd. Muskegon, MI 49444 231.773.5998 ext. 243

CONFIDENTIALITY NOTICE:

The contents of this email message and any attachments are intended solely for the addressee(s) and may contain confidential and/or privileged information and may be legally protected from disclosure. If you are not the intended recipient of this message or their agent, or if this message has been addressed to you in error, please immediately alert the sender by reply email and then delete this message and any attachments. If you are not the intended recipient, you are hereby notified that any use, dissemination, copying, or storage of this message or its attachments is strictly prohibited.

* WARNING - EXTERNAL: This email originated from outside of Eurofins Environment Testing America. Do not click any links or open any attachments unless you trust the sender and know that the content is safe!

2

Login Sample Receipt Checklist

Client: Trace Analytical Laboratories Job Number: 810-6209-1

List Source: Eurofins Eaton Analytical - South Bend Login Number: 6209

List Number: 1

Creator: Spurgeon, Sheri

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Samples do not require splitting or compositing.	True	
Container provided by EEA	True	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Ple	ease Si	g Released By				1 15:25	10.36.21 11:25	Trace Date Time No. Collected Collected	Project Name: Impoundment Sampling	*Results provided end of business day, requires prior approval	☐ 1 Day*		Turnaround Requirements:	Email Address:	Office Phone:	City, State, Zip Code:	Mailing Address:	Report To: Paul Cederquist	Company Name: Grand Haven Board of Light & Power	Report Results To:	ANALYTICAL LABORAT)	
In executing this Cha	Dall	A Reserved By				Unit 1/2 Near SG-2	Unit 1/2 Near MW-5	Client Sample ID	Sampling	00011	S	× σ	Z		Cell Phone:				of Light & Power		BORATORIES, INC.		
(a) (a) (b) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a	8 14cdoil	Date				G-2	N-5 Y W	Metals Field Filtered (Y / N) Matrix	Sampled By: 七分		SL = Sludge A = Air	S = Soil / Solid WI = Wipes	Matrix Key:	Billing Email Address:	Phone Number:	City, State, Zip Code:	Billing Address (if different):	Contact Name:	PO#	Bill To:	2241 Black Creek Road Muskegon, MI 49444-2673	CHAIN-OF-CUSTODY I	
4) dges the terms as set forth at w	8:262	Time Relea					5 × × ×	Number of Containers Cool HCI Pressor August 1980 Pressor Pre						9:			ferent):				Road 44-2673	CHAIN-OF-CUSTODY RECORD	
ww.trace-labs.com/terms-of-ag		Released By					× × × ×	T- Co,Cu, P T- TI, V,Zn, Diss.Metals Fluoride,Sul	Mn,M (Sam	g,K,Na e as To	otals)	es	Ar								Fax 888.979.4469 www.trace-labs.com		
reement.		Received By					×	LLHg Radiums 22 Bicarb-Alk, (nate-Al	k		Analysis Requested	e de la companya de l	ġ	MeOH Lov	Soil Volatiles Preserved (circle if applicable):	Checked By:	Logged By:	Trace Use:	21110	Page_	
	+	Date Time			0.01	\$ 29	pH=7.11	Remarks		***						Low Level Lab	d (circle if applicable):		5	•	1032 1032	of	,

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

21J1032 Grand Haven Board of Light Project Manager: Jon Mink

Sample Log In Checklist

Date: $ 0-27-2 $ Time: $9\cdot20$ Logged by: DH Package Description: $Cooler$	Original Observation	Corrected Temperature	IR-9 (CF: +0.1°C)	IR-10 (CF: +0.1°C)	20B12743 (CF: -0.4°C)	emp Blank	Client Sample
Package Temp °C	-1.7	-1.6	-	/	7		
Representative Sample Temp °C	1.8	1.9		1			1

	Representative dampie temp of 1.0 1.7 1
ample Receipt	
s No	
Received on ice or other coolant	· · · · · · · · · · · · · · · · · · ·
lce still present upon receipt	
Custody seals present	
Trace Courier Client Drop-off UPS	Fed Ex US Mail Other
ample Condition	
es No N/A.	
All sample containers arrived unbroken	
Sufficient sample to run requested analy Correct chemical preservative added to	
Samples preserved at Trace	sumples
Chemical preservation verified, check El	MD pH test strip used (if applicable)
pH 0-2.5 (Lot: HC029115)	pH 11.0-13.0 (Lot: HC022540)
Air bubbles absent from VOAs	
Chain of Custody (COC)	•
/es No ✓	
COC filled out properly	
COC signed by client	3
Notes:	
* 1	
•	
	\
Form 70-A.40	
Effective 10/2/21	TRACE Analytical Laboratori

Turbidity: 10% or <1 pH: +/- 0.1

ORP: +/- 10 mV Dissolved Oxygen: 10% Spec. Conductivity: 3%

Temperature: 3% Stabilization Criteria:

Notes:

Specific

Dissolved Conductivity

11.00

1.00

00

(Celsius)

0

5

0 57

1

Temperature

Water Depth to

Reading Time

ORP (mV) Oxygen

(=

Turbidity(NTU)

0.0

모

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP Impoundment ID: Unit 12 by MWS Depth to Point

Field Personnel:

Sample Tubing Depth: 2017

Purge Start Time: 10:55

Purge Rate:

						i.
		100000000000000000000000000000000000000				
			3			
		. ,				

Turbidity: 10% or <1 pH: +/- 0.1

ORP: +/- 10 mV

Specific

63

.63

5

(Celsius)

Temperature

Water Depth to

1

A

15:2

Reading Time

Oxygen

9.87

2

120

7.87

Dissolved Conductivity

ORP (mV)

8

50

8

모

 \propto

200

8.39

8.39

Turbidity(NTU)

in

S

00

3

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Impoundment ID: Wikit 1/2 by SG2 Purge Start Time: 14:55

Repth to Point:

Date: 10-26-21

Field Personnel:

Sample Tubing Depth: 20 台ナ

Purge Rate: Bookel/min

Dissolved Oxygen: 10%	Spec. Conductivity: 3%	remperature: 3%

Stabilization Criteria:

Notes:

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Plea	se Si	gn											Trace No.	Project Name:	*Results] <u>×</u>	Turnar	Email Address:	Office Phone:	City, State	Mailing Address:	Report To	Company	Report	2:	
	d'y		6		-			-			-	10-26-21	Date Collected		provided (1 Day	tandard,	ound Re	dress:	one:	City, State, Zip Code:	ddress:	Paul (Name: (Report Results To:		
		Released By	15:05	14:30	15:35	10:20	11:00	16:35	12:00	IJ: 35	13:55	1:45	Time Collected	MW Sampling	end of business day		Standard, 5-10 Days	Turnaround Requirements:			e.		Report To: Paul Cederquist	Frand Haven Bo	То:		Щ
In page riting this Official of Controls the planet polar and the fact that	10/10	Received By	MW-10	MW-9	MW-8	MW-7	MW-6	MW-5	MW-4	MW-3	MW-2	MW-1R	Client Sample ID	ng	*Results provided end of business day, requires prior approval. OI = Oil	SL = Sludge	S = Soil / Solid	Matrix Key:		Cell Phone:				Company Name: Grand Haven Board of Light & Power		SORATORIES, INC.	
	12/12/01	Date	~									\ \	Metals Field Filtered (Y / N)	Sampled By:		ge A=Air		Key:	Billing Email Address:	Phone Number:	City, State, Zip Code:	Billing Address (if different):	Contact Name:	PO#	Bill To:	Trace Analytical Laboratori 2241 Black Creek Road Muskegon, MI 49444-2673	CHAIN
4)	8326 2	Time	G									∀ 5 ×	Matrix Number of Containers Cool HCI HNO ₃ H ₂ SO ₄ NaOH	38) 18	g Water	d waste			dress:		Ode:	if different):				Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673	CHAIN-OF-CUSTODY RECORD
		Released By										×	H ₂ SO ₄ A Sales			7											RECORD
		Ву	1116									×	T- TI, V,Zn, Diss.Metals Fluoride,Su	(Sam	e as To											Phone 231.773.5998 Fax 888.979.4469 www.trace-labs.com	
		Receive	1 4 1								 	×	pH LLHg Radiums 22	26/228				Analysis Re		Sampli	7	Soil Vo	Checked By:	Logged By:	Trace	3 %	
		ceived By	4									×	Bicarb-Alk,	Carbo	nate-Al	k		Requested		Sampling Time:	MeOH Low	latiles Preserved (ad By:	1By: DA	race Use: 🧷	ZIJ[0;	Page_
		Date Tir	J 7.42	7.31	6.74	7.01	7.60	17.43	1-6-74	6.91	16.48	pH=7.%0	Remarks								Low Level Lab	Soil Volatiles Preserved (circle if applicable):				Trace ID No.	of 1
		Time	-		_		\sim	S	$\stackrel{\leftarrow}{-}$		∞	0	Possible Heal	th Haz	ards?	-89-1			3		σ	۳					-

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

21J1034 San	nple Log In Checklist
Grand Haven Board of Light	Date: 10-27-21 g m
Project Manager: Jon Mink	ig 4
	Time: 9: 70 Logled phoservation: Coole(Coo
	Lime: 4.70 R-9 (CF: +0.1°C) R-10 (CF: +0.1°C)
	Package Description:
Progr	
	Package Temp °C -1.7 -1.6
	Representative Sample Temp °C 1.8 1.9 V
Sample Receipt	
Yes No	
Received on ice or other coolant	
☐ ☐ Ice still present upon receipt ☐ ☐ Custody seals present ☐ ☐	Yes No Custody seals intact (if applicable)
	UPS Fed Ex US Mail Other
Sample Condition	
Yes No N/A	
All sample containers arrived unbro	ken and labeled
Sufficient sample to run requested a	
Correct chemical preservative added	d to samples See below
	ck EMD pH test strip used (if applicable)
✓ pH 0-2.5 (Lot: HC029115	
Air bubbles absent from VOAs	
Chain of Custody (COC)	
Chain of Custody (COC)	
Yes No	
COC filled out properly	
COC signed by client	
Notes:	
HNOs added to O2-E, O	3-E, 04-E, 05-E, 06-E, 10-E
at 10:00 on 10/27/21	
Na OH added to DH 10/37/2	
HNOz Preserved radiums 10	Parla (@ 13:11
The transmit to	10 110,100
<u> </u>	
Form 70-A.40	TRACE Analytical Laboratories,
ffective 10/2/21	

Turbidity: 10% or <1 pH: +/- 0.1

ORP: +/- 10 mV Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3% Stabilization Criteria:

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW -1R

Depth to Water: 6.23

Date: 10. 26.21

Depth to Point: 18.2ft

Field Personnel: EB

Purge Start Time: 11:25

Purge Rate: __

7						
Reading Time		11. 20 11. 11. 11. 11.				
705+6+			-	2 5 60		
nepth to						
Water	75	7.51 7.51	1.8.1			
Temperature	<i>L</i>	ر ا ا				1
(Celsius)	1.0	11.011.0	/ . ()			
Specific	1		G			
Conductivity	トガン	74 844 844 BA	アプレ		-	
Dissolved						
Oxygen	1.01	1.81	-0		-	
ORP (mV)						
	-25	، من	ر الا			
Turbidity(NTU)						3
	22.6	22.6 22.6 22.6	22.6			
PΗ	7.86	7.86 7.80 7.86	7.86			

Pump Ušed: Peristaltic

Notes:

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Pump Used: Peristaltic

Spec. Conductivity: 3%

Dissolved Oxygen: 10%

Stabilization Criteria:

Notes:

Temperature: 3%

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 2

Depth to Water: 14.71

Date: (()~ み(6・ よ)

Purge Start Time: 13:35 Depth to Point: 23.51'

Field Personnel: FB

Purge Rate:

pH /	Turbidity(NTU)		1	ity	ure	Depth to Water \S	Reading Time 13	
2	0	-129	0.0	4.12	M.17 14.17	15.21	4	
847 847 847	0.0 0.0 0.0	-129	0	4.12 4.12	11.17	15.23 15.23	3:47 13:50 13:52	
847	0.0	-129	0.0	4.12	1 14.17	15.23	13:52	
		1						
						-		

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Dissolved Oxygen: 10% Spec. Conductivity: 3% Stabilization Criteria:

Notes:

Temperature: 3%

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 3

Depth to Water: 1.90

Depth to Point: 20.5'

Purge Start Time: 12: 10

Field Personnel:

300ml/min

Purge Rate: _

į				10112				
	PI	Turbidity(NTU)			Ϊţ	ומות		Reading Time Depth to
	- 9 - 0	5	19	かげ	3.96 3.96 3.96	15.86 15.86 15.86	12. 72	12:27
	6.91 6.91 6.91	6	1	2,14 2,14 2,14	3.96	15,86	12.72 12.72	12:27 12:30 12:38
•	<u>5</u>	<u>.</u>	1	2.14	3.96	15.86	12.72	12:38
					- HT			
	50 20 30							

Turbidity: 10% or <1 pH: +/- 0.1

ORP: +/- 10 mV Dissolved Oxygen: 10% Spec. Conductivity: 3% Temperature: 3% Stabilization Criteria:

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 4

Depth to Water: _

Date: 10-26-21

Depth to Point: 18.01'

Field Personnel: EB

Purge Start Time: 11:40 Purge Rate: 300100/11/15

Reading Time	1	:			2		
	1.07	1.8.1	12:06				
Water	41.05	11.03	11.03				
Temperature (Celsius)	16.68	16.68 16.68	16.62				
Specific Conductivity	75 75 75) J	ر آ ا				
Dissolved		(
Oxygen	14,	. 47	84.				
ORP (mV)							
	-116	-116	1116				
Turbidity(NTU)							
	0,00,0	0.0	0.0				
护	117 117	7/1	11/2				
	6. 1	0. 7	6		5		

Pump Used: Peristaltic

Notes:

Specific (Celsius)

76

76

ORP (mV)

シナ

1

8FI

8H/

Turbidity(NTU)

Oxygen

Dissolved Conductivity

모

17.41

7. 43 84.1

7.43

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 5

Depth to Water:

Depth to

Reading Time

10:25

30

Water

6

Temperature

16.02

16. OJ

Date: 10-26-21

Depth to Point: 11.5'

Purge Start Time: 10:15

Field Personnel: Th

Purge Rate: _

Tompora+1150: 30/	Stabilization Criteria:

Spec. Conductivity: 3% lemperature: 3%

ORP: +/- 10 mV Dissolved Oxygen: 10% Turbidity: 10% or <1

Notes:

pH: +/- 0.1

Specific

(Celsius)

17.59

7.59

17.59

Temperature

Conductivity

Water Depth to

P

W

0

3/

2.2

Reading Time

8

0:53

10:56

Oxygen Dissolved

ORP (mV)

1

2

8

Turbidity(NTU)

모

7.60 | 7.60 | 7.60

N

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 6

Depth to Water: _

Date: 15-26-21

Field Personnel: EB

Depth to Point: 16.55'

Purge Start Time: 10:40

Purge Rate: _

Turbidity: 10% or <1	ORP: +/- 10 mV	Dissolved Oxygen: 10%	Spec. Conductivity: 3%	Temperature: 3%	Stabilization Criteria:

Notes:

Depth to Water

6.21

Reading Time

D: 15

(Celsius)

15,24

15.24 15.24

. J

Temperature

Specific

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 7

Depth to Water: 5,25

Date: 10 - 26-21

Depth to Point: 18.81'

Field Personnel:_

Purge Start Time: 10:00

Purge Rate: __

Tomposet 20/
050505011111111111111111111111111111111

Stabilization Criteria:

Notes:

멀

7.0

7.0

ORP (mV)

7

7

Turbidity(NTU)

5

Ľ

Oxygen

Dissolved Conductivity

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 8

Depth to Water: 4.04

Depth to Point: 11.85

Purge Start Time: 15:10

Purge Rate: _

Field Personnel:_

	i urbiaity(NTO)		Oxygen Oxygen	ity	ture	Depth to Water	Reading Time
6.74	0.0	-137 -137 -137	0.0	h08.	15.72 15.72 15.72	4.86	15:25
6.74 6.74 6.74	0.0 0.0 0.0	-137	0.0	208. 208. 408.	15.72	4.86 4.86 4.86	15:25 15:28 15:3
6.74	0,0	-137	0.0	. 805	15.72	4.8%	15:31
						· / (25

Stabilization Criteria: Temperature: 3%

Notes:

Dissolved Oxygen: 10% Spec. Conductivity: 3%

Turbidity: 10% or <1 pH: +/- 0.1 ORP: +/- 10 mV

Dissolved Oxygen: 10% ORP: +/- 10 mV

Spec. Conductivity: 3%

Temperature: 3%

Stabilization Criteria:

Notes:

Turbidity: 10% or <1 pH: +/- 0.1

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 9

Depth to Water: 8.49

Date: 10-26-21

Depth to Point: 14.9

Purge Start Time: 14' 10

Purge Rate: _

Field Personnel:

P	_	0	00	CN	S 7	50	70
	Turbidity(NTU)	RP (mV)	Dissolved Oxygen	~			Reading Time
7.31	アン	-9	. 56	1.25	16.12	9.31	14:20 14:24
7.31 7.31 7.31	5.4 5.4	-9	56 .56 .56	1.25 1.25 1.25	16.12 16.13 16.13	9.3)	
7.31	5.4	9	. 56	 り 。	اله. \ع	.3/	14.77
-							

Spec. Conductivity: 3%
Dissolved Oxygen: 10%
ORP: +/- 10 mV
Turbidity: 10% or <1
pH: +/- 0.1

Stabilization Criteria:

Notes:

Temperature: 3%

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form

Client: GHBLP

Well No.: MW 10

Depth to Water: 5.32

Date: 10. 26.21

Depth to Point: 13.00

Purge Start Time: 14:45

Section Constitution Constituti

Field Personnel:

Purge Rate: 300 und min

ORP (mV) Oxygen Specific (Celsius) Water Depth to 모 Turbidity(NTU) Dissolved Conductivity Reading Time Temperature 6.07 198 SS:h1 16.66 7.42 28 25 6.07 14:58 198 861. 15:01 25 0.00 2

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

November 09, 2021

Mr. Paul Cederquist Grand Haven Board of Light and Power-Monthly MWs 1700 Eaton Drive Grand Haven, MI 49417

RE: Trace Project

21J1157

Client Project

Surface Water Sampling

Dear Mr. Cederquist:

Enclosed are your analytical results. The results of this report relate only to the samples listed in the body of this report.

All reports were examined through Trace's validation process to ensure that requirements for quality and completeness were satisfied. All reported analytical results were obtained in accordance with the methods referenced on the reports. Every practical effort was made to meet the reporting limit specifications for this work, however, some results may have raised reporting limits to correct for percent solids.

For clients that require NELAP Accreditation, Trace certifies that these test results meet all requirements of the NELAP Standard, except for those analytes with a "N" notation. These analytes have not been evaluated by NELAP at Trace's discretion and will not be reported unless requested by client.

If you have questions concerning this report, please contact me at 231.773.5998 or by email at jmink@trace-labs.com.

Sincerely,

Jon Mink Senior Project Manager Enclosures

NJDEP Accreditation No. MI008

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

SAMPLE SUMMARY

Trace Project ID:

21J1157

Client Project ID:

Surface Water Sampling

Trace ID	Sample ID	Matrix	Collected By	Date Collected	Date Received
21J1157-01	SW-SG-1	Surface Water	TRACE-EB/TB	10/28/21 10:15	10/28/21 15:58
21J1157-02	SW-N-SG-2	Surface Water	TRACE-EB/TB	10/28/21 09:10	10/28/21 15:58
21J1157-03	SW-SE-MW-7	Surface Water	TRACE-EB/TB	10/28/21 12:05	10/28/21 15:58
21J1157-04	SW-NE-MW-10	Surface Water	TRACE-EB/TB	10/28/21 10:30	10/28/21 15:58

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

AN EXPLANATION OF TERMS AND SYMBOLS WHICH MAY OCCUR IN THIS REPORT

DEFINITIONS

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

MS Matrix Spike

MSD Matrix Spike Duplicate
RPD Relative Percent Difference

DUP Matrix Duplicate

RDL Reporting Detection Limit
MCL Maximum Contamination Limit
TIC Tentatively Identified Compound

<, ND or U Indicates the compound was analyzed for but not detected

Indicates a result that exceeds its associated MCL or Surrogate control limits
 Indicates that the laboratory is not accredited by NELAP for this compound

NA Indicates that the compound is not available.

NOTE: Samples for volatiles that have been extracted with a water miscible solvent were corrected for the

total volume of the solvent/water mixture.

Solid matrices Method Blanks are at 100% solids as such results are the same wet or dry.

DATA QUALIFIERS

Trace ID: T116265-DUP1	
Analysis: SM 2540 C-11	
Total Dissolved Solids	Note 623 : The relative percent difference between the sample and sample duplicate is out of control. The sample result should be considered estimated.
Trace ID: T116384-MSD1	
Analysis: EPA 6010D	
Calcium	Note 207: The RPD between the MS and the MSD was out of control. Because both spike recoveries were in control, no data require qualification.

CERTIFICATE OF ANALYSIS

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Vanadium

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-01 Matrix: Surface Water Date Collected: 10/28/21 10:15 Sample ID: SW-SG-1 Date Received: 10/28/21 15:58 Field pH: 8.46 **PARAMETERS** RESULTS UNITS DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116283 Mercury 2.2 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116267 0.0018 Beryllium <0.0018 mg/L 1 11/01/21 mrh 11/02/21 ckd Boron 0.053 mg/L 0.045 1 11/01/21 mrh 11/02/21 ckd Calcium 72 mg/L 0.45 1 11/01/21 mrh 11/02/21 ckd 11/01/21 mrh 11/02/21 Iron 0.61 mg/L 0.18 1 ckd 11/02/21 Lithium 0.0070 mg/L 0.0090 1 11/01/21 mrh ckd J, N Magnesium 22 mg/L 0.18 1 11/01/21 mrh 11/02/21 ckd 11/01/21 11/02/21 Potassium 4.6 mg/L 0.90 mrh ckd 1 1 Sodium 24 mg/L 0.45 11/01/21 mrh 11/02/21 ckd N <0.018 mg/L 0.018 11/01/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116267 Antimony <0.00027 mg/L 0.00027 1 11/01/21 11/04/21 mrh acs Arsenic 0.0014 mg/L 0.00090 1 11/01/21 mrh 11/04/21 acs 0.057 mg/L 0.0090 11/01/21 11/04/21 Barium 1 mrh acs Cadmium <0.00090 mg/L 0.00090 1 11/01/21 mrh 11/04/21 acs Chromium 0.0016 mg/L 0.00081 1 11/01/21 mrh 11/04/21 acs Cobalt <0.0014 mg/L 0.0014 11/01/21 mrh 11/04/21 acs 0.0022 mg/L 0.0036 1 11/01/21 11/04/21 Copper mrh acs J Lead 0.00086 mg/L 0.0018 1 11/01/21 mrh 11/04/21 J acs 11/01/21 11/04/21 Manganese 0.046 mg/L 0.022 1 mrh acs Molybdenum 0.0013 mg/L 0.00036 1 11/01/21 11/04/21 N mrh acs 11/04/21 Nickel 0.0020 mg/L 0.0045 1 11/01/21 mrh acs J. Selenium <0.0018 mg/L 0.0018 11/01/21 11/04/21 mrh acs <0.00090 mg/L 11/04/21 Silver 0.00090 1 11/01/21 mrh acs Thallium <0.00090 mg/L 0.00090 1 11/01/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00072

0.0017 mg/L

11/01/21

11/04/21

acs

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-01 Sample ID: SW-SG-1	Matrix: Surface Water		Date Collected: 10/28/21 10:15 Date Received: 10/28/21 15:58			ld pH: 8.46			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	ВҮ	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: SM 2340 B-11									
Batch: [CALC]	"								
Hardness as CaCO3	270 mg/L	0.74	1	11/01/21		11/02/21	ckd	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T116384									
Beryllium	<0.0010 mg/L	0.0010	1	11/03/21	ckd	11/04/21	ckd		
Boron	0.047 mg/L	0.050	1	11/03/21	ckd	11/04/21	ckd	J	
Calcium	69 mg/L	0.50	1	11/03/21	ckd	11/04/21	ckd		
Iron	0.058 mg/L	0.10	1	11/03/21	ckd	11/04/21	ckd	J	
Lithium	0.0033 mg/L	0.010	1	11/03/21	ckd	11/04/21	ckd	J, N	
Magnesium	21 mg/L	0.20	1	11/03/21	ckd	11/04/21	ckd		
Potassium	4.0 mg/L	1.0	1	11/03/21	ckd	11/04/21	ckd		
Sodium	22 mg/L	0.50	1	11/03/21	ckd	11/04/21	ckd	N	
Zinc	0.0018 mg/L	0.020	1	11/03/21	ckd	11/04/21	ckd	J	
Analysis Method: EPA 6020B Batch: T116167									
Antimony	0.00035 mg/L	0.00020	1	11/08/21	ckd	11/08/21	ckd		
Arsenic	0.0013 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Barium	0.051 mg/L	0.00060	1	11/08/21	ckd	11/08/21	ckd		
Cadmium	<0.0010 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Chromium	<0.00080 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		
Cobalt	0.00017 mg/L	0.0016	1	11/08/21	ckd	11/08/21	ckd	J	
Copper	0.0011 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd		
Lead	0.00011 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	J	
Manganese	0.012 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Molybdenum	0.0012 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	N	
Nickel	0.0012 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Selenium	<0.00087 mg/L	0.00087	1	11/08/21	ckd	11/08/21	ckd		
Silver	<0.000040 mg/L	0.000040	1	11/08/21	ckd	11/08/21	ckd		
Thallium	<0.00017 mg/L	0.00017	1	11/08/21	ckd	11/08/21	ckd		

CERTIFICATE OF ANALYSIS

0.00080

0.00053 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

J

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-01 Matrix: Surface Water Date Collected: 10/28/21 10:15

Sample ID: SW-SG-1 Date Received: 10/28/21 15:58 Field pH: 8.46

PARAMETERS RESULTS UNITS DILUTION PREPARED BY ANALYZED BY NOTES MCL RDL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116228

Fluoride 0.094 mg/L 0.10 10/29/21 5 ans 10/29/21 ans J Chloride 43 mg/L 0.75 5 10/29/21 10/29/21 ans Sulfate as SO4 34 mg/L 3.0 5 10/29/21 10/29/21 ans ans Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 220 mg/L 10 1 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <10 mg/L 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116265

Total Dissolved Solids 320 mg/L 40 11/01/21 mr 11/02/21 mr

Date Collected: 10/28/21 09:10

Date Received: 10/28/21 15:58

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Field pH: 7.57

ANALYTICAL RESULTS

Matrix: Surface Water

<0.0016 mg/L

0.0031 mg/L

0.00086 mg/L

0.055 mg/L

0.0010 mg/L

<0.0050 mg/L

<0.0020 mg/L

<0.0010 mg/L

<0.0010 mg/L

0.00061 mg/L

Trace Project ID: 21J1157

Trace ID: 21J1157-02

Cobalt

Copper

Manganese

Molybdenum

Lead

Nickel

Silver

Selenium

Thallium

Vanadium

Sample ID: SW-N-SG-2

Client Project ID: Surface Water Sampling

PARAMETERS RESULTS UNITS DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116283 Mercury 7.5 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116267 Beryllium <0.0020 mg/L 0.0020 1 11/01/21 mrh 11/02/21 ckd Boron 0.13 mg/L 0.050 1 11/01/21 mrh 11/02/21 ckd Calcium 59 mg/L 0.50 1 11/01/21 mrh 11/02/21 ckd 0.20 11/01/21 mrh 11/02/21 Iron 0.41 mg/L 1 ckd 11/02/21 Lithium 0.011 mg/L 0.010 1 11/01/21 mrh ckd Ν Magnesium 22 mg/L 0.20 1 11/01/21 mrh 11/02/21 ckd 11/01/21 11/02/21 Potassium 4.6 mg/L 1.0 mrh ckd 1 1 Sodium 28 mg/L 0.50 11/01/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 11/01/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116267 Antimony 0.00030 11/01/21 <0.00030 mg/L 1 11/04/21 mrh acs Arsenic 0.0010 mg/L 0.0010 1 11/01/21 mrh 11/04/21 acs 0.068 mg/L 0.010 11/01/21 11/04/21 Barium 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 11/01/21 mrh 11/04/21 acs Chromium 0.0021 mg/L 0.00090 1 11/01/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.0016

0.0040

0.0020

0.025

0.00040

0.0050

0.0020

0.0010

0.0010

0.00080

1

1

1

1

1

1

1

11/01/21

11/01/21

11/01/21

11/01/21

11/01/21

11/01/21

11/01/21

11/01/21

11/01/21

11/01/21

mrh

mrh

mrh

mrh

mrh

mrh

mrh

mrh

mrh

11/04/21

11/04/21

11/04/21

11/04/21

11/04/21

11/04/21

11/04/21

11/04/21

11/04/21

11/04/21

acs

J

J

N

J

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Vanadium

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-02 Matrix: Surface Water Date Collected: 10/28/21 09:10 Sample ID: SW-N-SG-2 Date Received: 10/28/21 15:58 Field pH: 7.57 **PARAMETERS RESULTS UNITS** DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 240 mg/L 0.82 11/01/21 11/02/21 Ν ckd **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T116384 Beryllium <0.0010 mg/L 0.0010 11/03/21 ckd 11/04/21 ckd 0.12 mg/L 0.050 11/03/21 11/04/21 Boron 1 ckd ckd Calcium 59 mg/L 0.50 1 11/03/21 ckd 11/04/21 ckd Iron 0.14 mg/L 0.10 1 11/03/21 ckd 11/04/21 ckd Lithium 0.0073 mg/L 0.010 11/03/21 11/04/21 J, N 1 ckd ckd 11/03/21 11/04/21 Magnesium 21 mg/L 0.20 1 ckd ckd Potassium 4.3 mg/L 1.0 1 11/03/21 ckd 11/04/21 ckd Sodium 26 mg/L 0.50 1 11/03/21 ckd 11/04/21 ckd N 11/04/21 Zinc 0.00092 mg/L 0.020 1 11/03/21 J ckd ckd Analysis Method: EPA 6020B Batch: T116167 11/08/21 Antimony 0.00029 mg/L 0.00020 1 11/08/21 ckd ckd Arsenic 0.00091 mg/L 0.0010 1 11/08/21 ckd 11/08/21 ckd J **Barium** 0.066 mg/L 0.00060 1 11/08/21 ckd 11/08/21 ckd Cadmium <0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd <0.00080 mg/L 0.00080 11/08/21 11/08/21 Chromium 1 ckd ckd Cobalt 0.00015 mg/L 0.0016 1 11/08/21 ckd 11/08/21 ckd J 0.00034 mg/L 0.00080 11/08/21 ckd 11/08/21 Copper ckd 1 11/08/21 11/08/21 Lead 0.000098 mg/L 0.00040 ckd ckd J. 0.048 mg/L 0.00040 11/08/21 11/08/21 Manganese 1 ckd ckd Molybdenum 0.0011 mg/L 0.00040 11/08/21 11/08/21 ckd ckd Ν 0.0014 mg/L 0.00040 1 11/08/21 ckd 11/08/21 Nickel ckd <0.00087 mg/L 11/08/21 Selenium 0.00087 1 11/08/21 ckd ckd Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00017 mg/L Thallium 0.00017 1 11/08/21 ckd 11/08/21 ckd

CERTIFICATE OF ANALYSIS

0.00080

0.00038 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

J

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

BY

ANALYTICAL RESULTS

RDL

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-02 Sample ID: SW-N-SG-2

Matrix: Surface Water

RESULTS UNITS

Date Collected: 10/28/21 09:10

Date Received: 10/28/21 15:58

DILUTION

PREPARED

Field pH: 7.57

BY ANALYZED

NOTES MCL

METALS, DISSOLVED

PARAMETERS

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116228

Fluoride 0.14 mg/L 0.10 10/29/21 10/29/21 5 ans ans Chloride 52 mg/L 1.5 10 11/02/21 11/02/21 jma jma Sulfate as SO4 3.0 10/29/21 10/29/21 <3.0 mg/L 5 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 210 mg/L 10 1 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <10 mg/L 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116265

Total Dissolved Solids 340 mg/L 40 4 11/01/21 mr 11/02/21 mr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-03 Matrix: Surface Water Date Collected: 10/28/21 12:05 Sample ID: SW-SE-MW-7 Date Received: 10/28/21 15:58 Field pH: 7.80 **PARAMETERS** RESULTS UNITS DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: EPA 1631E Batch: T116283 Mercury 3.0 ng/L 0.50 11/01/21 ckd 11/02/21 Ν ckd Analysis Method: EPA 6010D Batch: T116267 Beryllium <0.0020 mg/L 0.0020 1 11/01/21 mrh 11/02/21 ckd Boron 0.049 mg/L 0.050 1 11/01/21 mrh 11/02/21 ckd J Calcium 71 mg/L 0.50 1 11/01/21 mrh 11/02/21 ckd 0.20 11/01/21 11/02/21 Iron 0.99 mg/L 1 mrh ckd 11/01/21 11/02/21 Lithium <0.010 mg/L 0.010 1 mrh ckd Ν Magnesium 21 mg/L 0.20 1 11/01/21 mrh 11/02/21 ckd 11/01/21 11/02/21 Potassium 4.7 mg/L 1.0 mrh 1 ckd 1 Sodium 23 mg/L 0.50 11/01/21 mrh 11/02/21 ckd N <0.020 mg/L 0.020 11/01/21 11/02/21 Zinc mrh ckd Analysis Method: EPA 6020B Batch: T116267 Antimony 0.00030 11/01/21 <0.00030 mg/L 1 11/04/21 mrh acs Arsenic 0.0017 mg/L 0.0010 1 11/01/21 mrh 11/04/21 acs 0.058 mg/L 0.010 11/01/21 11/04/21 Barium 1 mrh acs Cadmium <0.0010 mg/L 0.0010 1 11/01/21 mrh 11/04/21 acs Chromium 0.0026 mg/L 0.00090 1 11/01/21 mrh 11/04/21 acs Cobalt <0.0016 mg/L 0.0016 11/01/21 mrh 11/04/21 acs 0.0033 mg/L 0.0040 1 11/01/21 11/04/21 Copper mrh acs J Lead 0.0021 mg/L 0.0020 1 11/01/21 mrh 11/04/21 acs 0.071 mg/L 11/01/21 11/04/21 Manganese 0.025 1 mrh acs Molybdenum 0.0013 mg/L 0.00040 1 11/01/21 11/04/21 Ν mrh acs 11/04/21 Nickel 0.0025 mg/L 0.0050 1 11/01/21 mrh acs J. Selenium <0.0020 mg/L 0.0020 11/01/21 11/04/21 mrh acs <0.0010 mg/L 0.0010 11/04/21 Silver 1 11/01/21 mrh acs Thallium <0.0010 mg/L 0.0010 1 11/01/21 mrh 11/04/21 acs

CERTIFICATE OF ANALYSIS

0.00080

11/01/21

11/04/21

acs

0.0023 mg/L

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-03 Matrix: Surface Water Date Collected: 10/28/21 12:05 Sample ID: SW-SE-MW-7 Date Received: 10/28/21 15:58 Field pH: 7.80 **PARAMETERS** RESULTS UNITS DILUTION **PREPARED** BY ANALYZED BY **NOTES** MCL RDL **METALS, TOTAL** Analysis Method: SM 2340 B-11 Batch: [CALC] Hardness as CaCO3 270 mg/L 0.82 11/01/21 11/02/21 Ν ckd **METALS, DISSOLVED** Analysis Method: EPA 6010D Batch: T116384 Beryllium <0.0010 mg/L 0.0010 11/03/21 ckd 11/04/21 ckd 0.050 11/03/21 11/04/21 Boron 0.045 mg/L 1 ckd ckd J Calcium 70 mg/L 0.50 1 11/03/21 ckd 11/04/21 ckd Iron 0.067 mg/L 0.10 1 11/03/21 ckd 11/04/21 ckd J Lithium 0.0034 mg/L 0.010 11/03/21 ckd 11/04/21 1 ckd J. N 11/03/21 11/04/21 Magnesium 21 mg/L 0.20 1 ckd ckd Potassium 4.1 mg/L 1.0 1 11/03/21 ckd 11/04/21 ckd Sodium 21 mg/L 0.50 1 11/03/21 ckd 11/04/21 ckd N 11/04/21 Zinc 0.0016 mg/L 0.020 1 11/03/21 J ckd ckd Analysis Method: EPA 6020B Batch: T116167 11/08/21 Antimony 0.00023 mg/L 0.00020 1 11/08/21 ckd ckd Arsenic 0.0013 mg/L 0.0010 1 11/08/21 ckd 11/08/21 ckd **Barium** 0.051 mg/L 0.00060 1 11/08/21 ckd 11/08/21 ckd Cadmium <0.0010 mg/L 0.0010 11/08/21 ckd 11/08/21 ckd <0.00080 mg/L 0.00080 11/08/21 11/08/21 Chromium 1 ckd ckd Cobalt 0.00018 mg/L 0.0016 1 11/08/21 ckd 11/08/21 ckd J 0.0013 mg/L 0.00080 11/08/21 ckd 11/08/21 Copper 0.000089 mg/L 0.00040 1 11/08/21 11/08/21 Lead ckd ckd J 0.022 mg/L 0.00040 11/08/21 11/08/21 Manganese 1 ckd ckd Molybdenum 0.0012 mg/L 0.00040 11/08/21 11/08/21 ckd ckd Ν 0.0013 mg/L 0.00040 1 11/08/21 ckd 11/08/21 Nickel ckd <0.00087 mg/L 11/08/21 11/08/21 Selenium 0.00087 ckd ckd Silver <0.000040 mg/L 0.000040 11/08/21 ckd 11/08/21 ckd <0.00017 mg/L Thallium 0.00017 1 11/08/21 ckd 11/08/21 ckd

CERTIFICATE OF ANALYSIS

0.00080

0.00054 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

J

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-03

Sample ID: SW-SE-MW-7

Matrix: Surface Water

Date Collected: 10/28/21 12:05

Date Received: 10/28/21 15:58

Field pH: 7.80

PARAMETERS

RESULTS UNITS

32 mg/L

220 mg/L

<10 mg/L

330 mg/L

DILUTION

PREPARED

BY ANALYZED

BY NOTES

MCL

METALS, DISSOLVED

WET CHEMISTRY

Fluoride

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116228

Chloride Sulfate as SO4

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 Carbonate Alkalinity as CaCO3 at pH 8.2

Analysis Method: SM 2540 C-11

Batch: T116265

Total Dissolved Solids

0.093 mg/L 0.10 41 mg/L

0.75 3.0

10

10

38

RDL

5 10/29/21 5 10/29/21

5

1

3.846154

10/29/21

11/03/21

11/03/21

10/29/21 ans ans

ans

ans

ans

10/29/21

10/29/21

ans

ans

J

ans

11/04/21 Ν 11/04/21 Ν ans

mr

11/01/21 mr 11/02/21

CERTIFICATE OF ANALYSIS

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-04 Sample ID: SW-NE-MW-10	Matrix: Surface Water	Date Collected: 10/28/21 10:30 Date Received: 10/28/21 15:58			Fie	eld pH: 7.89			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: EPA 1631E Batch: T116283									
Mercury	8.8 ng/L	0.50	1	11/01/21	ckd	11/02/21	ckd	N	
Analysis Method: EPA 6010D Batch: T116267									
Beryllium	<0.0020 mg/L	0.0020	1	11/01/21	mrh	11/02/21	ckd		
Boron	0.20 mg/L	0.050	1	11/01/21	mrh	11/02/21	ckd		
Calcium	62 mg/L	0.50	1	11/01/21	mrh	11/02/21	ckd		
Iron	0.25 mg/L	0.20	1	11/01/21	mrh	11/02/21	ckd		
Lithium	0.015 mg/L	0.010	1	11/01/21	mrh	11/02/21	ckd	N	
Magnesium	24 mg/L	0.20	1	11/01/21	mrh	11/02/21	ckd		
Potassium	4.7 mg/L	1.0	1	11/01/21	mrh	11/02/21	ckd		
Sodium	29 mg/L	0.50	1	11/01/21	mrh	11/02/21	ckd	N	
Zinc	<0.020 mg/L	0.020	1	11/01/21	mrh	11/02/21	ckd		
Analysis Method: EPA 6020B Batch: T116267									
Antimony	<0.00030 mg/L	0.00030	1	11/01/21	mrh	11/04/21	acs		
Arsenic	0.00091 mg/L	0.0010	1	11/01/21	mrh	11/04/21	acs	J	
Barium	0.067 mg/L	0.010	1	11/01/21	mrh	11/04/21	acs		
Cadmium	<0.0010 mg/L	0.0010	1	11/01/21	mrh	11/04/21	acs		
Chromium	0.0017 mg/L	0.00090	1	11/01/21	mrh	11/04/21	acs		
Cobalt	<0.0016 mg/L	0.0016	1	11/01/21	mrh	11/04/21	acs		
Copper	<0.0040 mg/L	0.0040	1	11/01/21	mrh	11/04/21	acs		
Lead	<0.0020 mg/L	0.0020	1	11/01/21	mrh	11/04/21	acs		
Manganese	0.10 mg/L	0.025	1	11/01/21	mrh	11/04/21	acs		
Molybdenum	0.0010 mg/L	0.00040	1	11/01/21	mrh	11/04/21	acs	N	
Nickel	<0.0050 mg/L	0.0050	1	11/01/21	mrh	11/04/21	acs		
Selenium	<0.0020 mg/L	0.0020	1	11/01/21	mrh	11/04/21	acs		
Silver	<0.0010 mg/L	0.0010	1	11/01/21	mrh	11/04/21	acs		
Thallium	<0.0010 mg/L	0.0010	1	11/01/21	mrh	11/04/21	acs		

CERTIFICATE OF ANALYSIS

0.00080

0.00086 mg/L

11/01/21

11/04/21

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-04 Sample ID: SW-NE-MW-10	Matrix: Surface Water	Date Collected: 10/28/21 10:30 Date Received: 10/28/21 15:58			Fie	eld pH: 7.89			
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY ANALYZED		BY	NOTES	MCL
METALS, TOTAL									
Analysis Method: SM 2340 B-11 Batch: [CALC]									
Hardness as CaCO3	250 mg/L	0.82	1	11/01/21		11/02/21	ckd	N	
METALS, DISSOLVED									
Analysis Method: EPA 6010D Batch: T116384									
Beryllium	<0.0010 mg/L	0.0010	1	11/03/21	ckd	11/04/21	ckd		
Boron	0.18 mg/L	0.050	1	11/03/21	ckd	11/04/21	ckd		
Calcium	56 mg/L	0.50	1	11/03/21	ckd	11/04/21	ckd		
Iron	0.077 mg/L	0.10	1	11/03/21	ckd	11/04/21	ckd	J	
Lithium	0.010 mg/L	0.010	1	11/03/21	ckd	11/04/21	ckd	N	
Magnesium	21 mg/L	0.20	1	11/03/21	ckd	11/04/21	ckd		
Potassium	4.4 mg/L	1.0	1	11/03/21	ckd	11/04/21	ckd		
Sodium	27 mg/L	0.50	1	11/03/21	ckd	11/04/21	ckd	N	
Zinc	<0.020 mg/L	0.020	1	11/03/21	ckd	11/04/21	ckd		
Analysis Method: EPA 6020B Batch: T116167									
Antimony	0.00032 mg/L	0.00020	1	11/08/21	ckd	11/08/21	ckd		
Arsenic	0.00097 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd	J	
Barium	0.059 mg/L	0.00060	1	11/08/21	ckd	11/08/21	ckd		
Cadmium	<0.0010 mg/L	0.0010	1	11/08/21	ckd	11/08/21	ckd		
Chromium	0.00043 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd	J	
Cobalt	0.00013 mg/L	0.0016	1	11/08/21	ckd	11/08/21	ckd	J	
Copper	0.00056 mg/L	0.00080	1	11/08/21	ckd	11/08/21	ckd	J	
Lead	0.00013 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	J	
Manganese	0.024 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Molybdenum	0.00094 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd	N	
Nickel	0.0013 mg/L	0.00040	1	11/08/21	ckd	11/08/21	ckd		
Selenium	<0.00087 mg/L	0.00087	1	11/08/21	ckd	11/08/21	ckd		
Silver	<0.000040 mg/L	0.000040	1	11/08/21	ckd	11/08/21	ckd		
Thallium	<0.00017 mg/L	0.00017	1	11/08/21	ckd	11/08/21	ckd		

CERTIFICATE OF ANALYSIS

0.00080

0.00031 mg/L

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

1

11/08/21

ckd

11/08/21

ckd

J

Vanadium

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID: 21J1157-04 Matrix: Surface Water Date Collected: 10/28/21 10:30

Sample ID: SW-NE-MW-10 Date Received: 10/28/21 15:58 Field pH: 7.89

PARAMETERS RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY NOTES MCL

METALS, DISSOLVED

WET CHEMISTRY

Analysis Method: EPA 300.0 Rev. 2.1

Batch: T116228

Fluoride 0.12 mg/L 0.10 10/29/21 10/29/21 5 ans ans Chloride 52 mg/L 1.5 10 11/02/21 11/02/21 jma jma Sulfate as SO4 31 mg/L 3.0 5 10/29/21 10/29/21 ans ans

Analysis Method: SM 2320 B-11

Batch: T116366

Bicarbonate Alkalinity as CaCO3 at pH 4.5 190 mg/L 10 1 11/03/21 ans 11/04/21 ans Ν Carbonate Alkalinity as CaCO3 at pH 8.2 <10 mg/L 10 11/03/21 11/04/21 Ν ans ans

Analysis Method: SM 2540 C-11

Batch: T116265

Total Dissolved Solids 300 mg/L 40 4 11/01/21 mr 11/02/21 mr

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

QUALITY CONTROL RESULTS

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: T116283 Analysis Description: Mercury, Total, Low Level

QC Batch Method: EPA 1631E Analysis Method: EPA 1631E Analysis Method: EPA 1631E

METHOD BLANK: T116283-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/l	<0.20	0.20	

METHOD BLANK: T116283-BLK2

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	na/L	<0.20	0.20	

METHOD BLANK: T116283-BLK3

Parameter	Units	Blank Result	Reporting Limit	Notes
Mercury	ng/L	<0.20	0.20	

LABORATORY CONTROL SAMPLE: T116283-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Mercury	ng/L	25.0	23.4	94	77-123	

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: T116267 Analysis Description: Beryllium, Total
QC Batch Method: EPA 3015 Microwave Assisted Digestions Analysis Method: EPA 6010D

for Liquids

METHOD BLANK: T116267-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Boron	mg/L	<0.050	0.050	
Beryllium	mg/L	<0.0020	0.0020	
Calcium	mg/L	0.17	0.50	J
Iron	mg/L	<0.20	0.20	
Potassium	mg/L	0.18	1.0	J
Lithium	mg/L	<0.010	0.010	
Magnesium	mg/L	0.057	0.20	J
Sodium	mg/L	0.39	0.50	J

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T116267-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Zinc	mg/L	<0.020	0.020	

LABORATORY CONTROL SAMPLE: T116267-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	0.889	0.857	96	80-120	
Beryllium	mg/L	0.111	0.110	99	80-120	
Calcium	mg/L	8.89	8.88	100	80-120	
Iron	mg/L	8.89	9.16	103	80-120	
Potassium	mg/L	8.89	9.15	103	80-120	
Lithium	mg/L	0.889	0.887	100	80-120	
Magnesium	mg/L	8.89	9.28	104	80-120	
Sodium	mg/L	8.89	9.42	106	80-120	
Zinc	mg/L	0.889	0.921	104	80-120	

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: T116384 Analysis Description: Zinc, Dissolved
QC Batch Method: Analysis Method: EPA 6010D

METHOD BLANK: T116384-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Boron	mg/L	<0.050	0.050	
Beryllium	mg/L	<0.0010	0.0010	
Calcium	mg/L	<0.50	0.50	
Iron	mg/L	<0.10	0.10	
Potassium	mg/L	0.029	1.0	J
Lithium	mg/L	<0.010	0.010	
Magnesium	mg/L	<0.20	0.20	
Sodium	mg/L	<0.50	0.50	
Zinc	mg/L	<0.020	0.020	

LABORATORY CONTROL SAMPLE: T116384-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Boron	mg/L	1.00	0.932	93	80-120	
Beryllium	mg/L	0.0500	0.0519	104	80-120	
Calcium	mg/L	10.0	10.0	100	80-120	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T116384-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Iron	mg/L	10.0	10.1	101	80-120	
Potassium	mg/L	10.0	9.86	99	80-120	
Lithium	mg/L	0.500	0.493	99	80-120	
Magnesium	mg/L	10.0	10.0	100	80-120	
Sodium	mg/L	10.0	9.67	97	80-120	
Zinc	mg/L	1.00	1.01	101	80-120	

MATRIX SPIKE / MATRIX SPIKE DUPLICATE: T116384-MSD1

Original: 21J1157-01

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Notes
Boron	mg/L	0.0467	1.00	0.978	0.972	93	93	75-125	0.7	20	
Beryllium	mg/L	0	0.0500	0.0533	0.0522	107	104	75-125	2	20	
Calcium	mg/L	69.2	10.0	80.6	77.8	114	86	75-125	28	20	207
Iron	mg/L	0.0584	10.0	10.2	10.0	101	100	75-125	1	20	
Potassium	mg/L	4.00	10.0	14.1	14.0	101	100	75-125	1	20	
Lithium	mg/L	0.00333	0.500	0.499	0.493	99	98	75-125	1	20	
Magnesium	mg/L	20.8	10.0	31.2	30.2	104	94	75-125	10	20	
Sodium	mg/L	21.5	10.0	31.3	31.1	98	96	75-125	2	20	
Zinc	mg/L	0.00178	1.00	0.985	0.980	98	98	75-125	0.5	20	

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: T116167 QC Batch Method: Analysis Description: Chromium, Dissolved

Analysis Method: EPA 6020B

METHOD BLANK: T116167-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Silver	mg/L	0.000026	0.000040	J
Arsenic	mg/L	<0.0010	0.0010	
Barium	mg/L	<0.00060	0.00060	
Cadmium	mg/L	<0.00020	0.00020	
Cobalt	mg/L	<0.0016	0.0016	
Chromium	mg/L	<0.00080	0.00080	
Copper	mg/L	<0.00080	0.00080	
Manganese	mg/L	<0.00040	0.00040	
Molybdenum	mg/L	<0.00040	0.00040	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T116167-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Nickel	mg/L	<0.00040	0.00040	
Lead	mg/L	<0.00040	0.00040	
Antimony	mg/L	0.00017	0.00020	J
Selenium	mg/L	<0.00087	0.00087	
Thallium	mg/L	<0.00017	0.00017	
Vanadium	mg/L	<0.00080	0.00080	

LABORATORY CONTROL SAMPLE: T116167-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Silver	mg/L	0.0600	0.0612	102	80-120	
Arsenic	mg/L	0.0600	0.0630	105	80-120	
Barium	mg/L	0.0600	0.0588	98	80-120	
Cadmium	mg/L	0.0600	0.0613	102	80-120	
Cobalt	mg/L	0.0600	0.0604	101	80-120	
Chromium	mg/L	0.0600	0.0629	105	80-120	
Copper	mg/L	0.0600	0.0610	102	80-120	
Manganese	mg/L	0.0600	0.0615	102	80-120	
Molybdenum	mg/L	0.0600	0.0588	98	80-120	
Nickel	mg/L	0.0600	0.0602	100	80-120	
Lead	mg/L	0.0600	0.0616	103	80-120	
Antimony	mg/L	0.0600	0.0577	96	80-120	
Selenium	mg/L	0.0600	0.0630	105	80-120	
Thallium	mg/L	0.0600	0.0617	103	80-120	
Vanadium	mg/L	0.0600	0.0581	97	80-120	

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: T116267

QC Batch Method: EPA 3015 Microwave Assisted Digestions

for Liquids

Analysis Description: Nickel, Total Analysis Method: EPA 6020B

METHOD BLANK: T116267-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Silver	mg/L	<0.0010	0.0010	
Arsenic	mg/L	<0.0010	0.0010	
Barium	mg/L	<0.010	0.010	
Cadmium	mg/L	<0.0010	0.0010	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

METHOD BLANK: T116267-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Cobalt	mg/L	<0.0016	0.0016	
Chromium	mg/L	<0.00090	0.00090	
Copper	mg/L	<0.0040	0.0040	
Manganese	mg/L	<0.025	0.025	
Molybdenum	mg/L	<0.00040	0.00040	
Nickel	mg/L	<0.0050	0.0050	
Lead	mg/L	<0.0020	0.0020	
Antimony	mg/L	<0.00030	0.00030	
Selenium	mg/L	<0.0020	0.0020	
Γhallium	mg/L	<0.0010	0.0010	
Vanadium	mg/L	<0.00080	0.00080	

LABORATORY CONTROL SAMPLE: T116267-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Silver	mg/L	0.0278	0.0329	118	80-120	
Arsenic	mg/L	0.0556	0.0602	108	80-120	
Barium	mg/L	0.889	0.994	112	80-120	
Cadmium	mg/L	0.0278	0.0307	111	80-120	
Cobalt	mg/L	0.889	0.923	104	80-120	
Chromium	mg/L	0.0278	0.0303	109	80-120	
Copper	mg/L	0.890	0.882	99	80-120	
Manganese	mg/L	0.887	0.918	104	80-120	
Molybdenum	mg/L	0.889	0.945	106	80-120	
Nickel	mg/L	0.889	0.869	98	80-120	
Lead	mg/L	0.0556	0.0542	98	80-120	
Antimony	mg/L	0.0556	0.0634	114	80-120	
Selenium	mg/L	0.0556	0.0584	105	80-120	
Thallium	mg/L	0.0556	0.0552	99	80-120	
Vanadium	mg/L	0.889	0.974	110	80-120	

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: [CALC] Analysis Description: Hardness (Metals)
QC Batch Method: Analysis Method: SM 2340 B-11

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

QC Batch: T116228

QC Batch Method: IC Prep W

Analysis Description: Chloride

Analysis Method: EPA 300.0 Rev. 2.1

METHOD BLANK: T116228-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Chloride	mg/L	<0.15	0.15	
Fluoride	mg/L	<0.020	0.020	
Sulfate as SO4	mg/L	<0.60	0.60	

LABORATORY CONTROL SAMPLE: T116228-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Chloride	mg/L	5.00	5.16	103	90-110	_
Fluoride	mg/L	1.00	1.03	103	90-110	
Sulfate as SO4	mg/L	5.00	4.89	98	90-110	

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: T116313

Analysis Description: Chloride

QC Batch Method: IC Prep W

Analysis Method: EPA 300.0 Rev. 2.1

METHOD BLANK: T116313-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Chloride	ma/L	<0.15	0.15	

LABORATORY CONTROL SAMPLE: T116313-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Chloride	ma/l	5.00	4.57	91	90-110	

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: T116366 QC Batch Method: SM 2320 B-11 Analysis Description: Alkalinity, Carbonate

Analysis Method: SM 2320 B-11

LABORATORY CONTROL SAMPLE: T116366-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Bicarbonate Alkalinity as CaCO3 at pH 4.5	mg/L	100	97.3	97	88-112	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

LABORATORY CONTROL SAMPLE: T116366-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Carbonate Alkalinity as CaCO3 at pH 8.2	mg/L	100	97.3	97	88-112	

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

QC Batch: T116265

QC Batch Method: SM 2540 C-11

Analysis Description: Total Dissolved Solids
Analysis Method: SM 2540 C-11

METHOD BLANK: T116265-BLK1

Parameter	Units	Blank Result	Reporting Limit	Notes
Total Dissolved Solids	mg/L	9.0	10	J

LABORATORY CONTROL SAMPLE: T116265-BS1

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limit	Notes
Total Dissolved Solids	ma/L	500	527	105	80-120	

SAMPLE DUPLICATE: T116265-DUP1 Original: 21J1157-01

Parameter Total Dissolved Solids	Units mg/L	Result 320	Result 368	RPD	RPD 10	Notes 623	_
		Original	DUP	DDD	Max	Make	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Pleas	se Sig	n			-		7	C	7	1586.01	Trace Date No. Collected	Project Name:	*Results provide	3 Day*	Turnaround Requirements: X Standard, 5-10 Days	Email Address:	Office Phone:	City, State, Zip Code:	Mailing Address:	Report To: Paul Cederquist	Company Nam	Report Results To:) 2 m		
	M	" "			-	+	5	5	0	_	cted Co	A Sauton S	led end o		Requiard, 5-101			Code:	92	ul Cede	e: Gran	ults To:			
		Released By					0:30	12:05	91.19	20.	Time Collected	Surface \	f busines		rement Days					rquist	d Have	0-20			
(4) In executing this Chain of Custody, the client acknowledges the terms as set forth at www.trace-labs.com/terms-of-agreement.	K	By Received By					SW-NE-MW-10	SW-SE-MW-7	SW-N-SG-2	SW-SG-1	Client Sample ID	Water Sampling	St. = Sludge "Results provided end of business day, requires prior approval. OI = Oil	W = Water	s: Matrix Key: S = Soil / Solid		Cell Phone:				Company Name: Grand Haven Board of Light & Power		ATORING, INC.		1
dv the client ac	108001	, Date					_		_	_	Metals Field	Sampled By:	A = Air D = Drinking Water		: WI = Wipes	Billing Email Address:	Phone Number:	City, State, Zip Code:	Billing Address (if different):	Contact Name:	PO#	Bill To:	2241 Black Creek Road Muskegon, MI 49444-2673	Trace Analytical Laboratories, Inc.	
	16	\dashv		+	+	+	<u>≺</u> ⊗	∀	×	∀	Filtered (Y / N) Matrix	1//1	ing Wa	iid Wa	S	ddress		Code:	(if diffe				eek H 4944	alLal	
does	500	Time			\top		5	5	S	5	Number of Containers	100	iter	ste					erent):				t-26	oorat	
the ten	2)	4			+		×	×	×	×	Cool HCI 30		-										73	ories	
rms a		þ			+		×	×	×	×	HCI Preservation H ₂ SO ₄ NaOH	B												, Inc.	
SP		ŀ			\pm	\pm																		1.50	
2		ᄝ			+		×	_	نـــ	×	Other T-B,Ca,Fe	Sh As	Ba Be C	Cd C	,	1									
*www		Released By	-	+	+	+	4			×	T- Co,Cu,												¥ a	모	
t acc		By -		+	+	+	90			X	T- TI, V,Zn				-								x 888	one :	
ahe c		-	\dashv	+	+		<			×	Diss.Metal			als)									3.97s	231.7	
m/fa		-		-	+	+	1		-	$\frac{1}{\times}$	Fluoride,S				es es								Fax 888.979.4469 www.trace-labs.com	Phone 231.773.5998	
	\vdash	+		+	+			-		×	рН												om o	998	
groe-		ŀ			+	-	6	-		×	LLHg				⊢ Anal	<u> </u>	1	_				1			
nemo		ᇛ	-		+	+	8	_		X	Radiums 2	26/228			Analysis Requested		Sar	Т	Soi	S,	<u></u>	쿫			
		Received By			-	+	65			X	Bicarb-Alk		1075 00000		Req		Sampling Time:	МеОН	Vola	cked	Logged By:	race Use:			ı
		By			-	+	100			+	2.23.27.110	,		7-12-	—est		Time	임	tiles P	By:	Ϋ́	Jse:	6	2	
		-			-	+			\vdash	-					<u> </u>				resen	_	1		ć	-	١
		\dashv		_										_				Low Level	ved (c	区	X	2	-	Ггасс	
	\vdash	Date					pH=7.89	08.7.=Hd	pH=7.5	pH=8.4(Remarks							Level Lab	Soil Volatiles Preserved (dircle if applicable):		2	_		Trace ID No.	80
		Time			_	-	20	96	\simeq	6	Possible He	alth Han	ards?		\dashv			8	<u></u>						П

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Spec. Conductivity: 3% Dissolved Oxygeh: 10% ORP: +/- 10 mV Turbidity: 10% ar <1 pH: +/- 0.1	Stabilization Criteria: Temperature: 3%	рН	Turbidity(NTU)	ORP (mV)	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Reading Time		Surface Water ID: W-SS-2	Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form
ity: 3% in: 10% or <1	teria:	 7.57	0,0	6	0.02	. 472	9.43	9:00	Purge Start Time: 중: 서도	: N-55-ð	lytical La
		7.57	0.0	6	60.07	· 472	9.93	9:03	ie: 8: 45		boratorio
Pum	Notes:	7.57	0.0	6	16.02	472	9.93	9:06	_ Purgo		es: Low Flow We
Pump Used: Peristaltic	:S:								Purge Rate: 30		ow Well F
tic								,	300 malmin		ourging Fi
									,		Field Measuren
											urements
				-							s Form
								,			

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1	pΗ	bidity(NTU)	ORP (mV)	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Reading Time		Surface Water ID : 56 -	Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form Client: GHBLP Date: 10-28-21 Field Personnel: EB/TB
teria: % ity: 3% en: 10%	8.46	72.4	196	7.91	.581	11.28	80:01	Purge Start Time: 9:55	: 56-1	lytical La
	3.46	22.4	136	7.91	185.	11.28	10:11	\$.50 \$.50 \$.50 \$.50 \$.50 \$.50 \$.50 \$.50	J	boratorie
Notes:	8.46	12,4	196	7.91	.581	11.28	16: 13	Purg		S: Low Flow W
Notes: Pump Used: Peristaltic								Purge Rate: <u>දිප</u> ප		ow Well I
altic						1		Soom Clusion		Purging F
								2		Field Measure
					-					suremen
									,	ts Form
				7 8						

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Stabil Temp Spec. Disso ORP: Turbii pH:+	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Turbi.	ORP (mV)	Dissolved Oxygen	Specific Conduct	Tempera (Celsius)	Readi		Surfac	Tra
Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1		Turbidity(NTU)	mV)	٥	Specific Conductivity	Temperature (Celsius)	Reading Time	-	ce Water ID	Trace Anal
eria: 6 17: 3% 17: 10%	7.89		53	10.05	.463	10.20	10:20	Purge Start Time: 10:05	Surface Water ID: NE-MW-10	ytical La
	7.89	14.9	25	10.05	.463	10.20	10:23	e: 10:05	2-10	boratorie
Notes: Pump Used: Peristaltic	7.89	14.9	5	(0, 05	.463	16.30	16:26	Purge Rate:		Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form
ristaltic								Sooul Inin	i	ell Purging Fi
								,		Field Measureme
										ements Fo
										ä

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Client: GHBLP	072 16.72 16.73 16	Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1		Turbidity(NTU)	ORP (mV)	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Reading Time		Surface Water ID	Client: GHBLP	Trace Ana
Date: 10-28-21 Date	Date: 10.28.31 Field Measur Date: 10.28.31 Field Personnel: 15. 11.58 12.01 10.73 10.73 10.75 9.75 9.75 9.75 Notes: Notes: Pump Used: Peristaltic	teria: % ity: 3% n: 10%	7.86	0	52	9.75	.476	10.72	11:55	ourge Start Tin	: SE-MU		lytical La
Pump Used: Peristaltic	Purge Rate:		7.80	10.1	57	9.75	,476		11:58	ne: 11.40	;		boratori
	Field Personnel:	Notes: Pump Used: Peristaltic	%	[0,1	S.	9,75	,476	16.72	(2:0)		·	Date: 10-28-21	es: Low Flow Well Pur
ements Form 5/ TR													

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

roject Manager: Jon Mink		8
	Date: 10/29/21 5	erature
	Time: 9 3 7 Logged by: DW Package Description:	
<u> </u>	Package Description:	Corrected Temp IR-9 (CF: +0.1°C) IR-10 (CF: +0.1°C 20B12743 (CF: -CF: -CF: -CF: -CF: -CF: -CF: -CF: -
· · · · · · · · · · · · · · · · · · ·		Corrected Tem IR-9 (CF: +0.1° IR-10 (CF: +0.1 20B12743 (CF: Temp Blank Client Sample
	Package Temp °C - 0.4 Representative Sample Temp °C 5.2	-0.3 V
Sample Receipt Yes / No		
Received on ice or other coolant Country Coustody seals present Courier Client Drop-off UPS	- The state with applicable)	Other
Sample Condition		e e
All sample containers arrived unbroken Sufficient sample to run requested analy Correct chemical preservative added to	yses	•
Samples preserved at Trace Chemical preservation verified, check EN pH 0-2.5 (Lot: HC029115)	MD pH test strip used (if applicable)	
	Company Company (197)	Other
Chemical preservation verified, check END pH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC)	MD pH test strip used (if applicable)	Other
Chemical preservation verified, check END PH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No All bottle labels agree with COC	MD pH test strip used (if applicable)	□ Other
Chemical preservation verified, check END PH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No	MD pH test strip used (if applicable)	□ Other
Chemical preservation verified, check END PH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No All bottle labels agree with COC COC filled out properly COC signed by client	MD pH test strip used (if applicable) PH 11.0-13.0 (Lot: HC022540)	□ Other
Chemical preservation verified, check END pH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No All bottle labels agree with COC COC filled out properly	MD pH test strip used (if applicable) PH 11.0-13.0 (Lot: HC022540)	□ Other
Chemical preservation verified, check END PH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No All bottle labels agree with COC COC filled out properly COC signed by client	MD pH test strip used (if applicable) PH 11.0-13.0 (Lot: HC022540)	Other
Chemical preservation verified, check END PH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No All bottle labels agree with COC COC filled out properly COC signed by client	MD pH test strip used (if applicable) PH 11.0-13.0 (Lot: HC022540)	Other
Chemical preservation verified, check END PH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No All bottle labels agree with COC COC filled out properly COC signed by client	MD pH test strip used (if applicable) PH 11.0-13.0 (Lot: HC022540)	Other
Chemical preservation verified, check END PH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs Chain of Custody (COC) Yes No All bottle labels agree with COC COC filled out properly COC signed by client	MD pH test strip used (if applicable) PH 11.0-13.0 (Lot: HC022540)	□ Other

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

November 30, 2021

Mr. Paul Cederquist Grand Haven Board of Light and Power-Monthly MWs 1700 Eaton Drive Grand Haven, MI 49417

RE: Trace Project 21J1157

Client Project Surface Water Sampling

Dear Mr. Cederquist:

Enclosed are your analytical results. The results of this report relate only to the samples listed in the body of this report.

All reports were examined through Trace's validation process to ensure that requirements for quality and completeness were satisfied. All reported analytical results were obtained in accordance with the methods referenced on the reports. Every practical effort was made to meet the reporting limit specifications for this work, however, some results may have raised reporting limits to correct for percent solids.

The results were obtained from Eurofins.

For clients that require NELAC Accreditation, Trace certifies that these test results meet all requirements of the NELAC Standard, except for those analytes with a "N" notation. These analytes have not been evaluated by NELAC at Trace's discretion and will not be reported unless requested by client.

If you have questions concerning this report, please contact me at 231.773.5998 or by email at jmink@trace-labs.com.

Sincerely,

Jon Mink

Senior Project Manager

Enclosures

NJDEP Accreditation No. MI008

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

SAMPLE SUMMARY

Trace Project ID: 21J1157

Client Project ID: Surface Water Sampling

Trace ID	Sample ID	Matrix	Collected By	Date Collected	Date Received
21J1157-01	SW-SG-1	Surface Water	TRACE-EB/TB	10/28/21 10:15	10/28/21 15:58
21J1157-02	SW-N-SG-2	Surface Water	TRACE-EB/TB	10/28/21 09:10	10/28/21 15:58
21J1157-03	SW-SE-MW-7	Surface Water	TRACE-EB/TB	10/28/21 12:05	10/28/21 15:58
21J1157-04	SW-NE-MW-10	Surface Water	TRACE-EB/TB	10/28/21 10:30	10/28/21 15:58

AN EXPLANATION OF TERMS AND SYMBOLS WHICH MAY OCCUR IN THIS REPORT

DEFINITIONS

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

MS Matrix Spike

MSD Matrix Spike Duplicate
RPD Relative Percent Difference

DUP Matrix Duplicate

RDL Reporting Detection Limit
MCL Maximum Contamination Limit
TIC Tentatively Identified Compound

<, ND or U Indicates the compound was analyzed for but not detected

* Indicates a result that exceeds its associated MCL or Surrogate control limits

N Indicates that the compound has not been evaluated by NELAC

NA Indicates that the compound is not available.

Environment Testing America

ANALYTICAL REPORT

Eurofins Eaton Analytical - South Bend 110 S Hill Street South Bend, IN 46617 Tel: (574)233-4777

Laboratory Job ID: 810-6473-1 Client Project/Site: Trace - 21J1157

Revision: 1

For:

Trace Analytical Laboratories 2241 Black Creek Road Muskegon, Michigan 49444

Attn: Jon Mink

Karew Fullner

Authorized for release by: 11/30/2021 11:40:43 AM

Karen Fullmer, Project Manager (574)233-4777

karen.fullmer@eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

8

- -

12

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	8
QC Association Summary	9
Lab Chronicle	10
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receipt Checklists	18

4

5

_

8

10

12

13

Definitions/Glossary

Client: Trace Analytical Laboratories Job ID: 810-6473-1

Project/Site: Trace - 21J1157

Qualifiers

Rad

Qualifier Qualifier Description

U Result is less than the sample detection limit.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

А

3

6

7

8

16

. .

12

13

Case Narrative

Client: Trace Analytical Laboratories

Project/Site: Trace - 21J1157

Job ID: 810-6473-1

Laboratory: Eurofins Eaton Analytical - South Bend

Narrative

Job Narrative 810-6473-1

Comments

No additional comments.

Revision

The report being provided is a revision of the original report sent on 11/18/2021. The report (revision 1) is being revised due to: Samples were logged in as drinking water by accident..

Receipt

The samples were received on 11/1/2021 9:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 12.4° C.

Receipt Exceptions

The Chain-of-Custody (COC) was incomplete as received and/or improperly completed. Bottles did not match coc at all and in-house coc was created. Client sent updated coc.

RAD

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 810-6473-1

Detection Summary

	- <i>y</i>
Client: Trace Analytical Laboratories	Job ID: 810-6473-1
Project/Site: Trace - 21J1157	
Client Sample ID: 21J1157/SW-SG-1	Lab Sample ID: 810-6473-1
No Detections.	
Client Sample ID: 21J1157/SW-N-SG-2	Lab Sample ID: 810-6473-2
No Detections.	
Client Sample ID: 21J1157/SW-SE-MW-7	Lab Sample ID: 810-6473-3
No Detections.	
Client Sample ID: 21J1157/SW-NE-MW-10	Lab Sample ID: 810-6473-4
No Detections.	

Job ID: 810-6473-1

Client: Trace Analytical Laboratories Project/Site: Trace - 21J1157

Client Sample ID: 21J1157/SW-SG-1

Date Collected: 10/28/21 10:15 Date Received: 11/01/21 09:00

Lab Sample ID: 810-6473-1

Prepared

Matrix: Surface Water

Analyzed

11/15/21 09:30

Dil Fac

Method: 7500 Ra D - Radium 226 Radium 228 Combined

0.000 U

		Count	Total
		Uncert.	Uncert.
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)

0.80802

Combined Radium 226

Method: SM7500 Ra B - Radium-226

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-226	-0.820	U	0.650		1.00	0.340	pCi/L	11/04/21 13:22	11/12/21 11:43	1

RL

1.00

MDC Unit

0.500 pCi/L

Method: SM7500 Ra D - Radium-228

			Count	iotai						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	0.150	U	0.480		1.00	0.500	pCi/L	11/12/21 10:12	11/15/21 12:05	1

Client Sample ID: 21J1157/SW-N-SG-2

Date Collected: 10/28/21 09:10 Date Received: 11/01/21 09:00

Lab Sample ID: 810-6473-2 **Matrix: Surface Water**

Method: 7500 Ra D - Radium 226 Radium 228 Combined

Method. 7500 Ka D	- Itaululli	ZZU Maui	uiii 220 00	IIIDIIIEU						
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.000	U	0.76837		1.00	0.500	pCi/L		11/15/21 09:30	1

Method: SM7500 Ra B - Radium-226

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.0800	U	0.600		1.00	0.350	pCi/L	11/04/21 13:22	11/12/21 11:43	1

Method: SM7500 Ra D - Radium-228

١				Count	Total						
				Uncert.	Uncert.						
	Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC U	nit	Prepared	Analyzed	Dil Fac
Į	Ra-228	-0.0800	U	0.480		1.00	0.500 pc	Ci/L	11/12/21 10:12	11/15/21 12:05	1

Client Sample ID: 21J1157/SW-SE-MW-7 Lab Sample ID: 810-6473-3 Date Collected: 10/28/21 12:05 **Matrix: Surface Water** Date Received: 11/01/21 09:00

Method: 7500 Ra D - Radium 226 Radium 228 Combin	ed

			Count	Total					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.670		0.83006		1.00	0.480 pCi/L		11/15/21 09:30	1

Eurofins Eaton Analytical - South Bend

Client Sample Results

Client: Trace Analytical Laboratories Job ID: 810-6473-1

Project/Site: Trace - 21J1157

Lab Sample ID: 810-6473-3 Client Sample ID: 21J1157/SW-SE-MW-7

Date Collected: 10/28/21 12:05 **Matrix: Surface Water** Date Received: 11/01/21 09:00

Method: SM7	500 Ra B - Radi	um-226								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-226	-0.470	U	0.670		1.00	0.330	pCi/L	11/04/21 13:22	11/12/21 11:43	1
_ Method: SM75	500 Ra D - Radi	um-228								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	0.670		0.490		1.00	0.480	pCi/L	11/12/21 10:12	11/15/21 12:05	1

Client Sample ID: 21J1157/SW-NE-MW-10 Lab Sample ID: 810-6473-4 **Matrix: Surface Water**

Date Collected: 10/28/21 10:30 Date Received: 11/01/21 09:00

Method: 7500 Ra D	- Radium	226 Radii	um 228 Co	mbined						
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.45		0.54489		1.00	0.380	pCi/L		11/15/21 09:30	1

Method: SM7500 F	la B - Radi	um-226								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-226	0.650		0.370		1.00	0.310	pCi/L	11/04/21 13:22	11/08/21 11:28	1

Method: SM750	0 Ra D - Radi	um-228								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra-228	0.800		0.400		1.00	0.380	pCi/L	11/12/21 10:12	11/15/21 12:05	1

Client: Trace Analytical Laboratories

Project/Site: Trace - 21J1157

Job ID: 810-6473-1

Method: SM7500 Ra B - Radium-226

Lab Sample ID: MB 810-6604/1-A

Matrix: Drinking Water Analysis Batch: 7022

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 6604

Count Total MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Ra-226 0.5000 0.240 1.00 0.180 pCi/L 11/04/21 13:22 11/08/21 11:28

Lab Sample ID: LCS 810-6604/2-A

Matrix: Drinking Water Analysis Batch: 7022

Analyte

Ra-226

Analyte

Ra-228

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 6604

Total Spike LCS LCS Uncert. %Rec. Added Result Qual $(2\sigma + / -)$ RL**MDC** Unit %Rec Limits 8.73 1.00 90 - 110 9.470 0.190 pCi/L 108

RL

1.00

Method: SM7500 Ra D - Radium-228

-0.1600 U

Lab Sample ID: MB 810-7205/1-A

Matrix: Drinking Water Analysis Batch: 7351

Count Total MB MB Uncert. Uncert. Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$

Spike

0.430

Lab Sample ID: LCS 810-7205/2-A

Matrix: Drinking Water Analysis Batch: 7351

Client Sample ID: Lab Control Sample

11/12/21 10:12 11/15/21 12:18

Prepared

Client Sample ID: Method Blank

Analyzed

Prep Type: Total/NA Prep Batch: 7205

Prep Type: Total/NA

Prep Batch: 7205

Dil Fac

Total LCS LCS Uncert. %Rec.

MDC Unit

0.460 pCi/L

Added RL **MDC** Unit %Rec Limits **Analyte** Result Qual $(2\sigma + / -)$ Ra-228 8.83 7.490 1.00 0.520 pCi/L 85 80 - 120

QC Association Summary

Client: Trace Analytical Laboratories Job ID: 810-6473-1

Project/Site: Trace - 21J1157

Rad

Prep Batch: 6604

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
810-6473-1	21J1157/SW-SG-1	Total/NA	Surface Water	RAD Prep	
810-6473-2	21J1157/SW-N-SG-2	Total/NA	Surface Water	RAD Prep	
810-6473-3	21J1157/SW-SE-MW-7	Total/NA	Surface Water	RAD Prep	
810-6473-4	21J1157/SW-NE-MW-10	Total/NA	Surface Water	RAD Prep	
MB 810-6604/1-A	Method Blank	Total/NA	Drinking Water	RAD Prep	
LCS 810-6604/2-A	Lab Control Sample	Total/NA	Drinking Water	RAD Prep	

Prep Batch: 7205

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
810-6473-1	21J1157/SW-SG-1	Total/NA	Surface Water	RAD Prep	
810-6473-2	21J1157/SW-N-SG-2	Total/NA	Surface Water	RAD Prep	
810-6473-3	21J1157/SW-SE-MW-7	Total/NA	Surface Water	RAD Prep	
810-6473-4	21J1157/SW-NE-MW-10	Total/NA	Surface Water	RAD Prep	
MB 810-7205/1-A	Method Blank	Total/NA	Drinking Water	RAD Prep	
LCS 810-7205/2-A	Lab Control Sample	Total/NA	Drinking Water	RAD Prep	

Job ID: 810-6473-1 Client: Trace Analytical Laboratories

Project/Site: Trace - 21J1157

Client Sample ID: 21J1157/SW-SG-1

Date Collected: 10/28/21 10:15 Date Received: 11/01/21 09:00

Lab Sample ID: 810-6473-1

Matrix: Surface Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D		1	7295	11/15/21 09:30	JB	EA SB
Total/NA	Prep	RAD Prep			6604	11/04/21 13:22	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7224		JB	EA SB
					(Start)	11/12/21 11:43		
					(End)	11/12/21 12:13		
Total/NA	Prep	RAD Prep			7205	11/12/21 10:12	00	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7351		00	EA SB
					(Start)	11/15/21 12:05		
					(End)	11/15/21 15:05		

Client Sample ID: 21J1157/SW-N-SG-2

Date Collected: 10/28/21 09:10 Date Received: 11/01/21 09:00

Lab Sample ID: 810-6473-2

Matrix: Surface Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7500 Ra D		1	7295	11/15/21 09:30	JB	EA SB
Total/NA	Prep	RAD Prep			6604	11/04/21 13:22	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7224		JB	EA SB
					(Start)	11/12/21 11:43		
					(End)	11/12/21 12:13		
Total/NA	Prep	RAD Prep			7205	11/12/21 10:12	00	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7351		00	EA SB
					(Start)	11/15/21 12:05		
					(End)	11/15/21 15:05		

Client Sample ID: 21J1157/SW-SE-MW-7

Date Collected: 10/28/21 12:05 Date Received: 11/01/21 09:00

Lab Sample ID: 810-6473-3 **Matrix: Surface Water**

Prep Type Total/NA	Batch Type Analysis	Batch Method 7500 Ra D	Run	Dilution Factor 1	Number 7295	or Analyzed 11/15/21 09:30	Analyst JB	Lab EA SB
Total/NA	Prep	RAD Prep		•	6604	11/04/21 13:22		EA SB
Total/NA	Analysis	SM7500 Ra B		1	7224		JB	EA SB
					(Start)	11/12/21 11:43		
					(End)	11/12/21 12:13		
Total/NA	Prep	RAD Prep			7205	11/12/21 10:12	00	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7351		00	EA SB
					(Start)	11/15/21 12:05		
					(End)	11/15/21 15:05		

Client Sample ID: 21J1157/SW-NE-MW-10

Date Collected: 10/28/21 10:30 Date Received: 11/01/21 09:00

_									
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	7500 Ra D		1	7295	11/15/21 09:30	JB	EA SB	

7295 11/15/21 09:30 JB EA SB

Eurofins Eaton Analytical - South Bend

Lab Sample ID: 810-6473-4

Matrix: Surface Water

Page 10 of 18

Lab Chronicle

Client: Trace Analytical Laboratories Job ID: 810-6473-1

Project/Site: Trace - 21J1157

Client Sample ID: 21J1157/SW-NE-MW-10

Lab Sample ID: 810-6473-4 **Matrix: Surface Water** Date Collected: 10/28/21 10:30

Date Received: 11/01/21 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	RAD Prep			6604	11/04/21 13:22	ML	EA SB
Total/NA	Analysis	SM7500 Ra B		1	7022	11/08/21 11:28	JB	EA SB
Total/NA	Prep	RAD Prep			7205	11/12/21 10:12	00	EA SB
Total/NA	Analysis	SM7500 Ra D		1	7351		00	EA SB
					(Start)	11/15/21 12:05		
					(End)	11/15/21 15:05		

Laboratory References:

EA SB = Eurofins Eaton Analytical - South Bend, 110 S Hill Street, South Bend, IN 46617, TEL (574)233-4777

Accreditation/Certification Summary

Client: Trace Analytical Laboratories Job ID: 810-6473-1

Project/Site: Trace - 21J1157

Laboratory: Eurofins Eaton Analytical - South Bend

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
Michigan		State	9926	03-22-22
the agency does not o	offer certification.		, , ,	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
7500 Ra D		Surface Water	Combined Radium 226 + 22	8
SM7500 Ra B	RAD Prep	Surface Water	Ra-226	
SM7500 Ra D	RAD Prep	Surface Water	Ra-228	

4

5

7

0

10

4.6

13

Method Summary

Client: Trace Analytical Laboratories

Project/Site: Trace - 21J1157

Job ID: 810-6473-1

Method	Method Description	Protocol	Laboratory
7500 Ra D	Radium 226 Radium 228 Combined	SM	EA SB
SM7500 Ra B	Radium-226	SM	EA SB
SM7500 Ra D	Radium-228	SM	EA SB
RAD Prep	Preparation, Radiologicals	None	EA SB

Protocol References:

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

EA SB = Eurofins Eaton Analytical - South Bend, 110 S Hill Street, South Bend, IN 46617, TEL (574)233-4777

2

4

5

6

9

10

11

13

Sample Summary

Client: Trace Analytical Laboratories

Project/Site: Trace - 21J1157

Lab Sample ID Client Sample ID Matrix Collected Received <u>10/28/21 10:15</u> <u>11/01/21 09:00</u> Surface Water 810-6473-1 21J1157/SW-SG-1 810-6473-2 21J1157/SW-N-SG-2 Surface Water 10/28/21 09:10 11/01/21 09:00 810-6473-3 21J1157/SW-SE-MW-7 Surface Water 10/28/21 12:05 11/01/21 09:00 10/28/21 10:30 11/01/21 09:00 810-6473-4 21J1157/SW-NE-MW-10 Surface Water

Job ID: 810-6473-1

3

4

5

8

3

12

13

8	eurofin	S

110 S. Hill Street South Bend, IN 46617 T: 1.800.332.4345

Order #

			Lato	n Analytic	cal			F: 1.574	.233.8207	Bate	ch #			_
www.EurofinsUS.com/Eaton					Cł	HAIN OF	CUSTODY REC	ORD		Pag	Α	of		
Shaded area for	or EEA us	se only	100	T04451 5D 10						1		_ 0,		-
REPORT TO:				SAMPLER (Signature	±)		PWS ID #	STATE (sample origi	n) PROJECT NAME		PO#	-		
Jon Mink, Tim Brewer (mink@trace-lat Analytical Laboratories, Inc., 2241 Bla 773-5998								МІ						
BILL TO:					Yes	No	POPULATION SERVED	SOURCE WATER		21	J1157	SS		IME
Accounts Payable, Trace Analytical La Muskegon, MI 49444	boratories, In	nc., 2241 Black	Creek Rd ,	COMPLIANCE MONITORING								CONTAINERS	CODE	TURNAROUND TIME
LAB Number		COLLECTION	V	s	AMPLING SITE	i .	TEST	NAM5H ACC	Campterelonke	CHLO	RINATED		MATRIX C	NARO
	DATE	TIME	AM PA	А				PITACC	thrank	YES	NO	# OF	MA	T. R.
1	10/28/21	10:15	×	SW-SG-1			Radium 226/228	✓			×	1	sw	sw
2	10/28/21	9:10	×	SW-N-8G-2			Radium 226/228				×	1	sw	sw
3	10/28/21	12:05	x	SW-SE-MW-7			Radium 226/228	/			×	1	SW	SW
4	10/28/21	10:30	×	SW-NE-MW-10			Radium 226/228	V			ж	1	SW	SW
5														
6														
7														
8														
9														
10														
11					***									
12				1 1 1 2 2	18 51		11/00		ouch site		+			
13					1 2 1	الهيدا الكيدا الل		40/119	WW I SUC					
14								0 0		-	-			
RELINQUISHED BY:(Signature)		DATE	TIME	RECEIVED BY:(Sign	ature)	DATE	bium 226/1							
011		. 1	,	The state of the s	,		LAB COMMENTS	SERVES THE RIGHT TO RETURN L	NUSED PORTIONS OF NON-	AQUEOUS	SAMPLES TO	O CLIENT		
7/16		10/29/2	-											
RELINQUISHED BY:(Signature)		DATE	AM PA		ature)	DATE	AM PM TIME							
, and the second of the second									(II	1				
			AM P				AM PM		1	13/	15-6-1	250		
RELINQUISHED BY:(Signature)		DATE	TIME	RECEIVED FOR LABO	RATORY BY	DATE		N RECEIPT (check one):				-113	== 10	
				Sea	2001	11-1-21	0900 load	: Wet/Blue Ambient	12.4 °C Upon 1	Paraint		N/A		
		-	AM PN			1171011	AM PM	and the second of the second of the second		Salara E	ALLA ALLA	TVA		V. 11
MATRIX CODES:				ME (TAT) - SURCHARD	55									
DW-DRINKING WATER RW-REAGENT WATER		RV" = Rush Vi		5 working days) 0% king days) 50%			e Verball (3 working days) 1009 te Written (3 working days) 1259							
GW-GROUND WATER EW-EXPOSURE WATER		RW" = Rush V				SP° = Weeken	•	MLL	Samples received unan than 48 hours holding to	nounced s	with less			
SW-SURFACE WATER PW-POOL WATER			,- /-			STAT" = Less			- may be subject to addit	ional char	ges.		_	
WW-WASTE WATER		· Please ca	II, expedit	ed service not available	for all testing				00 10 50405 4					
Comple each sign will be assisted as		a standard 5	E 4 04/-4	Continue Transcription	7 - 6 1				06-LO-F0435 Issue 6	0 Effe	ctive Date	2016-0	/9-20	

Sample analysis will be provided according to the standard EEA/Water Services Terms, which are available upon request. Any other terms proposed by Customer are deemed material alterations and are rejected unless expressly agreed to in writing by

South Bend, IN

110 S Hill Street

Chain of Custody Record

W F.				
	eu	rot	ins	

	Sampler:			La	b PM:						Carrie	er Trackin	g No(s):		COC No:	
lient Information	Phone.			E-	Mail:						State	of Origin				
race											State	or Origin.			Page: Page 1 of	
mpany:			PWSID:					А	nalvs	is Re	aues	ted			Job #:	
dress:	Due Date Request	ed:						T			1				Preservation Cod	98:
y.	TAT Requested (da	ays):			11										A - HCL B - NaOH	M - Hexane N - None
ie, Zip:	Compliance Project	ct: A Yes	Δ Νο		-11										C - Zn Acetate D - Nitric Acid E - NaHSO4	O - AsNaO2 P - Na2O4S Q - Na2SO3
one.	PO #:					338									F - MeOH G - Amchlor H - Ascorbic Acid	R - Na2S2O3 S - H2SO4
ail.	WO #:				N O	S C									I - Ice	T - TSP Dodecahydrat U - Acetone V - MCAA
ect Name.	Project #:				Sample (Yes or No)	64								, leading and	K - EDTA L - EDA	W - pH 4-5 Z - other (specify)
	SSOW#:				Samp	gee										
mple identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W-water, S-solid, O-waste/oli	ald Filtered	Rad		p	H	Ac	C	ept	abl	Total Number of	Special Inc	AA1
		><	Preservation		-										Special ins	tructions/Note:
2151-01						1						1		1		
02						✓								1		
03						1						1			,	
V 04					1	14						1				
						+	\perp	-			\sqcup					
					-11	++	-	+	-	-	\vdash	+				
				_ 11	1	200	+	+	-	+-		+-	-			
<u>Liters F</u>	1000	IVE	IQ F	= 4	41	W	+	+	+	+		+				
Coc ismpleted by SS																
ssible Hazard Identification					Sa									e retain	ed longer than 1 m	onth)
Non-Hazard Flammable Skin Irritant Pois iverable Requested: I, II, III, IV, Other (specify)	son B Unkn	own	Radiological		Q,			o Client				al By La	b	Arcl	ive For	Months
		Dete										- 41 - 1 - 1				
oty Kit Relinquished by:	Date/Time	Date:	Īca	mpany	Time	Receiv	and hur	00			M		Shipment:			
				pariy			<	55	2	e	01	_	Date/Time:	21	0900	EEA
nquished by:	Date/Time:		Co	mpany		Receiv	ed by:)	0			Date/Time.		C	ompany
nquished by:	Date/Time		Co	mpany		Receiv	ed by:						Date/Time:		(R)	ompany
Custody Seals Intact: Custody Seal No.:						Cooler	Tempe	rature(s)	°C and 0	Other Ren	naiks I		10	400		

_

eurotins		eurofins
----------	--	----------

Eaton Analytical

110 S. Hill Street South Bend, IN 46617 T: 1.800.332.4345

F: 1.574.233.8207

Order #

Batch #

www.EurofinsUS.com/Eaton CHAIN OF CUSTODY RECORD STATE (sample origin) PROJECT NAME PO# REPORT TO: SAMPLER (Signature) PWS ID# Jon Mink, Tim Brewer (jmink@trace-labs.com, tbrewer@trace-labs.com) Trace Analyitical Laboratories, Inc., 2241 Black Creek Rd., Muskegon, MI 49444 231-CONTAINERS SOURCE WATER 21J1163 POPULATION SERVED No BILL TO: Yes COMPLIANCE TURNAROUND MATRIX CODE MONITORING Accounts Payable, Trace Analytical Laboratories, Inc., 2241 Black Creek Rd., Muskegon, MI 49444 CHLORINATED COLLECTION LAB Number TEST NAME SAMPLE REMARKS P SAMPLING SITE YES NO DATE TIME AM PM 1 GW SW X Radium 226/228 10/26/21 14:00 Field Blank 1 GW SW ¥ Radium 226/228 10/26/21 16:05 Solinst Pump x 1 GW SW Radium 226/228 10/26/21 16:07 Master Flex Pump x 1 GW SW Radium 226/228 10/27/21 14:00 x Field Blank 1 GW x SW 10/27/21 15:30 Solinst Pump Radium 226/228 1 GW SW Radium 226/228 10/27/21 Master Flex Pump 15:35 GW 1 SW Field Blank Radium 226/228 10/28/21 14:00 1 GW SW Radium 226/228 10/28/21 14:20 Solinst Pump 1 GW SW Radium 226/228 10/28/21 14:25 Master Flex Pump RELINQUISHED BY: (Signature) RECEIVED BY: (Signature) DATE dium 226 LAB RESERVES THE RIGHT TO RETURN UNUSED PORTIONS OF NON-AQUEOUS SAMPLES TO CLIENT LAB COMMENTS AM PM RELINQUISHED BY:(Signature) DATE TIME RECEIVED BY: (Signature) DATE TIME AM PM RELINQUISHED BY:(Signature) RECEIVED FOR LABORATORY BY: DATE TIME DATE TIME AM PM AM PM **MATRIX CODES:** TURN-AROUND TIME (TAT) - SURCHARGES IV" = Immediate Verbal: (3 working days) 100% SW = Standard Written: (15 working days DW-DRINKING WATER RW-REAGENT WATER RV" = Rush Verbal: (5 working days) IW* =Immediate Written: (3 working days) 125% Samples received unannounced with less GW-GROUND WATER than 48 hours holding time remaining **EW-EXPOSURE WATER** SP* = Weekend, Holiday CALL RIM! = Rush Written: (5 working days) may be subject to additional charges. SW-SURFACE WATER STAT" = Less than 48 hours CALL PW-POOL WATER WW-WASTE WATER Please call, expedited service not available for all testing 06-LO-F0435 Issue 6.0 Effective Date: 2016-09-20

Sample analysis will be provided according to the standard EEA/Water Services Terms, which are available upon request. Any other terms proposed by Customer are deemed material alterations and are rejected unless expressly agreed to in writing by EEA.

Page 17 of 18

2

3

5

6

8

10

12

Login Sample Receipt Checklist

Client: Trace Analytical Laboratories Job Number: 810-6473-1

List Source: Eurofins Eaton Analytical - South Bend Login Number: 6473

List Number: 1

Creator: Spurgeon, Sheri

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
Samples were received on ice.	False	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	False	Refer to Job Narrative for details.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Samples do not require splitting or compositing.	True	
Container provided by EEA	True	

231-773-5998 Phone 888-979-4469 Fax www.trace-labs.com

Ple	ease Sig				0.	(X)	-	10:38:01	Trace Date Ti	Project Name: Surfa	*Results provided end of business day, requires prior approval	3 Day*	Turnaround Requirements: XI Standard, 5-10 Days	Email Address:	Office Phone:	City, State, Zip Code:	Mailing Address:	Report To: Paul Cederquist	Company Name: Grand Haven Board of Light & Power	Report Results To:	ANANTICA J	
		Released By			0:30	12:05	16	10:15	Time Collected	ace Wate	business day, i		ements:					rquist	Haven Boa			Н
In executing this Chain of C	10 M	Received By			SW-NE-MW-10	SW-SE-MW-7	SW-N-SG-2	SW-SG-1	Client Sample ID	Surface Water Sampling		W = Water SL = Sludge	Matrix Key: S=Soil / Solid		Cell Phone:				ard of Light & Power		CRATCRIES, INC.	
In executing this Chain of Custody, the client acknowledges the terms as set forth at www.trace-labs.com/terms-of-agreement	SCEI Madoi	, Date, Time			\ \ \ \ \ \ \ \ \	Y W 5	Y ₩ 5	Υ W 5	Metals Field Filtered (Y / N Matrix Number of Containers	Sampled By: EB/		r LW = Liquid Waste		Billing Email Address:	Phone Number:	City, State, Zip Code:	Billing Address (if different):	Contact Name:	PO#	Bill To:	Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673	CHAIN-OF-COSTODY RECORD
he terms as set for	4) 2)				×	×	×	×	Cool HCI HNO ₃ H ₂ SO ₄ NaOH Other	TB											ories, Inc.	יוטטון אבטט
th at www.trace-la		Released By			7			×	T-B,Ca,Fe T- Co,Cu, T- TI, V,Zr	Pb, Li,N	Mo,Ni S										Phone 231.773.59 Fax 888.979.4469 www.trace-labs.co	
bs.com/terms-of-					¥ y			×	Diss.Meta Fluoride,S pH				-								Phone 231.773.5998 Fax 888.979.4469 www.trace-labs.com	
agreement.	20	Received By			8			×	LLHg Radiums 2 Bicarb-Alk		1100	lk	Analysis Requested		Sampling Time:	МеОН	Soil Volatiles	Checked By:	Logged By:	Trace Use:	2	
		0											sted		ne:	Low Level	Soil Volatiles Preserved (dircle if applicable):	DH	S	: 2	Trace ID No.	rage
		Date Time			pH= 1.89	08.7 =Hd	pH=7.57	PH=8.46	Remarks	1						el Lab	if applicable):			_	1 No	

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673

Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygeh: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1		рН	ORP (mV)	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Reading Time		Surface Wat	Client: GHBLP	Trace A
n Criteria: e: 3% uctivity: 3% xygen: 10% mV 0% or <1	1.0		6	0.00	, H72	9.43	e 9:00	Purge Start Tir	Surface Water ID : N - \mathcal{L}	.pg	nalvtical I
	1.07	0.0	6	60.07	·472	9.93	9:03	Purge Start Time: 8:45	P		boratorie
Notes: Pump Used: Peristaltic	1.5.7	0.0	6	16.02	472	9.93	9.06	Purge Rate:		Date: 16-28-31	Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form
eristaltic								30sym/min		Field	ell Purging Fig
										Field Personnel: ES	old Measurer
										17B	nents Form
									-		

Stabilizatio Temperatui Spec. Condi Dissolved O ORP: +/- 10 Turbidity: 1 pH: +/- 0.1	P	Turbidity(NTU)	ORP (mV)	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Reading Time		Surface \	Trace Ar
Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1	8.46	Y(UTU)	196	7.91	.581	ature 11. 28	Time [0:08	Purge Sta	Surface Water ID : 56 -	Analytical
	8.46	1 22.4	196	7.91	185.	8 11.28	10:11	Purge Start Time: 9:55		Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form Date: 10-28-21 Field Personnel: EB/TB
Notes:	8.46	かば	196	7.91	185.	11.28	16: 13	Purge		ies: Low Flow W
Notes: Pump Used: Peristaltic						7		Purge Rate: <u>کوہ ب</u>		ow Well Pu
C								Soon Chuin	a	ırging Fielc Field Pe
										Field Measure
										ments Forn / 丁B_
										3

Sta Ten Spe Dis: OR: PH:	рН	Tur	ORI	Diss Oxy	Spe	Ten (Cel	Rea		Surf	Clie	Tr	
Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1		Turbidity(NTU)	ORP (mV)	Dissolved Oxygen	Specific Conductivity	Temperature (Celsius)	Reading Time	-	face Water ID	Client: GHBLP	ace Anal	
e eria: 6 Vy: 3% 1: 10%	789	14.9	S	10.05	594	10.20	10:20	Purge Start Time: <u>\\\`\\</u>	Surface Water ID: NE-MW-10		ytical La	
	7.89	14.9	70	10.05	.463	(0.20	10:23	1e: 10:05	0-10		boratori	
Notes: Pump Used: Peristaltic	7.89	14.9	S.	(0,05	.463	16.30	16:26	Purge Rate: 300/w		Date: 10-28-21	Trace Analytical Laboratories: Low Flow Well Purging Field Measurements Form	
							*	300ml/min		Field Personnel: にも	ging Field Measu	
										8/78	rements Form	
			-									

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673

Stabilization Criteria: Temperature: 3% Spec. Conductivity: 3% Dissolved Oxygen: 10% ORP: +/- 10 mV Turbidity: 10% or <1 pH: +/- 0.1	뭐	Specific Conductivity Dissolved Oxygen ORP (mV)	Reading Time Temperature (Celsius)	Trace Ar Client: GHBLP Surface Water
Criteria: 3% tivity: 3% ggen: 10% % or <1	7.86 7.80	9.75 9.75 52 53 53 53	11:55 11:58	Trace Analytical Laborato Client: GHBLP Surface Water ID: SE-MW-7
Notes: Pump Used: Peristaltic	7.80	,476 62	10.72	ies: Low Flow Wo
			District Annual Prince	irging Field Measuren Field Personnel: 正分/
				nents Form

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673

21J1157 Grand Haven Board of Light	nple Log In Checklist
Project Manager: Jon Mink	INIE FOR III CUSCKIIST
Sample Receipt Yes No Received on ice or other coolant I fee still present upon receipt	Date: 10 29 12 Time: 9 37 Corrected Temperature Conginal Observation Conginal Obser
Custody seals present	
Trace Courier Client Drop-off UP	
4	
Sample Condition	*
All sample containers arrived unbroken Sufficient sample to run requested anal Correct chemical preservative added to Samples preserved at Trace Chemical preservation verified, check E pH 0-2.5 (Lot: HC029115) Air bubbles absent from VOAs	lyses o samples
Chain of Custody (COC)	
Yes No All bottle labels agree with COC COC filled out properly COC signed by client	5.
Notes:	
,	
orm 70-A.40 ffective 10/2/21	
:	TRACE Analytical Laboratories, Inc.

APPENDIX B

Analytical Summary and Statistical Analysis

Analyte	Units						ми	<i>I-</i> 1R					
S	ample Date:	6/17/2020	7/22/2020	7/24/2020	7/27/2020	7/31/2020	8/3/2020	8/7/2020	8/10/2020	8/14/2020	8/18/2020	8/21/2020	8/24/2020
Detection Monitoring (Shaded of	exceeds pre	diction limit an	d is considered	d an SSI)									
BORON, TOTAL	mg/L	200	210	200	190	140	180	140	180	180	180	180	140
CALCIUM, TOTAL	mg/L	170	140	150	180	380	220	270	220	170	200	240	310
CHLORIDE, TOTAL	mg/L	270	270	260	260	260	260	250	250	260	260	270	280
FLUORIDE, TOTAL	mg/L	29	28	28	25	22	4.5	22	25	26	24	22	21
IRON, TOTAL	mg/L	5.8	5.5	4	5.8	7.9	4.2	3.8	3.6	4.4	3.3	3.2	3.1
рН	S.U.	8.76	8.42	9.02	9.21	8.92	9.21	8.91	8.91	8.41	8.21	8.16	8.12
SULFATE, TOTAL	mg/L	410	430	430	550	870	580	860	660	600	730	790	960
TOTAL DISSOLVED SOLIDS	mg/L	3,300	3,500	3,300	3,500	3,600	3,400	3,400	3,500	3,500	3,400	3,500	3,700
Assessment Monitoring													
ANTIMONY, TOTAL	mg/L	0.021	0.014	0.0028	0.014	0.018	0.002	<0.0015	0.0033	0.0057	0.0031	0.0038	0.0035
ARSENIC, TOTAL	mg/L	0.0095	0.01	0.0079	0.0091	0.0067	0.007	0.0065	0.0074	0.008	0.0072	0.0076	0.0072
BARIUM, TOTAL	mg/L	0.89	0.85	0.58	0.85	0.8	0.45	0.51	0.61	0.71	0.58	0.63	0.5
BERYLLIUM, TOTAL	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
CADMIUM, TOTAL	mg/L	0.0088	0.015	0.0021	0.015	0.021	0.0013 J	0.0043 J	0.0026	0.062	<0.003	0.003 J	<0.003
CHROMIUM, TOTAL	mg/L	0.014 B	0.013	0.0084	0.014	0.017	0.0061	0.003	0.0058	0.0069	0.0047	0.0048	0.0032
COBALT, TOTAL	mg/L	0.088	0.056	0.012	0.056	0.069	0.007	0.0083	0.013	0.022	0.0095	0.011	0.0092
COPPER, TOTAL	mg/L	0.022	0.023	<0.010	0.022	0.031	<0.0086	<0.0043	0.005	<0.022	<0.022	0.005	<0.0043
LEAD, TOTAL	mg/L	0.11	0.1	0.02	0.1	0.18	0.018	0.023	0.018	0.042	0.023	0.027	0.021
LITHIUM, TOTAL	mg/L	3.9	2.8	2.6	2.6	2.1	3.3	2.2	3.5	2.6	2.2	2.3	1.9
MERCURY, TOTAL	mg/L	<0.00016	0.00011	0.000012	0.000059	0.00012	0.0000074	0.000015	0.000012	0.000058	0.000019	0.000022	0.0014
MOLYBDENUM, TOTAL	mg/L	0.0095 B	0.0096	0.0092	0.0093	0.0052 B	0.0097 B	0.008	0.0098	0.01	0.0092	0.0096	0.0088
NICKEL, TOTAL	mg/L	0.069	0.059	0.016	0.057	0.07	0.01	0.01	0.016	0.025	0.013 J	0.014	0.012
RADIUM (226 + 228)	pCi/L	1.0 U	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
SELENIUM, TOTAL	mg/L	0.0039	0.0045	0.0024 J	0.0043	0.0047	<0.0018	0.0014 J	0.0019 J	<0.0045	<0.0045	0.0019 J	0.0016 J
SILVER, TOTAL	mg/L	< 0.0003	< 0.0006	< 0.0006	< 0.0006	<0.0015	<0.0006	<0.0015	<0.0003	<0.0015	<0.0015	<0.0015	<0.0015
THALLIUM, TOTAL	mg/L	< 0.0003	< 0.0006	< 0.0006	< 0.0006	<0.0015	<0.0006	0.0028 J	<0.0003	<0.0015	<0.0015	<0.0015	<0.0015
VANADIUM, TOTAL	mg/L	0.0032	0.0062	0.0044	0.0069	0.0086	0.0028	0.0019	0.0041	0.004	0.0026 J	0.0027	0.0017
ZINC, TOTAL	mg/L	0.22	0.21	0.035	0.22	0.31	0.029	0.033	0.042	0.1	0.039	0.053	0.044

- 1. mg/L Milligrams per Liter
- 2. pCi/L picocuries per Liter
- 3. NA Not available, constituent does not have criteria available
- 4. NT Not Tested
- 5. J Result is an estimated value. The result is greater than or equal to the Method Detection Limit (MDL) and less than the Practical Quantitation Limit (PQL). Values are displayed as less that the PQL with a J.
- 6. < Constituent was analyzed for, but was not detected above the MDL and is considered a non-detect. Value is displayed as less than the PQL.
- 7. Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies

Analyte	Units								MV	V-1R							
	Sample Date:	8/28/2020	8/31/2020	9/4/2020	9/8/2020	9/11/2020	9/14/2020	9/25/2020	9/29/2020	10/5/2020	10/9/2020	10/12/2020	11/20/2020	1/25/2021	4/23/2021	7/30/2021	10/25/2021
Detection Monitoring (Shade	d exceeds pre																
BORON, TOTAL	mg/L	160	170	170	160	180	210	160	190	200	210	180	110	110	40	110	140
CALCIUM, TOTAL	mg/L	200	180	170	180	120	130	270	140	81	120	200	450	370	590	380	220
CHLORIDE, TOTAL	mg/L	270	240	280	270	240	250	240	260	270	270	260	260	260	230	230	230
FLUORIDE, TOTAL	mg/L	25	22	25	24	25	26	20	26	25	27	18	<0.055	9.9	8.9	12	13
IRON, TOTAL	mg/L	3.2	2.9	2.8	2.8	1.8	1.8	2.2	1.7	1.3	1.3	1.6	2.6	3.7	3.7	3.3	1.7
pН	S.U.	7.8	7.78	7.86	7.81	7.87	7.86	7.66	7.89	7.93	7.83	7.71	7.46	7.33	7.25	8.31	7.8
SULFATE, TOTAL	mg/L	730	670	610	650	360	330	750	420	130	280	580	1,000	1,100	1,100	940	530
TOTAL DISSOLVED SOLIDS	mg/L	1,300	3,300	3,300	3,300	3,300	2,300	3,100	3,400	2,800	3,200	3,300	3,100	3,000	2,900	3,200	3,600
Assessment Monitoring																	
ANTIMONY, TOTAL	mg/L	0.0056	0.004	0.0043	0.004	0.0016	0.0016	0.00073	0.00052	0.00065	0.00059	0.00044	<0.0015	<0.0015	0.0031	0.0014	0.00044
ARSENIC, TOTAL	mg/L	0.0079	0.0079	0.0084	0.0086	0.0078	0.0085	0.0068	0.0084	0.0083	0.0068	0.0057	<0.0025	0.0032	0.0023	0.0042	0.0046
BARIUM, TOTAL	mg/L	0.6	0.58	0.56	0.53	0.39	0.39	0.19	0.41	0.51	0.43	0.39	0.28	0.22	0.075	0.2	0.20
BERYLLIUM, TOTAL	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0020	<0.0020	<0.0010	<0.0010
CADMIUM, TOTAL	mg/L	0.0043 J	0.0031 J	0.0043 J	0.0039 J	0.0017	0.0016	0.001	<0.0006	<0.0006	<0.0006	<0.0006	<0.003	<0.0050	0.0053	0.0006	<0.00060
CHROMIUM, TOTAL	mg/L	0.0048	0.0044	0.0065	0.007	0.0052	0.0061	0.0029	0.0031	0.0028	0.0037	0.003	0.0015	0.0016	<0.0045	0.0027	0.0022
COBALT, TOTAL	mg/L	0.012	0.0099	0.018	0.017	0.0086	0.0095	0.0051	0.0021	0.0025	0.0021	0.002	0.0037	0.0035	0.022	0.0037	0.0022
COPPER, TOTAL	mg/L	0.0056	<0.0043	0.0071	0.007	<0.0043	<0.0043	<0.0043	<0.0043	<0.0043	<0.0043	<0.0043	<0.0043	<0.0050	0.0099 J	<0.0018	< 0.0018
LEAD, TOTAL	mg/L	0.033	0.025	0.037	0.035	0.017	0.017	0.0064	0.0032	0.0042	0.0033	0.0028	0.01	0.0072	0.039	0.0075	0.0024
LITHIUM, TOTAL	mg/L	2.5	2.6	2.3	2.3	2.4	4.2	3.2	3.7	3.5	4.2	3.9	2.5	2.4	0.91	2.3	2.8
MERCURY, TOTAL	mg/L	0.000016	0.000019	0.000013	0.000021	0.000015	0.000015	0.0000089	0.0000026	0.000004	0.0000019	0.0000024	0.0000025	0.0000094	0.0000032	0.0000043	0.0000019
MOLYBDENUM, TOTAL	mg/L	0.0099	0.01	0.01	0.01	0.012	0.015	0.0081	0.012	0.011	0.011	0.0075	0.0012 J	0.0029	0.0058	0.0025	0.0016
NICKEL, TOTAL	mg/L	0.015	0.013	0.022	0.021	0.012	0.014	0.0084	0.0061	0.0061	0.0056	0.0049 J	0.0047 J	0.0047	0.025	0.0057	0.0039 J
RADIUM (226 + 228)	pCi/L	NT	NT	NT	NT	NT	NT	2.25	NT	NT	NT	NT	1.0 U	0.79	<0.73	0.78 J	0.41
SELENIUM, TOTAL	mg/L	0.0023	0.002	0.002	0.0017 J	0.0017 J	0.002	0.0013 J	0.0016 J	0.0016 J	0.0016 J	0.0015 J	<0.0045	0.0011	0.0021	<0.00090	0.00097 J
SILVER, TOTAL	mg/L	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0015	<0.0050	<0.0050	<0.00030	<0.00030
THALLIUM, TOTAL	mg/L	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0015	<0.0050	<0.0050	<0.00030	<0.00030
VANADIUM, TOTAL	mg/L	0.003	0.003	0.004	0.0037	0.0029	0.0041	0.0026	0.0024	0.0017	0.0022	0.0022	0.0019	0.0017	<0.0040	0.0023	0.0017
ZINC, TOTAL	mg/L	0.063	0.048	0.068	0.067	0.032	0.038	0.022	<0.018	<0.018	<0.018	<0.018	<0.018	<0.020	0.13	<0.018	<0.018

- 1. mg/L Milligrams per Liter
- 2. pCi/L picocuries per Liter
- 3. NA Not available, constituent does not hav
- 4. NT Not Tested
- 5. J Result is an estimated value. The result
- 6. < Constituent was analyzed for, but was no
- 7. Radium data is a combination of radium isc

Analyte	Units											MW-2										
Sa	mple Date:	3/13/2017	4/5/2017	4/24/2017	5/15/2017	6/5/2017	6/26/2017	7/17/2017	8/7/2017	8/27/2018	9/26/2018	10/22/2018	3/27/2019	9/27/2019	3/27/2020	6/17/2020	9/25/2020	11/20/2020	1/25/2021	4/23/2021	7/30/2021	10/25/2021
Detection Monitoring (Shaded e	xceeds pre	diction limit an	d is considered	d an SSI)																		
BORON, TOTAL	mg/L	110	110	110	110	130	120	130	160	150	270	130	88	130	66	110	140	130	110	65	93	100
CALCIUM, TOTAL	mg/L	190	170	200	190	190	180	180	190	200	340	190	210	200	210	210	190	220	190	220	230	190
CHLORIDE, TOTAL	mg/L	140	150	130	140	150	160	150	160	150	150	150	130	150	140	140	140	150	140	140	140	140
FLUORIDE, TOTAL	mg/L	10	12	11	14	12	14	14	12	14	15	14	8.4	13	8.2	12	11	11	9.4	8	9	9.4
IRON, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	21	18	23	21	21	20	21	6.7	24	22
рН	S.U.	8.09	8.21	6.90	7.22	7.31	7.72	7.35	7.80	7.24	7.32	7.87	7.52	7.91	7.28	8.42	7.08	6.94	6.91	6.94	7.38	6.48
SULFATE, TOTAL	mg/L	13 J	12	<20	<20	<5	<10	<20	<10	0.77	0.96 J	1.4	0.95 J	<3.0	<3	3.3	2.2 J	1 J	1.9	1.5 J	0.81 J	< 0.41
TOTAL DISSOLVED SOLIDS	mg/L	2,100	1,900	2,000	1,900	2,300	2,000	2,100	2,400	2,700	2,500	2,200	1,700	2,100	1,400	2,100	2,100	2,000	1,600	1,700	1,800	2,000
Assessment Monitoring																						
ANTIMONY, TOTAL	mg/L	0.00042 J	<0.0020	0.00060 J	<0.020	0.00068 J	<0.002	<0.002	<0.020	0.00033	0.00033	<0.00009	0.00011 J	0.0005	<0.0003	<0.0003	<0.0003	<0.0015	<0.00030	<0.00030	<0.00030	<0.00030
ARSENIC, TOTAL	mg/L	0.0079	0.0056	0.0059	<0.050	0.007	0.0067	0.0061	0.010 J	0.009	0.013	0.0097	0.0064	0.0085	0.011	0.0081	0.0088	0.008	0.0089	0.0051	0.015	0.012
BARIUM, TOTAL	mg/L	0.48 B	0.45 B	0.47	0.44	0.47	0.45	0.44	0.48	0.43	0.48	0.51	0.41	0.45	0.46	0.47	0.53	0.49	0.47	0.36	0.48	0.50
BERYLLIUM, TOTAL	mg/L	<0.0010	<0.0010	<0.0010	<0.010	0.00077 J	<0.0010	<0.0010	<0.010	< 0.0010	0.0015	<0.00006	<0.0010	0.000061 J	<0.001	<0.001	<0.001	<0.001	<0.0020	<0.0020	<0.0010	<0.0010
CADMIUM, TOTAL	mg/L	<0.0010	<0.0010	<0.0010	<0.010	0.00025 J	<0.0010	0.00021 J	<0.010	0.000082	0.00014	0.00012	0.000047	0.0011	< 0.001	< 0.0006	< 0.0006	<0.003	<0.0010	<0.0010	<0.00060	<0.00060
CHROMIUM, TOTAL	mg/L	0.046	0.037 B	0.043	0.048	0.06	0.053	0.053	0.073	0.047	0.076	0.053	0.02	0.054	0.011	0.029 B	0.052	0.037	0.27	0.0086	0.025	0.040
COBALT, TOTAL	mg/L	0.0092	0.0067	0.0074	0.0084 J	0.0087	0.0072	0.0068	0.0092 J	0.0086	0.0086	0.0066	0.0034	0.0075	0.0027	0.0046	0.0076	0.007 J	0.0052	0.003	0.0041	0.0055
COPPER, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.0012	0.0033	<0.005	<0.0043	<0.0043	<0.022	<0.0050	<0.0040	<0.0018	0.0022 J
LEAD, TOTAL	mg/L	0.0038	0.0027 B	0.0026	0.01	0.0057	0.0042	0.0034	0.0084 J	0.0049	0.0052	0.0036	0.00045	0.0026	< 0.002	0.0016 J	0.0022	<0.0025	0.0013	<0.0020	0.00067 J	0.0018 J
LITHIUM, TOTAL	mg/L	1.6 B	1.5	1.6 B	1.3	1.7	1.6	1.2	1.5	1.4	1.4	1.6	1.2	1.4	0.98	1	1.2	1.8	1.4	1	1.1	1.2
MERCURY, TOTAL	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.002	0.00010 J	< 0.000041	<0.000041	<0.0002	<0.0002	< 0.0002	<0.00016	0.0000031	0.0000038	0.0000034	0.00000066	0.00000092	0.0000028
MOLYBDENUM, TOTAL	mg/L	0.017	0.014	0.012	<0.10	0.0069 J	0.0074 J	0.0051 J	<0.10	0.0053	0.0076	0.012	0.0076	0.007	0.0047	0.0065 B	0.0062	0.0062	0.0054	0.0052	0.0045	0.0045
NICKEL, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.017	0.028 B	0.012	0.02	0.029	0.022 J	0.017	0.016	0.015	0.017
RADIUM (226 + 228)	pCi/L	1.34	0.43	1.02	1.56	1.89	1.85	2.27	3.01	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	3.76	1.72	1.26	2.38	1.45 J	2.27	2.27
SELENIUM, TOTAL	mg/L	0.0025 J	0.0017 J	0.0022 J	<0.050	0.0027 J	0.0023 J	0.0028 J	0.014 J	0.0028	0.0038	0.0021	0.0012	0.0024	<0.0009	0.0019 J	0.0026	<0.0045	0.0018	<0.0020	0.0013 J	0.0017 J
SILVER, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.000040	0.000036 J	< 0.0003	< 0.0003	< 0.0003	<0.0015	<0.0010	<0.0010	<0.00030	<0.00030
THALLIUM, TOTAL	mg/L	<0.0010	<0.0010	<0.0010	<0.010	<0.0010	<0.0010	<0.0010	<0.010	< 0.000029	< 0.000029	<0.000029	<0.000087	<0.000087	< 0.0003	<0.0003	<0.0003	<0.0015	<0.0010	<0.0010	<0.00030	<0.00030
VANADIUM, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.0013	0.0059	0.00093	0.003	0.0062	0.0045	0.0027	<0.00080	0.0026	0.0039
ZINC, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<2.0	0.0099 J	< 0.02	< 0.018	< 0.018	< 0.018	<0.020	<0.020	<0.018	<0.018

- 1. mg/L Milligrams per Liter
- 2. pCi/L picocuries per Liter
- 3. NA Not available, constituent does not have criteria available
- 4. NT Not Tested
- 5. J Result is an estimated value. The result is greater than or equal to the Method Detection Limit (MDL) and less than the Practical Quantitation Limit (PQL). Values are displayed as less that the PQL with a J.
- 6. < Constituent was analyzed for, but was not detected above the MDL and is considered a non-detect. Value is displayed as less than the PQL.
- 7. Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.

Analyte	Units											MW-3										
					1	I	ı	I	ı	ı	ı	I	ı	I		I			ı	ı	ı	
Sa	mple Date:	3/13/2017	4/5/2017	4/24/2017	5/15/2017	6/5/2017	6/26/2017	7/17/2017	8/7/2017	8/27/2018	9/26/2018	10/22/2018	3/27/2019	9/30/2019	3/27/2020	6/17/2020	9/25/2020	11/20/2020	1/25/2021	4/23/2021	7/30/2021	10/25/2021
Detection Monitoring (Shaded e	xceeds pred	diction limit and	d is considered	l an SSI)																		
BORON, TOTAL	mg/L	5	4.9	5.6	6.4	5.9	4.8	4.9	4.7	4.9	5.3	4.9	7.7	3.3	4.9	4.5	4.6	6	4.7	4.3	4.8	4.4
CALCIUM, TOTAL	mg/L	660	620	600	620	590	540	590	520	530	560	550	560	500	590	590	550	900	650	680	570	490
CHLORIDE, TOTAL	mg/L	570	620	450	480	450	370	400	370	340	340	660	430	360	340	360	380	480	290	380	380	330
FLUORIDE, TOTAL	mg/L	0.74 J	0.97	1.3	1.9	1.7	1.6	1.2	1.2	1.1	0.88	0.84	2.5	0.61	1.4	1.2	1	1.4	1.8	1.3	1	0.89
IRON, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	20	8.1	19	11	2.9	8.2	28	0.71	4.8	4.5
рН	S.U.	7.91	7.14	6.27	6.92	7.07	7.70	7.44	7.61	7.02	7.01	7.19	7.81	7.74	7.03	7.99	6.92	6.8	6.76	6.91	7.39	6.91
SULFATE, TOTAL	mg/L	1,300	1,200	1,200	1,500	990	580	820	600	450	520	990	280	49	890	720	220	1,200	1,400	570	85	23
TOTAL DISSOLVED SOLIDS	mg/L	4,000	3,600	3,900	4,100	3,600	3,000	3,100	2,700	3,000	3,100	2,900	2,800	2,900	3,200	3,400	1,400	3,900	3,400	2,900	2,600	2,500
Assessment Monitoring																						
ANTIMONY, TOTAL	mg/L	<0.0020	<0.0020	0.00041 J	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.00012 J	< 0.00009	<0.00009	< 0.00030	<0.00030	<0.0003	<0.0003	<0.0003	<0.0015	<0.0015	<0.0015	<0.00030	<0.00030
ARSENIC, TOTAL	mg/L	0.0024 J	0.0021 J	0.0017 J	0.0020 J	0.0027 J	0.0029 J	0.0025 J	0.0021 J	0.0017	0.0016	0.0013	0.0019	0.0018	0.0018	0.0017	0.0019	<0.0025	0.0015	<0.0050	0.0017	0.0012
BARIUM, TOTAL	mg/L	0.31 B	0.36 B	0.25	0.21	0.31	0.37	0.41	0.4	0.4	0.4	0.44	0.51	0.51	0.31	0.44	0.53	0.5	0.23	0.21	0.48	0.47
BERYLLIUM, TOTAL	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	< 0.000060	0.00031 J	<0.00006	<0.0010	<0.0010	<0.001	<0.001	<0.001	<0.001	<0.0020	<0.0020	<0.0010	<0.0010
CADMIUM, TOTAL	mg/L	<0.0010	<0.0010	<0.0010	0.00033 J	<0.0010	<0.0010	<0.0010	<0.0010	0.000024 J	< 0.000017	<0.000017	<0.000040	<0.000040	< 0.001	< 0.00060	< 0.00060	<0.003	<0.0050	<0.0050	<0.00060	<0.00060
CHROMIUM, TOTAL	mg/L	0.0014 J	0.0014 J B	0.0014 J	0.0015 J	0.0018 J	0.0015 J	0.0014 J	0.0013 J	0.0013	0.00085	0.0014	0.002	0.0023	0.0028	0.0031 B	0.0041	0.0037 J	0.0028	0.0017	0.0044	0.0041
COBALT, TOTAL	mg/L	0.00097 J	0.00097 J	0.00080 J	0.00099 J	0.0016	0.0013	0.00079 J	0.00081 J	0.00084 J	0.0007 J	0.00072 J	0.00067 J	0.00098 J	0.00062 J	0.00067 J	0.0008 J	<0.0025	<0.0016	<0.0016	0.00086 J	0.0014 J
COPPER, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.00045 J	0.00078 J	<0.005	<0.0043	<0.0043	<0.022	<0.0050	<0.0040	<0.0018	< 0.0018
LEAD, TOTAL	mg/L	0.00038 J	0.00045 J B	0.00026 J	0.00079 J	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.000094 J	< 0.00004	0.00019 J	0.00012 J	0.000089 J	<0.002	<0.0005	<0.0005	<0.0025	<0.010	<0.010	<0.00050	< 0.00050
LITHIUM, TOTAL	mg/L	0.079 B	0.064	0.081 B	0.097	0.076	0.066	0.057	0.054	0.064	0.069	0.026	0.025	<0.010	0.076	0.054	0.044	0.11	0.061	0.07	0.05	0.053
MERCURY, TOTAL	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.00011 J	< 0.000041	<0.000041	<0.0002	<0.00020	<0.00020	<0.00016	0.0000008	0.00000099	0.0000014	0.00000055	0.00000064	0.00000079
MOLYBDENUM, TOTAL	mg/L	0.0070 J	0.0049 J	0.0076 J	0.0099 J	0.0065 J	0.0034 J	0.0015 J	<0.010	<0.000093	<0.000093	<0.000093	<0.0010	<0.0010	<0.001	0.00013 JB	0.00012 J	<0.00046	<0.0020	<0.0020	<0.000093	0.00012 J
NICKEL, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.002	0.003 B	0.007	0.0025 J	0.0027 J	<0.011	<0.0050	0.0023 J	0.0016 J	0.0027 J
RADIUM (226 + 228)	pCi/L	0.731	0.392	0.190 U	0.666	0.502	0.874	1.38	1.96	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.04 J	1.38	1.51	2.62	1.68	2.11	3.72	1.01
SELENIUM, TOTAL	mg/L	0.0012 J	0.0012 J	0.0013 J	0.0016 J	0.0012 J	<0.0050	0.00094 J	0.0015 J	<0.00028	<0.00028	<0.00028	<0.00087	<0.00087	<0.0009	<0.0009	<0.0009	<0.0045	<0.0020	<0.010	<0.00090	< 0.00090
SILVER, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.000040	0.000026 J	< 0.0003	< 0.0003	< 0.0003	<0.0015	<0.0050	<0.0050	<0.00030	<0.00030
THALLIUM, TOTAL	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	< 0.000029	< 0.000029	<0.000029	<0.000087	<0.000087	< 0.0003	< 0.0003	< 0.0003	<0.0015	<0.0050	<0.0050	<0.00030	<0.00030
VANADIUM, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.00081	0.002	0.00068 J	0.0012	0.0026	<0.0025	0.00074	0.00054 J	0.0019	0.0014
ZINC, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<2	0.00081 J	<0.02	<0.018	<0.018	<0.018	<0.020	<0.020	<0.018	<0.018

- 1. mg/L Milligrams per Liter
- 2. pCi/L picocuries per Liter
- 3. NA Not available, constituent does not have criteria available
- 4. NT Not Tested
- 5. J Result is an estimated value. The result is greater than or equal to the Method Detection Limit (MDL) and less than the Practical Quantitation Limit (PQL). Values are displayed as less that the PQL with a J.
- 6. < Constituent was analyzed for, but was not detected above the MDL and is considered a non-detect. Value is displayed as less than the PQL.
- 7. Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.

	T																					
Analyte	Units											MW-4										
s	ample Date	3/13/2017	4/5/2017	4/24/2017	5/15/2017	6/5/2017	6/26/2017	7/17/2017	8/7/2017	8/27/2018	9/26/2018	10/22/2018	3/27/2019	9/30/2019	3/27/2020	6/17/2020	9/25/2020	11/20/2020	1/25/2021	4/23/2021	7/30/2021	10/25/2021
Detection Monitoring (Shaded	exceeds pre	ediction limit ar	nd is considered	d an SSI)																		
BORON, TOTAL	mg/L	3.2	3.4	3.8	3.6	3.9	3.6	3.7	4	3.6	4.4	4.1	5.8	3.7	3.1	3.2	3.6	3.6	3.2	3.3	3.7	3.7
CALCIUM, TOTAL	mg/L	480	470	500	450	450	460	510	470	430	490	440	420	440	390	410	420	440	380	380	450	370
CHLORIDE, TOTAL	mg/L	360	390	350	370	360	360	340	280	260	270	280	310	250	220	210	210	220	210	220	190	170
FLUORIDE, TOTAL	mg/L	0.84	1.3	1	1.2	1.4	1.2	1.3	1.3	1.1	1.2	1.3	1	1.2	1.5	1.3	1.2	1.2	1.2	1.1	1.3	1.3
IRON, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	8.7 J	7.4	10	7.2	8.3	6.6	8.3	6.9	6.3	5.2
рН	S.U.	8.34	8.10	6.37	7.20	7.36	7.76	7.51	7.72	7.11	7.13	7.35	7.9	7.69	7.46	7.92	7.11	7.17	7.17	7.18	7.43	6.74
SULFATE, TOTAL	mg/L	890	940	830	940	880	920	940	740	550	770	600	610	700	680	700	650	690	570	530	540	450
TOTAL DISSOLVED SOLIDS	mg/L	2,200	2,400	2,500	2,100	2,400	3,100	2,600	2,000	2,300	2,400	2,200	1,900	2,000	1,500	1,900	2,000	2,000	2,200	1,800	320	1,900
Assessment Monitoring																						
ANTIMONY, TOTAL	mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.000090	< 0.00009	<0.000091	< 0.00030	<0.00030	<0.0003	<0.0003	<0.0003	<0.0015	<0.00030	<0.00030	<0.00030	<0.00030
ARSENIC, TOTAL	mg/L	0.0013 J	0.0013 J	0.0012 J	0.0015 J	0.0019 J	0.0020 J	0.0020 J	0.0018 J	0.0016	0.0012	0.0012	0.0013	0.0013	0.0013	0.0013	0.0011	<0.0025	0.0014	0.0012	0.0014	0.0019
BARIUM, TOTAL	mg/L	0.13 B	0.13 B	0.14	0.14	0.16	0.18	0.17	0.19	0.17	0.15	0.16	0.095	0.14	0.1	0.11	0.13	0.13	0.096	0.086	0.11	0.12
BERYLLIUM, TOTAL	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	< 0.0010	0.0005 J	<0.00006	<0.0010	<0.0010	<0.001	<0.001	<0.001	<0.001	<0.0020	<0.0020	<0.0010	<0.0010
CADMIUM, TOTAL	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	< 0.000040	< 0.000017	0.000037 J	0.000035 J	<0.000040	< 0.001	< 0.00060	< 0.0006	<0.003	<0.0010	<0.0010	<0.00060	<0.00060
CHROMIUM, TOTAL	mg/L	0.0019 J	0.0018 J B	0.0021	0.0021	0.0021	0.0017 J	0.0019 J	0.0016 J	0.0013	0.0017	0.0021	0.0019	0.0026	0.0019	0.0018 B	0.0023	<0.0035	0.0019	0.0019	0.0028	0.0033
COBALT, TOTAL	mg/L	0.00033 J	0.00033 J	0.00039 J	0.00031 J	0.00040 J	0.00058 J	0.00048 J	0.00045 J	0.00049 J	0.0003 J	0.00032 J	0.00022 J	0.00032 J	<0.0016	< 0.0005	< 0.0005	<0.0025	<0.0016	<0.0016	0.00069 J	0.00079 J
COPPER, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.0015	0.00085	<0.005	<0.0043	<0.0043	<0.022	<0.0050	0.0020 J	<0.0018	< 0.0018
LEAD, TOTAL	mg/L	0.00028 J	0.00032 J B	0.00019 J	0.00051 J	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.00014 J	0.00033 J	0.0004	0.00037 J	0.00030 J	<0.002	<0.0005	<0.0005	<0.0025	<0.0020	<0.0020	<0.00050	< 0.00050
LITHIUM, TOTAL	mg/L	0.053 B	0.047	0.058 B	0.051	0.049	0.051	0.048	0.046	0.056	0.073	0.026	0.036	<0.010	0.056	0.052	0.052	0.076	0.032	0.06	0.065	0.061
MERCURY, TOTAL	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.00010 J	< 0.000041	< 0.000041	<0.0002	<0.0002	<0.00020	<0.00016	<0.0000016	<0.0000016	0.00000063	<0.00000050	<0.0000016	<0.0000016
MOLYBDENUM, TOTAL	mg/L	0.0014 J	0.0015 J	0.0017 J	0.0015 J	0.0012 J	0.0032 J	0.0016 J	<0.010	<0.000093	0.0011	0.0012	<0.0010	0.0017	<0.001	0.001 B	0.00051	0.0015 J	0.0011	0.00085	0.0018	0.0015
NICKEL, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.02	0.017 B	0.017	0.016	0.018	0.015 J	0.017	0.018	0.014	0.011
RADIUM (226 + 228)	pCi/L	1.05	0.515	0.413	0.252 U	0.342	0.671	0.879	1.99	1.0 U 1.0 U	1.37	1.0 U	0.97	0.70 J	0.74 J	1.87						
SELENIUM, TOTAL	mg/L	0.00063 J	< 0.0050	0.00065 J	< 0.0050	< 0.0050	<0.0050	<0.0050	0.0013 J	<0.00028	<0.00028	<0.00028	<0.00087	<0.00087	<0.0009	<0.0009	<0.0009	<0.0045	<0.0020	<0.0020	<0.00090	< 0.00090
SILVER, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.000015 J	0.000014 J	< 0.0003	< 0.0003	< 0.0003	<0.0015	<0.0010	<0.0010	<0.00030	<0.00030
THALLIUM, TOTAL	mg/L	<0.0010	<0.0010	<0.0010	0.00039 J	<0.0010	<0.0010	<0.0010	<0.0010	< 0.000029	< 0.000029	<0.000029	<0.000087	<0.000087	< 0.0003	< 0.0003	< 0.0003	<0.0015	<0.0010	<0.0010	<0.00030	<0.00030
VANADIUM, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.00057 J	0.00088	0.00056 J	0.00053 J	0.00083	<0.0025	0.00064	0.00055 J	0.0012	0.0010
ZINC, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<2	0.0030 J	<0.02	<0.018	<0.018	<0.018	<0.020	<0.020	<0.018	<0.018

- 1. mg/L Milligrams per Liter
- 2. pCi/L picocuries per Liter
- 3. NA Not available, constituent does not have criteria available
- 4. NT Not Tested
- 5. J Result is an estimated value. The result is greater than or equal to the Method Detection Limit (MDL) and less than the Practical Quantitation Limit (PQL). Values are displayed as less that the PQL with a J.
- 6. < Constituent was analyzed for, but was not detected above the MDL and is considered a non-detect. Value is displayed as less than the PQL.
- 7. Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.

Analyte	Units									N	IW-5								
S	ample Date:	6/27/2018	7/30/2018	8/27/2018	9/27/2018	10/22/2018	11/12/2018	11/28/2018	12/7/2018	3/27/2019	9/27/2019	3/27/2020	6/17/2020	9/25/2020	11/20/2020	1/25/2021	4/23/2021	7/30/2021	10/25/2021
Detection Monitoring (Shaded	exceeds pre	diction limit an	d is considere	d an SSI)															
BORON, TOTAL	mg/L	2.5	14	2.6	3.7	4.6	4.2	5	4.2	4.1	2.8	2.9	2.7	3.2	2.9	2.7	2.3	2.9	3.0
CALCIUM, TOTAL	mg/L	210	130	190	310	510	460	540	530	630	240	620	610	490	560	560	560	510	340
CHLORIDE, TOTAL	mg/L	24	20	19	25	23	17	24	17	10	13	8.1	12	14	21	22	28	24	22
FLUORIDE, TOTAL	mg/L	1.8	2.6	1.7	2.3	2.8	1.8	2.3	2.1	2.7	2.4	3.1	4.2	3.1	4.4	3.7	3.9	3.9	3.3
IRON, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	32	1.5	41	31	17	34	37	24	12	2.5
рН	S.U.	8.2	7.66	7.30	7.31	7.46	7.54	7.62	7.90	7.97	7.29	7.99	8.41	6.86	6.85	6.87	6.76	6.96	7.43
SULFATE, TOTAL	mg/L	45	83	29	260	950	1,000	1,100	980	1,300	100	1,200	1,200	760	950	1,000	540	690	320
TOTAL DISSOLVED SOLIDS	mg/L	780	820	810	1,200	2,200	2,100	2,400	2,100	2,600	870	2,400	2,200	1,800	2,000	2,400	2000	1,700	1,300
Assessment Monitoring																			
ANTIMONY, TOTAL	mg/L	< 0.00009	0.00011 J	0.00010 J	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00030	< 0.00030	<0.0003	<0.0003	<0.0003	<0.0015	<0.00030	<0.0015	<0.00030	<0.00021
ARSENIC, TOTAL	mg/L	0.0086	0.0036	0.0014	0.21	0.28	0.21	0.16	0.16	0.098	0.076	0.097	0.2	0.089	0.15	0.098	0.076	0.052	0.04
BARIUM, TOTAL	mg/L	0.3	0.42	0.28	0.45	0.35	0.3	0.16	0.23	0.082	0.14	0.067	0.07	0.11	0.086	0.06	0.054	0.077	0.087
BERYLLIUM, TOTAL	mg/L	< 0.00006	< 0.00006	< 0.000060	< 0.000060	< 0.000060	< 0.000060	< 0.000060	< 0.000060	< 0.0010	< 0.0010	<0.001	<0.001	<0.001	<0.001	<0.0020	<0.0020	<0.0010	<0.00070
CADMIUM, TOTAL	mg/L	< 0.000017	0.000035 J	< 0.000017	< 0.000017	0.000028 J	<0.000017	0.000032 J	<0.000017	0.000018 J	<0.000040	< 0.001	< 0.00060	< 0.00060	<0.003	<0.0010	<0.0010	<0.00060	< 0.00042
CHROMIUM, TOTAL	mg/L	0.00063 J	0.0008	< 0.00034	< 0.00034	0.00072 J	< 0.00034	< 0.00034	< 0.00034	< 0.0008	<0.00080	< 0.00090	<0.00070	<0.00070	<0.0035	<0.00090	<0.00090	<0.00070	0.0017
COBALT, TOTAL	mg/L	0.0002 J	0.00096 J	0.000089 J	0.00017 J	0.0025	0.003	0.0043	0.0041	0.006	0.00015 J	0.0064	0.004	<0.0005	<0.0025	0.0023	0.0014 J	<0.00050	0.00069 J
COPPER, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	0.0027	0.00028 J	<0.005	<0.0043	<0.0043	<0.022	<0.0050	<0.0040	<0.0018	< 0.0013
LEAD, TOTAL	mg/L	0.00029 J	0.001	0.00028 J	0.00058	0.0052	0.028	0.00011 J	<0.00004	0.00075	0.00029 J	<0.002	<0.00004	<0.0005	<0.0025	<0.0020	<0.010	<0.00050	< 0.00035
LITHIUM, TOTAL	mg/L	0.049	0.0016 J	0.051	0.099	0.0096	0.14	0.16	0.13	0.11	<0.010	0.17	0.075	0.11	0.17	0.095	0.12	0.11	0.089
MERCURY, TOTAL	mg/L	<0.000041	0.00017	0.00011 J	<0.000041	<0.000041	<0.000041	<0.000041	<0.000041	<0.0002	<0.0002	<0.00020	<0.00016	<0.0000016	<0.0000016	<0.0000050	<0.0000050	<0.0000016	<0.0000016
MOLYBDENUM, TOTAL	mg/L	< 0.000093	0.0044	< 0.000093	0.015	0.017	0.013	0.014	0.011	0.011	0.0029	0.0064	0.027 B	0.0035	0.011	0.0083	0.0068	0.00063	0.0023
NICKEL, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	0.0063	0.00054 JB	0.0039 J	0.0026 J	<0.0022	<0.011	<0.0050	0.0023 J	<0.0022	0.0015 J
RADIUM (226 + 228)	pCi/L	1.0 U	1.0 U	1.39	1.0 U	1.0 U	1.0 U	0.536 U	0.344 U	1.0 U	1.1	1.0 U	1.0 U	2.03	0.75	<0.61	0.89 J	1.3	0.34 J
SELENIUM, TOTAL	mg/L	< 0.00028	< 0.00028	< 0.00028	< 0.00028	< 0.00028	< 0.00028	< 0.00028	< 0.00028	<0.00087	<0.00087	<0.0009	<0.0009	<0.0009	<0.0045	<0.0020	<0.0020	<0.00090	< 0.00063
SILVER, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	<0.000040	0.000016 J	< 0.0003	< 0.0003	< 0.0003	<0.0015	<0.0010	<0.0010	<0.00030	<0.00021
THALLIUM, TOTAL	mg/L	< 0.000029	< 0.000029	< 0.000029	< 0.000029	< 0.000029	< 0.000029	< 0.000029	< 0.000029	<0.000087	<0.000087	< 0.0003	< 0.0003	< 0.0003	<0.0015	<0.0010	<0.0010	<0.00030	<0.00021
VANADIUM, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	0.003	0.0013	0.00089	<0.0005	0.0008	<0.0025	<0.00080	<0.00080	0.00070 J	0.00089
ZINC, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	0.22 J	0.0025 J	<0.02	<0.018	<0.018	<0.018	<0.020	<0.020	<0.018	<0.012

- 1. mg/L Milligrams per Liter
- 2. pCi/L picocuries per Liter
- 3. NA Not available, constituent does not have criteria available
- 4. NT Not Tested
- 5. J Result is an estimated value. The result is greater than or equal to the Method Detection Limit (MDL) and less than the Practical Quantitation Limit (PQL). Values are displayed as less that the PQL with a J.
- 6. < Constituent was analyzed for, but was not detected above the MDL and is considered a non-detect. Value is displayed as less than the PQL.
- 7. Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.

Analyte	Units									м	W-6								
.,																			
			ı	ı	l		I	I	I	l	ı	ı	ı		ı	l			ı
s	Sample Date:	6/27/2018	7/30/2018	8/27/2018	9/26/2018	10/22/2018	11/12/2018	11/28/2018	12/7/2018	3/27/2019	9/27/2019	3/27/2020	6/17/2020	9/25/2020	11/20/2020	1/25/2021	4/23/2021	7/30/2021	10/25/2021
Detection Monitoring (Shaded	exceeds pre	ediction limit an	d is considered	d an SSI)															
BORON, TOTAL	mg/L	13	0.21	14	14	12	11	11	11	9.7	15	8.5	9.2	17	10	11	8.6	11	13
CALCIUM, TOTAL	mg/L	250	1.3	190	220	250	220	250	260	270	210	250	260	220	210	170	230	210	200
CHLORIDE, TOTAL	mg/L	310	310	260	290	300	280	300	280	250	210	140	130	160	150	160	150	210	200
FLUORIDE, TOTAL	mg/L	1.7	1.7	1.8	1.8	1.7	1.4	1.3	1.3	1.4	1.7	1.5	1.4	1.9	1.7	1.6	1.2	1.6	1.6
IRON, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	13	11	18	14	11	20	17	18	7.2	13
рН	S.U.	8.41	7.89	7.46	7.42	7.50	7.89	7.10	7.16	7.78	7.16	7.61	8.13	7.23	7.2	7.24	7.17	7.49	7.6
SULFATE, TOTAL	mg/L	110	1,500	19	44	97	70	130	90	160	<3.0	25	5.1	1.6 J	11	14	5.7	14	1.3 J
TOTAL DISSOLVED SOLIDS	mg/L	1,600	820	1,500	1,600	1,600	1,500	1,600	1,600	1,600	1,400	1,200	1,200	1,200	1,100	1,000	1200	1,400	1,300
Assessment Monitoring																			
ANTIMONY, TOTAL	mg/L	0.00012 J	0.00022 J	0.00014 J	0.00033	<0.00009	<0.00009	0.00037	<0.00009	<0.00030	0.00010 J	<0.0003	<0.0003	<0.0003	<0.0003	<0.00030	<0.00030	<0.00030	<0.00021
ARSENIC, TOTAL	mg/L	0.0011	0.00029 J	0.0016	0.0013	0.0011	0.0023	0.0014	0.0014	0.00097 J	0.00098 J	0.00074 J	0.0016	0.00084 J	0.0017	0.00092	0.00083 J	0.001	0.0017
BARIUM, TOTAL	mg/L	0.56	0.0054	0.89	1.1	1	1.1	1	1.1	0.82	1.1	1.3	1.4	1.2	1.6	1.4	1.3	1.3	1.6
BERYLLIUM, TOTAL	mg/L	< 0.00006	< 0.00006	< 0.000060	0.00021 J	< 0.000060	< 0.000060	< 0.000060	< 0.000060	< 0.0010	<0.0010	<0.001	<0.001	<0.001	<0.001	<0.0020	<0.0020	<0.0010	<0.00070
CADMIUM, TOTAL	mg/L	0.000089	< 0.000017	0.000034 J	< 0.000017	0.000057	0.000021 J	0.000017 J	0.000063	0.000077	<0.000040	< 0.001	< 0.00060	< 0.00060	< 0.00060	<0.0010	<0.0010	<0.00060	0.00053 J
CHROMIUM, TOTAL	mg/L	0.0017	0.00089	0.0017	0.0012	0.0014	0.0013	0.0012	0.0017	0.0016	0.0038	0.0012	0.0016 B	0.0046	0.00099	0.0014	0.00089 J	0.0017	0.0029
COBALT, TOTAL	mg/L	0.00062 J	0.00089 J	0.00050 J	0.0004 J	0.00036 J	0.00035 J	0.00031 J	0.00099 J	0.00058 J	0.00055 J	<0.0016	<0.0005	0.00059 J	<0.0005	<0.0016	<0.0016	<0.00050	0.00082 J
COPPER, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	0.0034	0.0012	<0.005	<0.0043	<0.0043	<0.0043	0.0051	<0.0040	<0.0018	< 0.0013
LEAD, TOTAL	mg/L	0.0036	0.0016	0.0023	0.00056	0.0023	0.0018	0.00052	0.0033 J	0.00071	0.0031	<0.002	<0.0005	0.0032	<0.001	0.0016	0.0021	<0.00050	0.0014
LITHIUM, TOTAL	mg/L	0.24	< 0.00095	0.23	0.21	0.18	0.19	0.18	0.18	0.17	0.2	0.17	0.16	0.33	0.23	0.18	0.16	0.19	0.23
MERCURY, TOTAL	mg/L	<0.000041	0.00012	0.00013	<0.000041	<0.000041	<0.000041	<0.000041	<0.000041	<0.0002	<0.0002	<0.00020	<0.00016	0.000025	0.0000033	0.000033	0.000006	0.00000073	0.00000094
MOLYBDENUM, TOTAL	mg/L	< 0.000093	0.0016	0.0018	0.0015	0.0014	0.001	0.0011	0.0011	< 0.0010	<0.0010	<0.001	0.00023 JB	0.00023 J	0.00071	0.00061	0.00045	0.00059	0.00076
NICKEL, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	0.0019	0.0024 B	<0.005	<0.0022	<0.0022	<0.0022	<0.0050	<0.0050	<0.0022	0.0022 J
RADIUM (226 + 228)	pCi/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.86 U	0.931 U	0.71 U	0.87 J	1.0 U	3.44	2.34	2.22	1.95	1.5	2.45	1.5	0.06 J
SELENIUM, TOTAL	mg/L	< 0.00028	< 0.00028	< 0.00028	< 0.00028	< 0.00028	< 0.00028	< 0.00028	< 0.00028	< 0.00087	< 0.00087	<0.0009	<0.0009	<0.0009	<0.0009	<0.0020	<0.0020	<0.00090	< 0.00063
SILVER, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	<0.000040	0.000024 J	< 0.0003	< 0.0003	< 0.0003	< 0.0003	<0.0010	<0.0010	<0.00030	<0.00021
THALLIUM, TOTAL	mg/L	< 0.00028	< 0.000029	< 0.000029	< 0.000029	< 0.000029	< 0.000029	< 0.000029	< 0.000029	0.000064 J	<0.000087	< 0.0003	< 0.0003	< 0.0003	<0.0006	<0.0010	<0.0010	<0.00030	0.00030 J
VANADIUM, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	0.00029 J	0.00066 J	<0.0008	<0.0005	0.00076 J	<0.0005	<0.00080	<0.00080	<0.00050	0.00083
ZINC, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	<2.0	0.011 J	<0.02	<0.018	<0.018	<0.018	<0.020	<0.020	<0.018	<0.012

- 1. mg/L Milligrams per Liter
- 2. pCi/L picocuries per Liter
- 3. NA Not available, constituent does not have criteria available
- 4. NT Not Tested
- 5. J Result is an estimated value. The result is greater than or equal to the Method Detection Limit (MDL) and less than the Practical Quantitation Limit (PQL). Values are displayed as less that the PQL with a J.
- 6. < Constituent was analyzed for, but was not detected above the MDL and is considered a non-detect. Value is displayed as less than the PQL.
- 7. Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.

Analyte	Units									MW-7 (Interim	Background W	/ell)							
			l		I	l	I		l	l			l					l	
	Sample Date:	6/27/2018	7/30/2018	8/27/2018	9/26/2018	10/22/2018	11/12/2018	11/28/2018	12/7/2018	3/27/2019	9/27/2019	3/27/2020	6/17/2020	9/25/2020	11/20/2020	1/25/2021	4/23/2021	7/30/2021	10/25/2021
Detection Monitoring (Shaded	d exceeds pre	diction limit an	d is considered	d an SSI)															
BORON, TOTAL	mg/L	16	2.4	9	15	13	14	14	14	9.2	11	12	15	15	15	16	13	15	15
CALCIUM, TOTAL	mg/L	150	200	150	150	140	130	140	150	140	140	140	140	130	150	140	140	150	130
CHLORIDE, TOTAL	mg/L	15	15	13	15	15	14	15	15	14	14	13	14	13	15	14	13	13	14
FLUORIDE, TOTAL	mg/L	0.1	0.1	0.11	0.14	0.16	0.066 J	< 0.055	< 0.055	0.092 J	0.14	< 0.1	0.2	0.18	0.1	0.13	0.084 J	0.082 J	0.094 J
IRON, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	19	21	20	19	19	16	14	15	17	16
pН	S.U.	7.65	7.30	6.99	7.14	7.31	7.21	7.51	7.34	8.05	7.57	7.54	8.22	6.77	6.77	6.72	6.47	6.66	7.01
SULFATE, TOTAL	mg/L	68	52	24	57	57	50	61	51	14	26	11	32	23	28	26	15	26	30
TOTAL DISSOLVED SOLIDS	mg/L	690	700	750	690	740	800	720	680	610	690	610	650	540	610	480	660	740	630
Assessment Monitoring																			
ANTIMONY, TOTAL	mg/L	< 0.00009	0.0016	0.00017 J	< 0.00009	< 0.00009	< 0.00009	0.00013 J	< 0.00009	< 0.00030	<0.00030	<0.0003	<0.0003	<0.0003	<0.0003	<0.00030	<0.00030	<0.00030	<0.00030
ARSENIC, TOTAL	mg/L	0.0019	0.029	0.0048	0.0009 J	0.001	0.0009 J	0.0028	0.0004 J	0.00082 J	0.00085 J	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.0006	<0.0010	<0.00050	<0.0005
BARIUM, TOTAL	mg/L	0.47	0.3	0.36	0.42	0.41	0.43	0.44	0.45	0.28	0.35	0.31	0.33	0.37	0.36	0.31	0.27	0.32	0.36
BERYLLIUM, TOTAL	mg/L	< 0.00006	< 0.00006	< 0.000060	0.00016 J	< 0.000060	< 0.000060	< 0.000060	< 0.000060	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	<0.0020	<0.0020	<0.0010	<0.0010
CADMIUM, TOTAL	mg/L	0.000047	< 0.000017	0.000023 J	< 0.000017	< 0.000017	< 0.000017	< 0.000017	< 0.000017	< 0.00030	<0.000040	< 0.0010	< 0.00060	< 0.00060	< 0.00060	<0.0010	<0.0010	<0.00060	<0.00060
CHROMIUM, TOTAL	mg/L	0.00055 J	0.0028	< 0.00034	< 0.00034	0.00068 J	< 0.00034	0.00045 J	< 0.00034	0.00037 J	<0.00080	< 0.00090	< 0.00070	< 0.00070	< 0.00070	<0.00090	<0.00090	<0.00070	0.0010
COBALT, TOTAL	mg/L	0.00079 J	0.0006 J	0.00099 J	0.0007 J	0.00075 J	0.0007 J	0.0007 J	0.00076 J	0.00088 J	0.00091 J	0.0009 J	0.00067 J	0.00084 J	0.00068 J	0.00069	0.00079 J	0.00074 J	0.00088 J
COPPER, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	0.00059 J	0.00046 J	<0.005	<0.0043	<0.0043	<0.0043	<0.0050	<0.0040	<0.0018	< 0.0018
LEAD, TOTAL	mg/L	0.00062	0.0029	0.000071 J	< 0.00004	0.00026 J	< 0.00004	< 0.00004	< 0.00004	0.000074 J	0.000057 J	<0.002	<0.0005	<0.0005	<0.0005	<0.0020	<0.0020	<0.00050	< 0.00050
LITHIUM, TOTAL	mg/L	0.0052 J	0.059	0.0074 J	0.0055 J	<0.00095	0.0034 J	0.0035 J	0.0061 J	0.0094 J	<0.010	0.0044 J	0.0039 J	0.00057 J	0.00022 J	<0.010	<0.010	<0.0067	< 0.0067
MERCURY, TOTAL	mg/L	<0.000041	0.00014	0.00012	<0.000041	0.00008 J	<0.000041	<0.000041	<0.000041	<0.0002	<0.0002	<0.00020	<0.00016	<0.0000016	<0.0000016	0.00000051	<0.0000050	<0.0000016	<0.0000016
MOLYBDENUM, TOTAL	mg/L	< 0.000093	0.0054	0.0066	0.0027	0.004	0.0014	0.0019	0.0011	0.0043	<0.0010	<0.001	0.00012 JB	0.00017 J	0.00023 J	0.00016	0.00017 J	<0.000093	< 0.000093
NICKEL, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	0.0004	0.00042 JB	<0.005	<0.0022	<0.0022	<0.0022	<0.0050	<0.0050	<0.0022	< 0.0022
RADIUM (226 + 228)	pCi/L	1.0 U	1.0 U	1.0 U	1.0 U	0.762 U	1.0 U	1.0 U	0.72 U	1.0 U	1.0 U	1.0 U	1.3	2.12	1.65	2.03	1.7	1.76	1.33
SELENIUM, TOTAL	mg/L	< 0.00028	< 0.00028	< 0.00028	< 0.00028	< 0.00028	< 0.00028	< 0.00028	< 0.00028	< 0.00087	<0.00087	<0.0009	<0.0009	<0.0009	<0.0009	<0.0020	<0.0020	<0.00090	< 0.00090
SILVER, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	0.000034 J	0.000022 J	< 0.0003	< 0.0003	< 0.0003	< 0.0003	<0.0010	<0.0010	<0.00030	<0.00030
THALLIUM, TOTAL	mg/L	< 0.000029	< 0.000029	< 0.000029	< 0.000029	< 0.000029	< 0.000029	< 0.000029	< 0.000029	< 0.000087	<0.000087	< 0.0003	< 0.0003	< 0.0003	< 0.0003	<0.0010	<0.0010	<0.00030	<0.00030
VANADIUM, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	0.00057 J	0.00076 J	0.0006 J	0.00052 J	0.00078 J	0.00057 J	0.00061	0.00065 J	0.00061 J	0.00067 J
ZINC, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	<2.0	0.0023 J	<0.02	<0.018	<0.018	0.021	<0.020	<0.020	<0.018	<0.018

- 1. mg/L Milligrams per Liter
- 2. pCi/L picocuries per Liter
- 3. NA Not available, constituent does not have criteria available
- 4. NT Not Tested
- 5. J Result is an estimated value. The result is greater than or equal to the Method Detection Limit (MDL) and less than the Practical Quantitation Limit (PQL). Values are displayed as less that the PQL with a J.
- 6. < Constituent was analyzed for, but was not detected above the MDL and is considered a non-detect. Value is displayed as less than the PQL.
- 7. Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.

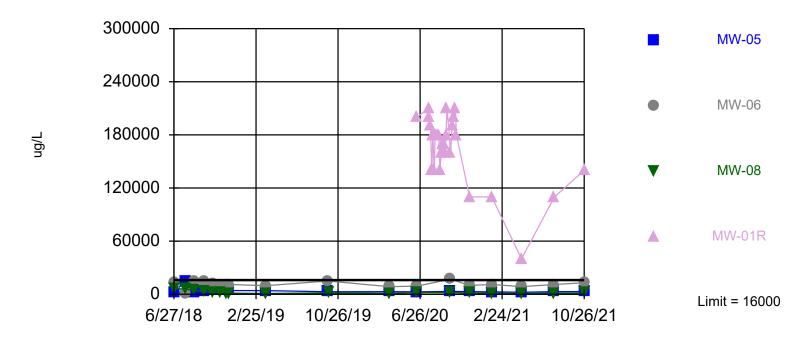
Analyte	Units										MW-8								
Analyte	Onito																		
Sa	mple Date:	6/27/2018	7/30/2018	8/27/2018	9/26/2018	10/22/2018	11/12/2018	11/28/2018	12/7/2018	3/27/2019	9/30/2019	3/27/2020	6/17/2020	9/25/2020	11/20/2020	1/25/2021	4/23/2021	7/30/2021	10/25/2021
Detection Monitoring (Shaded e	xceeds pre	diction limit a	and is consid	lered an SSI)															
BORON, TOTAL	mg/L	6	6.2	4.4	3	2.1	1.4	1.2	1.3	0.9	1.6	1.1	2	2	1.4	1.2	0.96	1.3	1.4
CALCIUM, TOTAL	mg/L	140	150	140	130	120	120	120	120	95	130	130	140	130	160	140	130	140	130
CHLORIDE, TOTAL	mg/L	94	110	78	41	23	17	15	14	8.5	18	14	17	35	37	40	40	33	30
FLUORIDE, TOTAL	mg/L	0.18	0.12	0.39	0.57	0.57	0.34	0.34	0.36	0.4	0.57	0.34	0.5	0.4	0.54	0.42	0.49	0.38	0.42
IRON, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	15	21	24	23	22	26	31	27	22	29
pH	S.U.	8.74	7.69	7.25	7.28	7.57	7.74	7.96	7.61	7.81	7.96	7.4	7.59	7.18	7.07	7.11	7.18	7.16	6.74
SULFATE, TOTAL	mg/L	2.2	27	8.2	5.1	4.7	3.4	3.6	3.1	4.7	<3.0	0.63 J	2.1 J	0.95 J	1.8 J	7.9	11	1.8 J	37
TOTAL DISSOLVED SOLIDS	mg/L	720	860	800	490	490	410	290	420	180	480	430	550	340	480	420	540	530	630
Assessment Monitoring																			
ANTIMONY, TOTAL	mg/L	<0.00009	0.00026 J	0.00012 J	< 0.00009	< 0.00009	< 0.00009	0.00012 J	< 0.00009	< 0.00030	<0.00030	<0.0003	<0.0003	<0.0003	<0.0003	<0.00030	<0.00030	<0.00030	<0.00030
ARSENIC, TOTAL	mg/L	0.0064	0.0041	0.008	0.0047	0.0047	0.004	0.0037	0.0041	0.0028	0.0065	0.0033	0.0096	0.0043	0.0042	0.0044	0.0028	0.0035	0.0067
BARIUM, TOTAL	mg/L	0.42	0.38	0.48	0.51	0.62	0.61	0.69	0.62	0.5	0.68	0.8	0.91	0.7	0.84	0.94	0.88	0.83	1.0
BERYLLIUM, TOTAL	mg/L	<0.00006	< 0.00006	< 0.000060	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	0.000089 J	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0020	<0.0020	<0.0010	<0.0010
CADMIUM, TOTAL	mg/L	0.000051	< 0.000017	0.000031 J	< 0.000017	< 0.000017	< 0.000017	< 0.000017	0.000079	< 0.000040	<0.000040	< 0.0010	< 0.00060	< 0.00060	< 0.00060	<0.0010	<0.0010	<0.00060	<0.00060
CHROMIUM, TOTAL	mg/L	0.00085	0.00049 J	0.00084	0.00059 J	0.00075 J	0.00065 J	0.00058 J	0.0009	0.00050 J	0.00051 J	0.00083 J	0.0012 B	<0.0007	0.0011	<0.00090	<0.00090	0.00076 J	0.0012
COBALT, TOTAL	mg/L	0.0018	0.0019	0.002	0.00058 J	0.00044 J	0.00034 J	0.00032 J	0.00035 J	0.00022 J	0.00036 J	<0.0016	< 0.0005	< 0.0005	< 0.0005	<0.0016	<0.0016	<0.00050	< 0.00050
COPPER, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	0.00094	0.00084	<0.005	<0.0043	<0.0043	<0.0043	<0.0050	<0.0040	<0.0018	< 0.0018
LEAD, TOTAL	mg/L	0.002	0.0039	0.0015	0.00036 J	0.00067	0.00025 J	0.0003 J	0.00058	0.00059	0.00046	<0.002	<0.0005	<0.0005	<0.0005	<0.0020	<0.0020	<0.00050	< 0.00050
LITHIUM, TOTAL	mg/L	0.021	0.01	0.04	0.039	0.029	0.034	0.032	0.032	0.024	<0.010	0.028	0.049	0.03	0.038	0.026	0.034	0.039	0.043
MERCURY, TOTAL	mg/L	<0.000041	0.00012	0.000093 J	<0.000041	<0.000041	<0.000041	<0.000041	<0.000041	< 0.00020	< 0.00020	<0.00020	<0.00016	0.00000062	0.00000078	0.0000018	0.0000014	0.00000064	<0.0000016
MOLYBDENUM, TOTAL	mg/L	< 0.000093	< 0.000093	0.0069	0.0034	0.0045	0.005	0.0053	0.0052	0.0045	0.0046	0.0038	0.0025 B	0.0018	0.0029	0.0037	0.0036	0.0028	0.0037
NICKEL, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	0.0011	0.0013 JB	<0.005	<0.0022	<0.0022	<0.0022	<0.0050	<0.0050	<0.0022	< 0.0022
RADIUM (226 + 228)	pCi/L	1.0 U	1.36	1.0 U	1.0 U	1.0 U	1.0 U	0.952 U	0.8 U	1.0 U	1.08	2.21	1.99	4.6	2.31	2.8	2.19	3.4	0.86
SELENIUM, TOTAL	mg/L	< 0.00028	< 0.00028	< 0.00028	< 0.00028	< 0.00028	< 0.00028	< 0.00028	< 0.00028	< 0.00087	<0.00087	<0.0009	<0.0009	<0.0009	<0.0009	<0.0020	<0.0020	<0.00090	< 0.00090
SILVER, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	0.000028 J	<0.000040	< 0.0003	< 0.0003	< 0.0003	< 0.0003	<0.0010	<0.0010	<0.00030	<0.00030
THALLIUM, TOTAL	mg/L	< 0.000029	< 0.000029	< 0.000029	< 0.000029	< 0.000029	< 0.000029	< 0.000029	< 0.000029	< 0.000087	<0.000087	< 0.0003	< 0.0003	< 0.0003	< 0.0003	<0.0010	<0.0010	<0.00030	<0.00030
VANADIUM, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	0.00036 J	<0.00049 J	< 0.0008	< 0.0005	< 0.0005	< 0.0005	<0.00080	<0.00080	<0.00050	< 0.00050
ZINC, TOTAL	mg/L	NT	NT	NT	NT	NT	NT	NT	NT	<2.0	0.0026 J	<0.02	<0.018	<0.018	<0.018	<0.020	<0.020	<0.018	<0.018

- 1. mg/L Milligrams per Liter
- 2. pCi/L picocuries per Liter
- 3. NA Not available, constituent does not have criteria available
- 4. NT Not Tested
- 5. J Result is an estimated value. The result is greater than or equal to the Method Detection Limit (MDL) and less than the Practical Quantitation Limit (PQL). Values are displayed as less that the PQL with a J
- 6. < Constituent was analyzed for, but was not detected above the MDL and is considered a non-detect. Value is displayed as less than the PQL.
- 7. Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.

Analyte	Units		MW-9														
Si	ample Date:	9/30/2019	3/27/2020	6/17/2020	7/22/2020	9/25/2020	11/20/2020	1/25/2021	4/23/2021	7/30/2021	10/25/2021						
Detection Monitoring (Shaded e																	
BORON, TOTAL	mg/L	6.9	5	5.1	5.2	5.9	4.9	3.9	5.3	6.4	6.8						
CALCIUM, TOTAL	mg/L	280	250	250	230	240	240	250	230	240	220						
CHLORIDE, TOTAL	mg/L	18	11	11	9.5	11	12	11	12	13	13						
FLUORIDE, TOTAL	mg/L	2.3	2.4	2.5	2.4	2.6	2.7	2.2	2.4	2.4	2.5						
IRON, TOTAL	mg/L	20	29	17	15	14	19	26	23	21	19						
pН	S.U.	7.75	7.41	7.91	7.63	7.07	7.43	6.93	7.14	7.25	7.31						
SULFATE, TOTAL	mg/L	9.6	94	100	74	19	170	180	71	21	14						
TOTAL DISSOLVED SOLIDS	mg/L	1,100	890	1,500	960	560	910	780	880	830	880						
Assessment Monitoring																	
ANTIMONY, TOTAL	mg/L	<0.00030	<0.0003	<0.0003	<0.0006	<0.0006	<0.0006	<0.00030	<0.00030	<0.00030	<0.00030						
ARSENIC, TOTAL	mg/L	0.0035	0.002	0.0022	0.003	0.0021	0.0038	0.004	0.0025	0.0034	0.0025						
BARIUM, TOTAL	mg/L	1.8	1.1	1.4	1.5	2.5	0.81	0.91	1	4.8	5.0						
BERYLLIUM, TOTAL	mg/L	<0.0010	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0020	<0.0020	<0.0010	<0.0010						
CADMIUM, TOTAL	mg/L	<0.000040	< 0.001	<0.0006	<0.0012	<0.0006	<0.0006	<0.0010	<0.0010	<0.00060	<0.00060						
CHROMIUM, TOTAL	mg/L	0.0025	0.0022	0.0018 B	0.003	0.0018	0.0021	0.0022	0.0024	0.0024	0.0029						
COBALT, TOTAL	mg/L	0.0022	0.0005 J	0.0006 J	0.0025 J	0.00068 J	0.00073 J	0.0011	<0.0016	<0.00050	< 0.00050						
COPPER, TOTAL	mg/L	0.0013	<0.005	<0.0043	<0.0086	<0.0043	<0.0043	<0.0050	<0.0040	<0.0018	< 0.0018						
LEAD, TOTAL	mg/L	0.002	<0.002	0.00083 J	0.0016 J	<0.0005	<0.0005	<0.0020	<0.0020	<0.00050	< 0.00050						
LITHIUM, TOTAL	mg/L	0.16	0.28	0.049	0.24	0.25	0.26	0.16	0.26	0.26	0.26						
MERCURY, TOTAL	mg/L	<0.00020	<0.00020	<0.00016	0.00000088	<0.0000016	0.00000063	0.0000007	<0.00000050	<0.00000016	0.00000062						
MOLYBDENUM, TOTAL	mg/L	0.012	0.027	0.017 B	0.015	0.0077	0.023	0.025	0.028	0.026	0.017						
NICKEL, TOTAL	mg/L	0.0015 JB	<0.005	<0.0022	<0.0044	<0.0022	<0.0022	0.0036	0.0031 J	0.0032 J	< 0.0022						
RADIUM (226 + 228)	pCi/L	1.18	1.45	1.43	1.0 U	1.65	1.49	1.74	1.41	1.76	2.56						
SELENIUM, TOTAL	mg/L	<0.00087	<0.0009	<0.0009	<0.0018	<0.0009	<0.0009	<0.0020	<0.0020	<0.00090	< 0.00090						
SILVER, TOTAL	mg/L	<0.000040	< 0.0003	< 0.0003	<0.0006	< 0.0003	< 0.0003	<0.0010	<0.0010	<0.00030	<0.00030						
THALLIUM, TOTAL	mg/L	<0.000087	< 0.0003	< 0.0003	0.00085 J	< 0.0003	< 0.0003	<0.0010	<0.0010	<0.00030	<0.00030						
VANADIUM, TOTAL	mg/L	0.0021	< 0.0008	<0.0005	0.0026	<0.0005	<0.0005	<0.00080	<0.00080	<0.00050	< 0.00050						
ZINC, TOTAL	mg/L	0.0064 J	<0.02	<0.018	<0.018	<0.018	<0.018	<0.020	<0.020	<0.018	<0.018						

- 1. mg/L Milligrams per Liter
- 2. pCi/L picocuries per Liter
- 3. NA Not available, constituent does not have criteria available
- NT Not Tested
- 5. J Result is an estimated value. The result is greater than or equal to the Method Detection Limit (MDL) and less than the Practical Quantitation Limit (PQL). Values are displayed as less that the PQL with a J.
- 6. < Constituent was analyzed for, but was not detected above the MDL and is considered a non-detect. Value is displayed as less than the PQL.
- 7. Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.

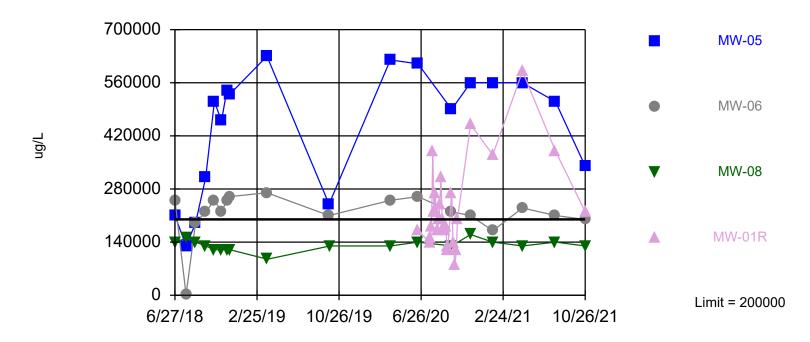
Analyte	Units		MW-10													
	Sample Date:	9/30/2019	3/27/2020	6/17/2020	7/22/2020	9/25/2020	11/20/2020	1/25/2021	4/23/2021	7/30/2021	10/25/2021					
Detection Monitoring (Shade	d exceeds pre	diction limit an	d is considered	l an SSI)												
BORON, TOTAL	mg/L	46	35	39	43	43	51	41	42	52	52					
CALCIUM, TOTAL	mg/L	150	130	130	140	130	160	130	160	140	140					
CHLORIDE, TOTAL	mg/L	550	94	430	600	610	540	400	430	670	520					
FLUORIDE, TOTAL	mg/L	10	11	10	9.9	8.9	12	11	11	12	11					
IRON, TOTAL	mg/L	8.4	11	9.2	11	9.2	8.8	12	12	13	10					
рН	S.U.	7.66	7.92	8.4	7.93	7.74	7.71	7.65	7.6	7.7	7.42					
SULFATE, TOTAL	mg/L	<3.0	5.8	2.9 J	0.56 J	1.1 J	<0.41	5.5	2.7 J	0.60 J	53					
TOTAL DISSOLVED SOLIDS	mg/L	1,700	1,500	1,600	2,100	1,600	1,700	1,200	1,700	1,700	2,000					
Assessment Monitoring																
ANTIMONY, TOTAL	mg/L	0.00018 J	0.0039	<0.0003	<0.00060	<0.0003	<0.0015	<0.00030	<0.0014	<0.00030	<0.00030					
ARSENIC, TOTAL	mg/L	0.00097 J	0.0014	0.0011	0.0014 J	0.0013	0.00093 J	0.00078	0.00065 J	0.0011	0.0011					
BARIUM, TOTAL	mg/L	1.2	1.1	1.2	1.2	1.3	1.3	1.3	1.2	1.4	1.5					
BERYLLIUM, TOTAL	mg/L	<0.0010	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0020	<0.0020	<0.0010	<0.0010					
CADMIUM, TOTAL	mg/L	0.000030 J	0.0011	< 0.00060	<0.0012	< 0.00060	<0.003	<0.0010	<0.00090	<0.00060	<0.00060					
CHROMIUM, TOTAL	mg/L	0.0078	0.013	0.0079 B	0.011	0.0099	0.007	0.0068	0.0073	0.011	0.011					
COBALT, TOTAL	mg/L	0.00076 J	0.0026	0.00067 J	0.0011 J	0.00089 J	0.00062 J	0.00073	0.00070 J	0.0011 J	0.0011 J					
COPPER, TOTAL	mg/L	0.00087	<0.005	<0.0043	<0.0086	<0.0043	<0.0043	<0.0050	<0.0036	<0.0018	0.0050					
LEAD, TOTAL	mg/L	0.0039	0.045	0.0011 J	0.0018 J	0.00078 J	<0.0025	0.0024	<0.0090	0.00089 J	0.0012 J					
LITHIUM, TOTAL	mg/L	1.2	1.2	0.22	0.88	0.96	1.6	1.5	1.5	1.4	1.4					
MERCURY, TOTAL	mg/L	<0.00020	<0.00020	<0.00016	0.00000051	0.0000006	<0.0000016	0.0000014	0.0000011	0.00000097	0.0000008					
MOLYBDENUM, TOTAL	mg/L	0.011	0.0076	0.005 B	0.0043	0.0048	0.01	0.017	0.0042	0.0071	0.012					
NICKEL, TOTAL	mg/L	0.0021 B	0.0054	<0.0022	<0.0044	<0.0022	<0.0022	<0.0050	0.0032 J	0.0041 J	0.0027 J					
RADIUM (226 + 228)	pCi/L	1.0 U	1.0 U	1.72	1.0 U	1.27	2.19	1.7	1.37	2.49	2.03					
SELENIUM, TOTAL	mg/L	<0.00087	<0.0009	<0.0009	<0.0018	<0.0009	<0.0009	<0.0020	<0.0018	<0.00090	< 0.00090					
SILVER, TOTAL	mg/L	<0.000040	< 0.0003	< 0.0003	<0.0006	< 0.0003	<0.0015	<0.0010	<0.00090	<0.00030	<0.00030					
THALLIUM, TOTAL	mg/L	<0.000087	< 0.0003	< 0.0003	<0.0006	< 0.0003	<0.0015	<0.0010	<0.0045	<0.00030	<0.00030	_				
VANADIUM, TOTAL	mg/L	0.0011	0.0019	0.0009	0.002	0.0019	0.00076 J	0.00091	0.00076	0.0018	0.0018					
ZINC, TOTAL	mg/L	0.011 J	0.16	<0.018	<0.018	<0.018	<0.018	<0.020	<0.020	<0.018	<0.018					


- 1. mg/L Milligrams per Liter
- 2. pCi/L picocuries per Liter
- 3. NA Not available, constituent does not have criteria available
- 4. NT Not Tested
- 5. J Result is an estimated value. The result is greater than or equal to the Method Detection Limit (MDL) and less than the Practical Quantitation Limit (PQL). Values are displayed as less that the PQL with a J.
- 6. < Constituent was analyzed for, but was not detected above the MDL and is considered a non-detect. Value is displayed as less than the PQL.
- 7. Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.

Exceeds Limit: MW-01R

Prediction Limit

Interwell Non-parametric

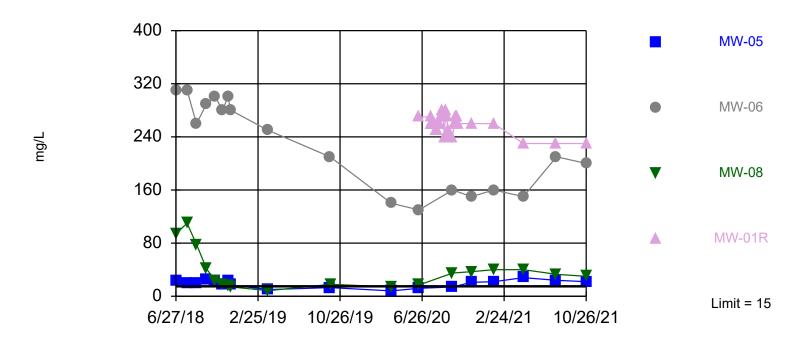

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 18 background values. Report alpha = 0.1818. Individual comparison alpha = 0.04893. Most recent point for each compliance well compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Boron Analysis Run 1/3/2022 1:12 PM View: Appendix III

Exceeds Limit: MW-05, MW-01R

Prediction Limit

Interwell Non-parametric

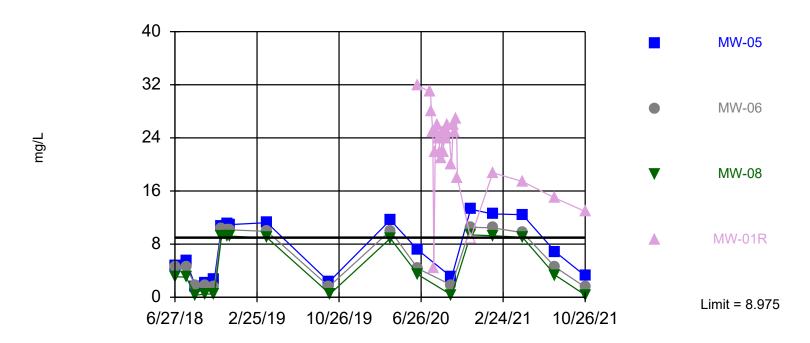

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 18 background values. Report alpha = 0.1818. Individual comparison alpha = 0.04893. Most recent point for each compliance well compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Calcium Analysis Run 1/3/2022 1:12 PM View: Appendix III

Exceeds Limit: MW-05, MW-06, MW-08, MW-01R

Prediction Limit

Interwell Non-parametric

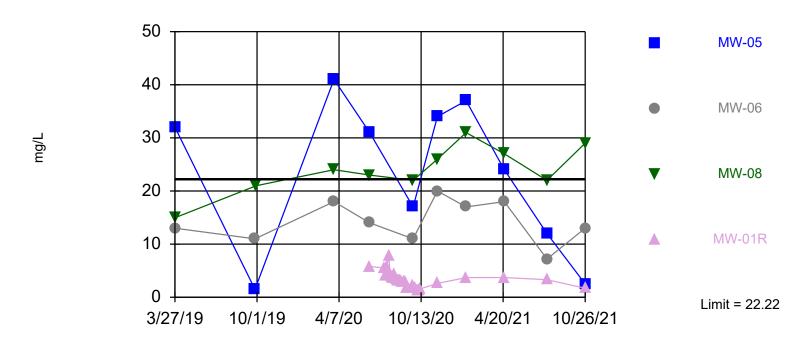

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 18 background values. Report alpha = 0.1818. Individual comparison alpha = 0.04893. Most recent point for each compliance well compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Chloride Analysis Run 1/3/2022 1:12 PM View: Appendix III
Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Exceeds Limit: MW-01R

Prediction Limit

Interwell Non-parametric

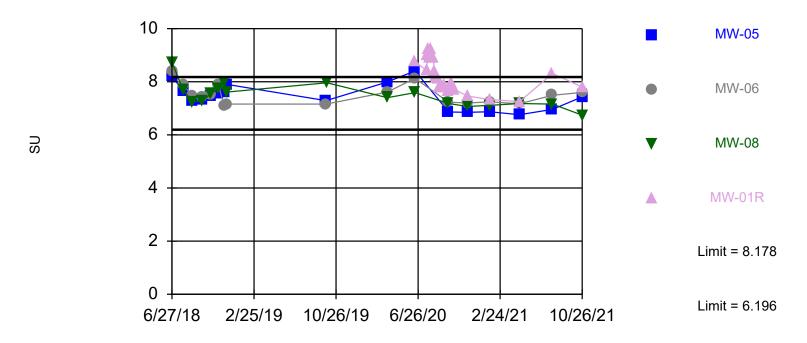

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 18 background values. 16.67% NDs. Report alpha = 0.1818. Individual comparison alpha = 0.04893. Most recent point for each compliance well compared to limit. Data were deseasonalized.

Constituent: Fluoride Analysis Run 1/3/2022 1:12 PM View: Appendix III

Exceeds Limit: MW-08

Prediction Limit

Interwell Parametric

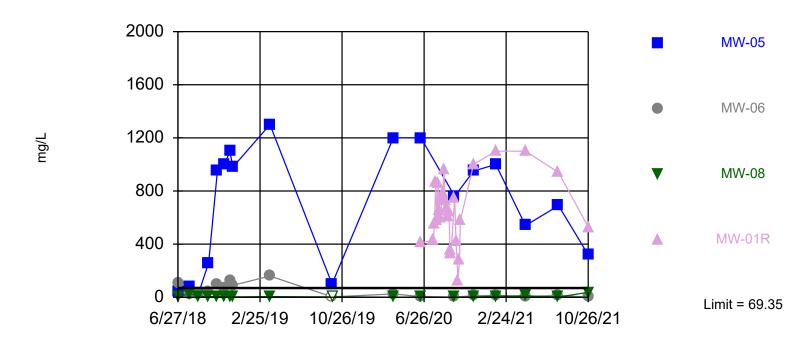

Background Data Summary: Mean=17.6, Std. Dev.=2.319, n=10. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.942, critical = 0.842. Report alpha = 0.1682. Individual comparison alpha = 0.045. Most recent point for each compliance well compared to limit.

Constituent: Iron Analysis Run 1/3/2022 1:12 PM View: Appendix III

Within Limits

Prediction Limit

Interwell Parametric


Background Data Summary: Mean=7.187, Std. Dev.=0.4429, n=17. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9662, critical = 0.892. Report alpha = 0.1682. Individual comparison alpha = 0.0225. Most recent point for each compliance well compared to limit.

Constituent: pH Analysis Run 1/3/2022 1:12 PM View: Appendix III

Exceeds Limit: MW-05, MW-01R

Prediction Limit

Interwell Parametric

Background Data Summary: Mean=36.17, Std. Dev.=17.96, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9066, critical = 0.897. Report alpha = 0.1682. Individual comparison alpha = 0.045. Most recent point for each compliance well compared to limit.

Constituent: Sulfate Analysis Run 1/3/2022 1:12 PM View: Appendix III
Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Exceeds Limit: MW-05, MW-06, MW-01R

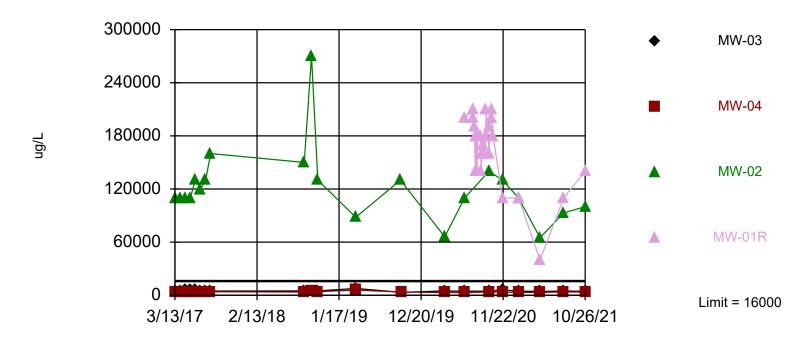
Prediction Limit

Interwell Parametric

Background Data Summary: Mean=666.1, Std. Dev.=78, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9596, critical = 0.897. Report alpha = 0.1682. Individual comparison alpha = 0.045. Most recent point for each compliance well compared to limit.

Constituent: Total Dissolved Solids Analysis Run 1/3/2022 1:12 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Interwell Prediction Limit

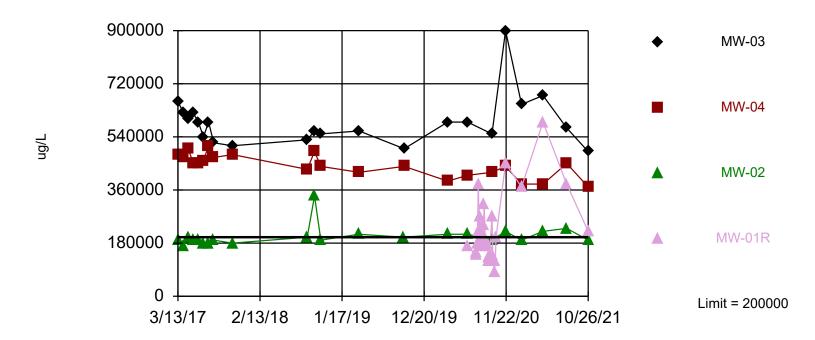

Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP Printed 1/3/2022, 1:13 PM

Constituent	<u>Well</u>	Upper Lin	n. Lower Lim	ı. Date Ot	serv.Bg N	Bg Wells	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Boron (ug/L)	MW-05	16000	n/a	10/26/202130	00 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Boron (ug/L)	MW-06	16000	n/a	10/26/202113	000 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Boron (ug/L)	MW-08	16000	n/a	10/26/202114	00 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Boron (ug/L)	MW-01R	16000	n/a	10/26/202114	000018	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Calcium (ug/L)	MW-05	200000	n/a	10/26/202134	000018	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Calcium (ug/L)	MW-06	200000	n/a	10/26/2021 20	000018	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Calcium (ug/L)	MW-08	200000	n/a	10/26/2021 13	000018	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Calcium (ug/L)	MW-01R	200000	n/a	10/26/2021 22	000018	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Chloride (mg/L)	MW-05	15	n/a	10/26/202122	18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Chloride (mg/L)	MW-06	15	n/a	10/26/202120	0 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Chloride (mg/L)	MW-08	15	n/a	10/26/202130	18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Chloride (mg/L)	MW-01R	15	n/a	10/26/202123	0 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Fluoride (mg/L)	MW-05	8.975	n/a	10/26/20213.2	16 18	MW-07	n/a	n/a	16.67	n/a	n/a	0.04893	NP (normality) Deseas
Fluoride (mg/L)	MW-06	8.975	n/a	10/26/20211.5	16 18	MW-07	n/a	n/a	16.67	n/a	n/a	0.04893	NP (normality) Deseas
Fluoride (mg/L)	MW-08	8.975	n/a	10/26/20210.3	36 18	MW-07	n/a	n/a	16.67	n/a	n/a	0.04893	NP (normality) Deseas
Fluoride (mg/L)	MW-01R	8.975	n/a	10/26/202112	.92 18	MW-07	n/a	n/a	16.67	n/a	n/a	0.04893	NP (normality) Deseas
Iron (mg/L)	MW-05	22.22	n/a	10/26/2021 2.5	10	MW-07	17.6	2.319	0	None	No	0.045	Param
Iron (mg/L)	MW-06	22.22	n/a	10/26/202113	10	MW-07	17.6	2.319	0	None	No	0.045	Param
Iron (mg/L)	MW-08	22.22	n/a	10/26/2021 29	10	MW-07	17.6	2.319	0	None	No	0.045	Param
Iron (mg/L)	MW-01R	22.22	n/a	10/26/20211.7	10	MW-07	17.6	2.319	0	None	No	0.045	Param
pH (SU)	MW-05	8.178	6.196	10/26/20217.4	3 17	MW-07	7.187	0.4429	0	None	No	0.0225	Param
pH (SU)	MW-06	8.178	6.196	10/26/20217.6	17	MW-07	7.187	0.4429	0	None	No	0.0225	Param
pH (SU)	MW-08	8.178	6.196	10/26/20216.7	4 17	MW-07	7.187	0.4429	0	None	No	0.0225	Param
pH (SU)	MW-01R	8.178	6.196	10/26/20217.8	3 17	MW-07	7.187	0.4429	0	None	No	0.0225	Param
Sulfate (mg/L)	MW-05	69.35	n/a	10/26/2021 32	0 18	MW-07	36.17	17.96	0	None	No	0.045	Param
Sulfate (mg/L)	MW-06	69.35	n/a	10/26/2021 1.3	J 18	MW-07	36.17	17.96	0	None	No	0.045	Param
Sulfate (mg/L)	MW-08	69.35	n/a	10/26/202137	18	MW-07	36.17	17.96	0	None	No	0.045	Param
Sulfate (mg/L)	MW-01R	69.35	n/a	10/26/202153	0 18	MW-07	36.17	17.96	0	None	No	0.045	Param
Total Dissolved Solids (mg/L)	MW-05	810.2	n/a	10/26/202113	00 18	MW-07	666.1	78	0	None	No	0.045	Param
Total Dissolved Solids (mg/L)	MW-06	810.2	n/a	10/26/202113	00 18	MW-07	666.1	78	0	None	No	0.045	Param
Total Dissolved Solids (mg/L)	MW-08	810.2	n/a	10/26/202163	0 18	MW-07	666.1	78	0	None	No	0.045	Param
Total Dissolved Solids (mg/L)	MW-01R	810.2	n/a	10/26/2021 36	00 18	MW-07	666.1	78	0	None	No	0.045	Param

Exceeds Limit: MW-02, MW-01R

Prediction Limit

Interwell Non-parametric

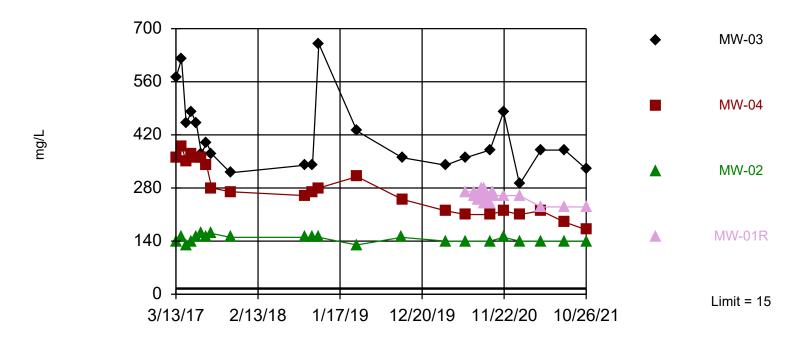

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 18 background values. Report alpha = 0.1818. Individual comparison alpha = 0.04893. Most recent point for each compliance well compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Boron Analysis Run 1/3/2022 1:17 PM View: Appendix III

Exceeds Limit: MW-03, MW-04, MW-01R

Prediction Limit

Interwell Non-parametric

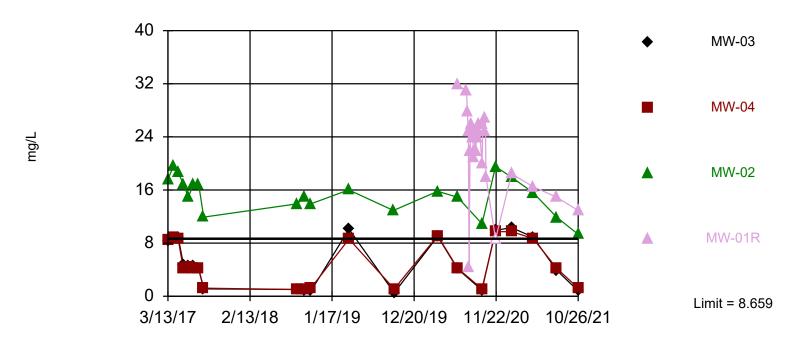

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 18 background values. Report alpha = 0.1818. Individual comparison alpha = 0.04893. Most recent point for each compliance well compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Calcium Analysis Run 1/3/2022 1:17 PM View: Appendix III

Exceeds Limit: MW-03, MW-04, MW-02, MW-01R

Prediction Limit

Interwell Non-parametric

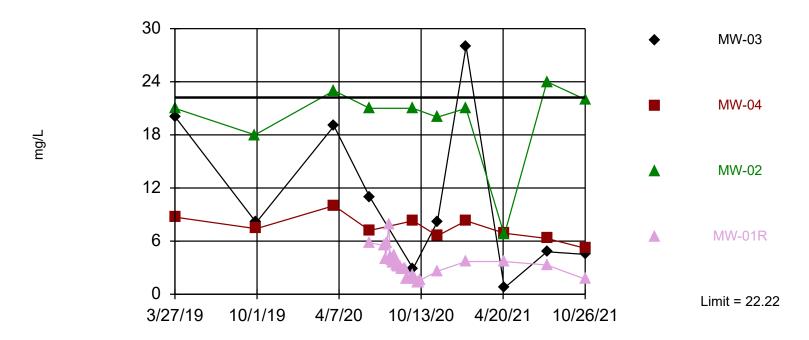

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 18 background values. Report alpha = 0.1818. Individual comparison alpha = 0.04893. Most recent point for each compliance well compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Chloride Analysis Run 1/3/2022 1:17 PM View: Appendix III
Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Exceeds Limit: MW-02, MW-01R

Prediction Limit

Interwell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 18 background values. 16.67% NDs. Report alpha = 0.1818. Individual comparison alpha = 0.04893. Most recent point for each compliance well compared to limit. Data were deseasonalized.

Constituent: Fluoride Analysis Run 1/3/2022 1:17 PM View: Appendix III

Within Limit

Prediction Limit

Interwell Parametric

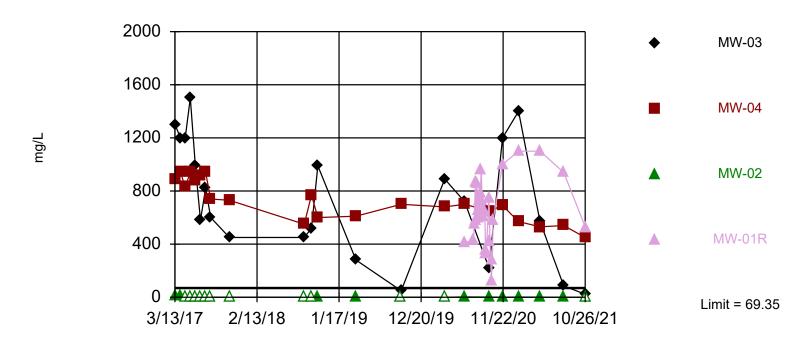
Background Data Summary: Mean=17.6, Std. Dev.=2.319, n=10. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.942, critical = 0.842. Report alpha = 0.1682. Individual comparison alpha = 0.045. Most recent point for each compliance well compared to limit.

Constituent: Iron Analysis Run 1/3/2022 1:17 PM View: Appendix III

Within Limits

Prediction Limit

Interwell Parametric

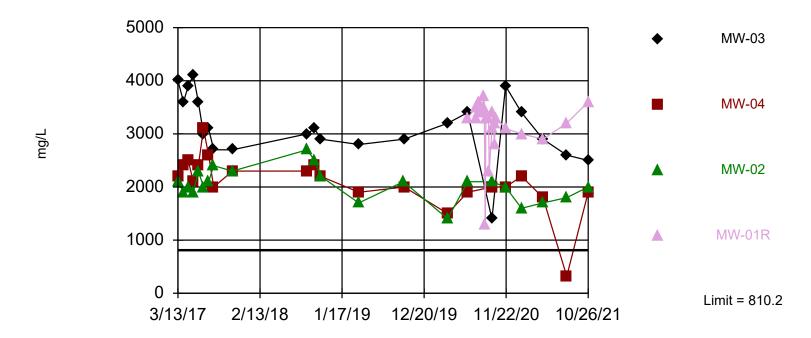

Background Data Summary: Mean=7.187, Std. Dev.=0.4429, n=17. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9662, critical = 0.892. Report alpha = 0.1682. Individual comparison alpha = 0.0225. Most recent point for each compliance well compared to limit.

Constituent: pH Analysis Run 1/3/2022 1:17 PM View: Appendix III

Exceeds Limit: MW-04, MW-01R

Prediction Limit

Interwell Parametric


Background Data Summary: Mean=36.17, Std. Dev.=17.96, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9066, critical = 0.897. Report alpha = 0.1682. Individual comparison alpha = 0.045. Most recent point for each compliance well compared to limit.

Constituent: Sulfate Analysis Run 1/3/2022 1:17 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

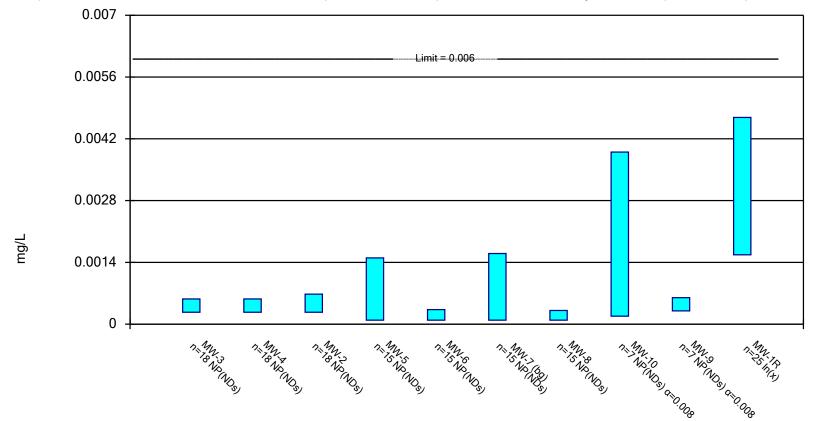
Exceeds Limit: MW-03, MW-04, MW-02, MW-01R

Prediction Limit

Interwell Parametric

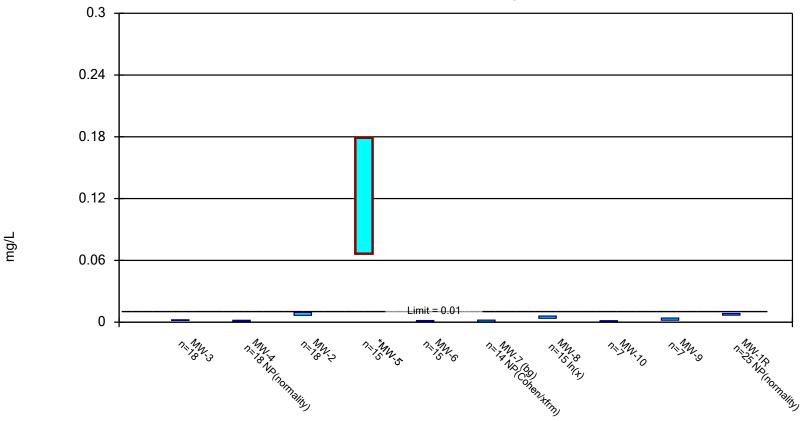
Background Data Summary: Mean=666.1, Std. Dev.=78, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9596, critical = 0.897. Report alpha = 0.1682. Individual comparison alpha = 0.045. Most recent point for each compliance well compared to limit.

Constituent: Total Dissolved Solids Analysis Run 1/3/2022 1:17 PM View: Appendix III Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

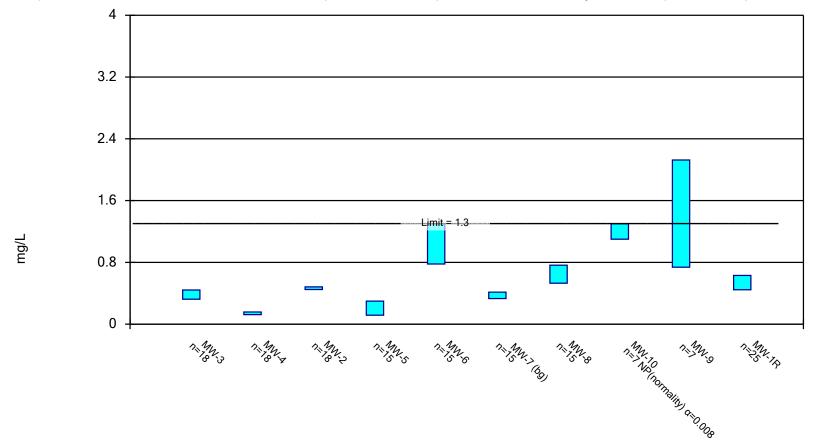

Interwell Prediction Limit

Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP Printed 1/3/2022, 1:18 PM

0 111 1	14/ 11			Б.	O	 D 14/ II	D 14	011.0	0/ NID	ND A II	- (A. (1)
Constituent	<u>Well</u>		n. Lower Lim		Observ.Bg	Bg Wells	Bg Mean	Std. Dev.		ND Adj.			<u>Method</u>
Boron (ug/L)	MW-03	16000	n/a		14400 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Boron (ug/L)	MW-04	16000	n/a		13700 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Boron (ug/L)	MW-02	16000	n/a	10/26/202	110000018	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Boron (ug/L)	MW-01R	16000	n/a	10/26/202	114000018	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Calcium (ug/L)	MW-03	200000	n/a	10/26/202	149000018	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Calcium (ug/L)	MW-04	200000	n/a	10/26/202	137000018	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Calcium (ug/L)	MW-02	200000	n/a	10/26/202	1 190000 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Calcium (ug/L)	MW-01R	200000	n/a	10/26/202	1 220000 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Chloride (mg/L)	MW-03	15	n/a	10/26/202	1330 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Chloride (mg/L)	MW-04	15	n/a	10/26/202	1170 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Chloride (mg/L)	MW-02	15	n/a	10/26/202	1140 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Chloride (mg/L)	MW-01R	15	n/a	10/26/202	1230 18	MW-07	n/a	n/a	0	n/a	n/a	0.04893	NP (normality)
Fluoride (mg/L)	MW-03	8.659	n/a	10/26/202	10.806 18	MW-07	n/a	n/a	16.67	n/a	n/a	0.04893	NP (normality) Deseas
Fluoride (mg/L)	MW-04	8.659	n/a	10/26/202	11.216 18	MW-07	n/a	n/a	16.67	n/a	n/a	0.04893	NP (normality) Deseas
Fluoride (mg/L)	MW-02	8.659	n/a	10/26/202	19.316 18	MW-07	n/a	n/a	16.67	n/a	n/a	0.04893	NP (normality) Deseas
Fluoride (mg/L)	MW-01R	8.659	n/a	10/26/202	112.92 18	MW-07	n/a	n/a	16.67	n/a	n/a	0.04893	NP (normality) Deseas
Iron (mg/L)	MW-03	22.22	n/a	10/26/202	14.5 10	MW-07	17.6	2.319	0	None	No	0.045	Param
Iron (mg/L)	MW-04	22.22	n/a	10/26/202	15.2 10	MW-07	17.6	2.319	0	None	No	0.045	Param
Iron (mg/L)	MW-02	22.22	n/a	10/26/202	122 10	MW-07	17.6	2.319	0	None	No	0.045	Param
Iron (mg/L)	MW-01R	22.22	n/a	10/26/202	11.7 10	MW-07	17.6	2.319	0	None	No	0.045	Param
pH (SU)	MW-03	8.178	6.196	10/26/202	16.91 17	MW-07	7.187	0.4429	0	None	No	0.0225	Param
pH (SU)	MW-04	8.178	6.196	10/26/202	16.74 17	MW-07	7.187	0.4429	0	None	No	0.0225	Param
pH (SU)	MW-02	8.178	6.196	10/26/202	16.48 17	MW-07	7.187	0.4429	0	None	No	0.0225	Param
pH (SU)	MW-01R	8.178	6.196	10/26/202	17.8 17	MW-07	7.187	0.4429	0	None	No	0.0225	Param
Sulfate (mg/L)	MW-03	69.35	n/a	10/26/202	123 18	MW-07	36.17	17.96	0	None	No	0.045	Param
Sulfate (mg/L)	MW-04	69.35	n/a	10/26/202	1450 18	MW-07	36.17	17.96	0	None	No	0.045	Param
Sulfate (mg/L)	MW-02	69.35	n/a	10/26/202	10.41ND18	MW-07	36.17	17.96	0	None	No	0.045	Param
Sulfate (mg/L)	MW-01R	69.35	n/a	10/26/202	1530 18	MW-07	36.17	17.96	0	None	No	0.045	Param
Total Dissolved Solids (mg/L)	MW-03	810.2	n/a	10/26/202	12500 18	MW-07	666.1	78	0	None	No	0.045	Param
Total Dissolved Solids (mg/L)	MW-04	810.2	n/a	10/26/202	11900 18	MW-07	666.1	78	0	None	No	0.045	Param
Total Dissolved Solids (mg/L)	MW-02	810.2	n/a	10/26/202	12000 18	MW-07	666.1	78	0	None	No	0.045	Param
Total Dissolved Solids (mg/L)	MW-01R	810.2	n/a	10/26/202	13600 18	MW-07	666.1	78	0	None	No	0.045	Param

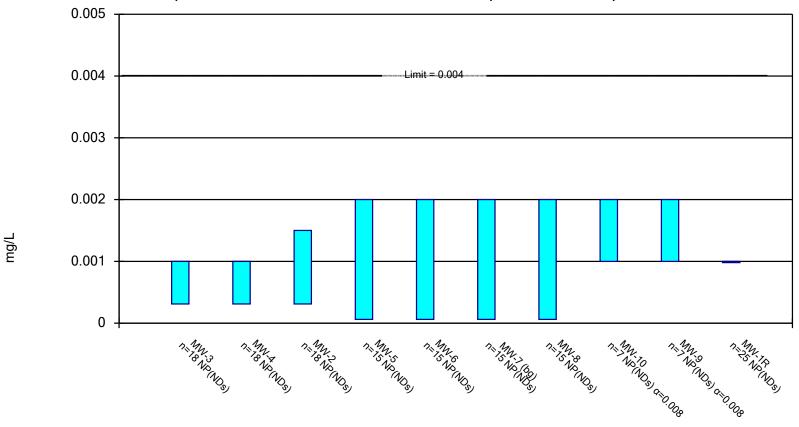

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

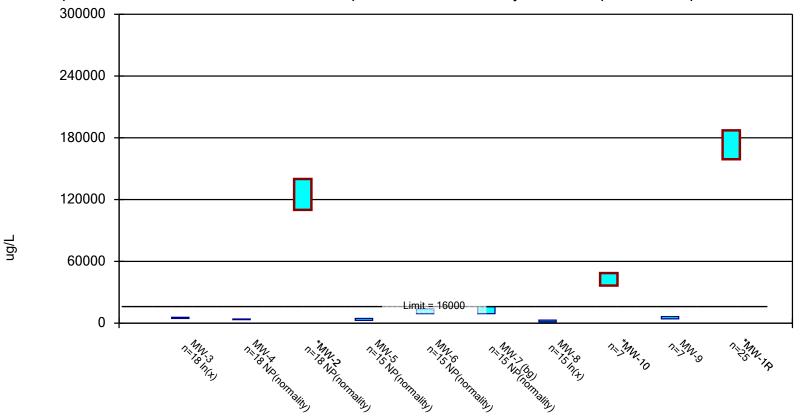

Constituent: Antimony Analysis Run 4/27/2021 1:09 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Arsenic Analysis Run 4/27/2021 1:09 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

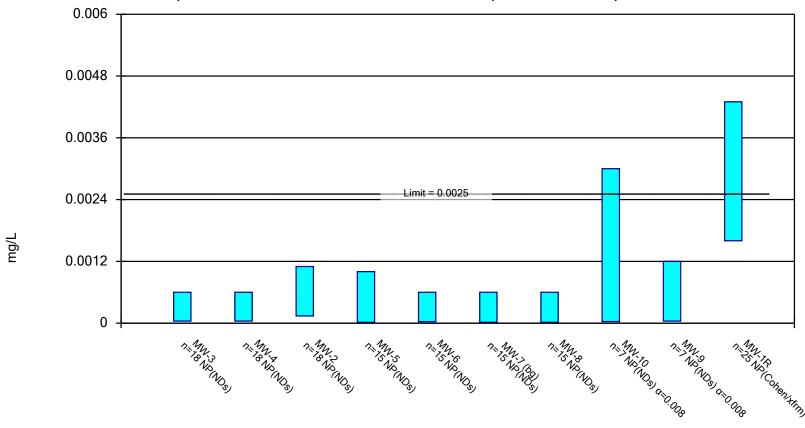

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Barium Analysis Run 4/27/2021 1:09 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

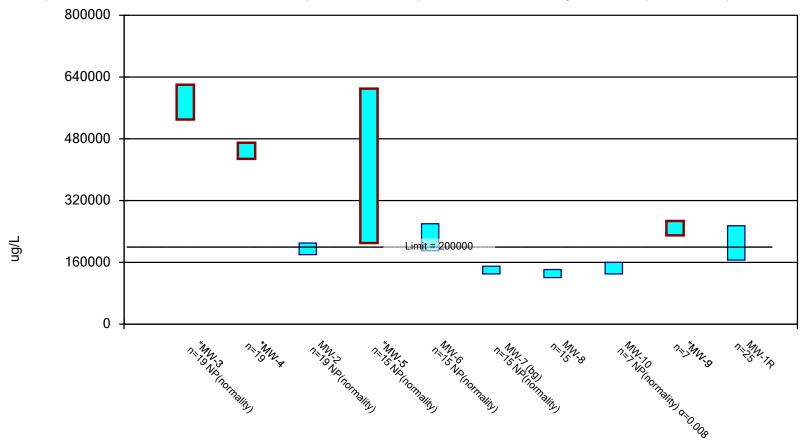

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

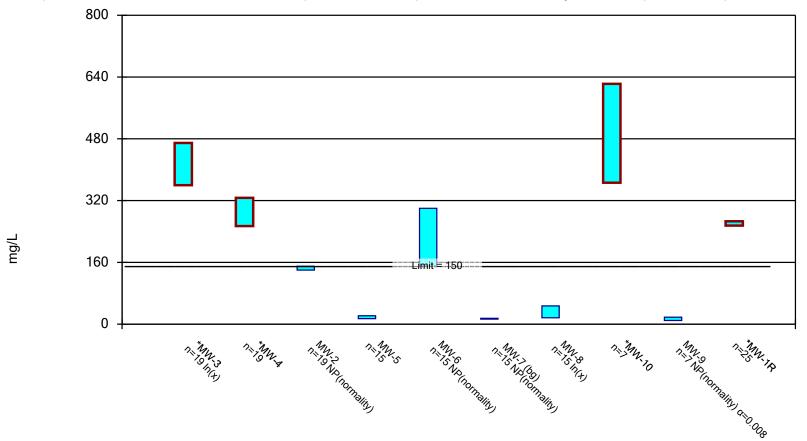
Constituent: Beryllium Analysis Run 4/27/2021 1:09 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

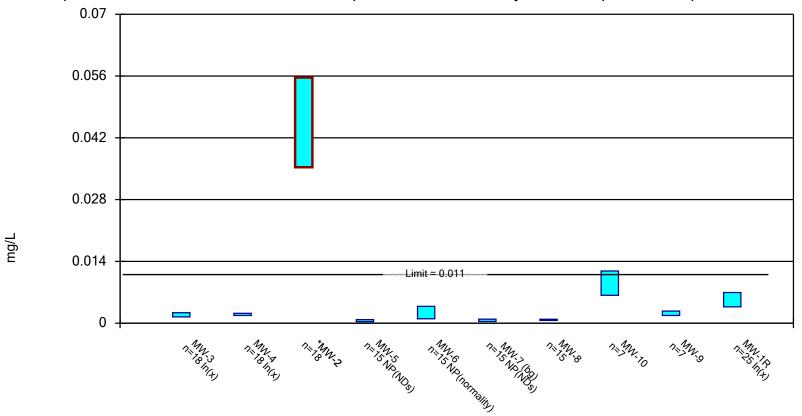
Constituent: Boron Analysis Run 4/27/2021 1:09 PM View: MI GWPS


Non-Parametric Confidence Interval

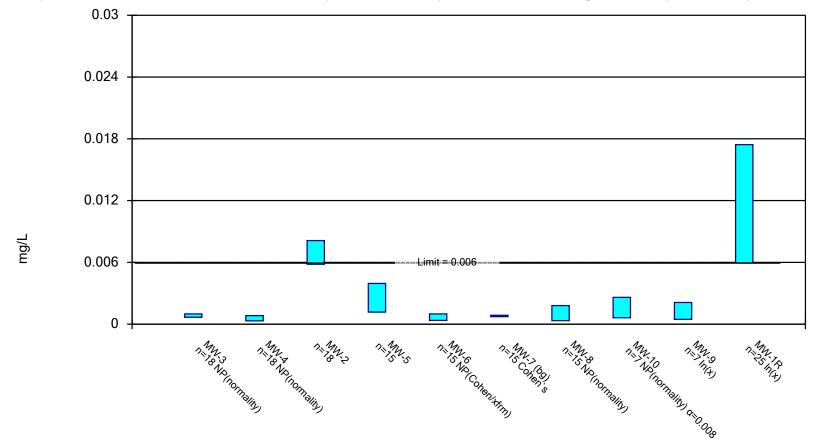
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.


Constituent: Cadmium Analysis Run 4/27/2021 1:09 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

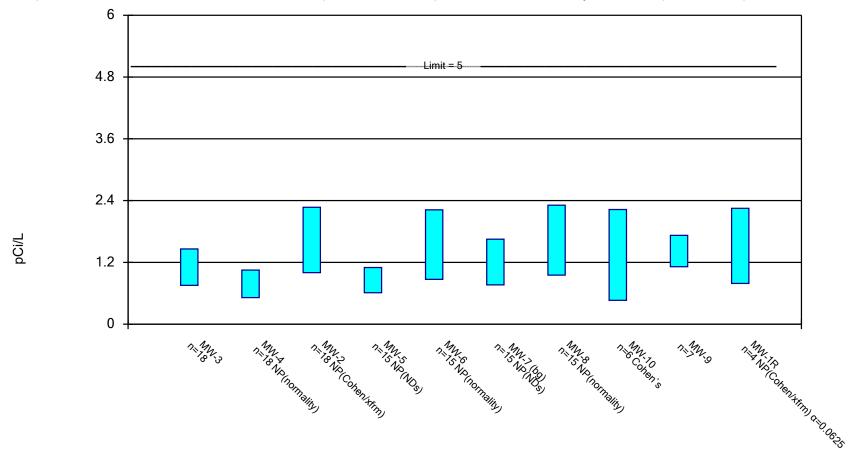
Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Calcium Analysis Run 4/27/2021 1:09 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

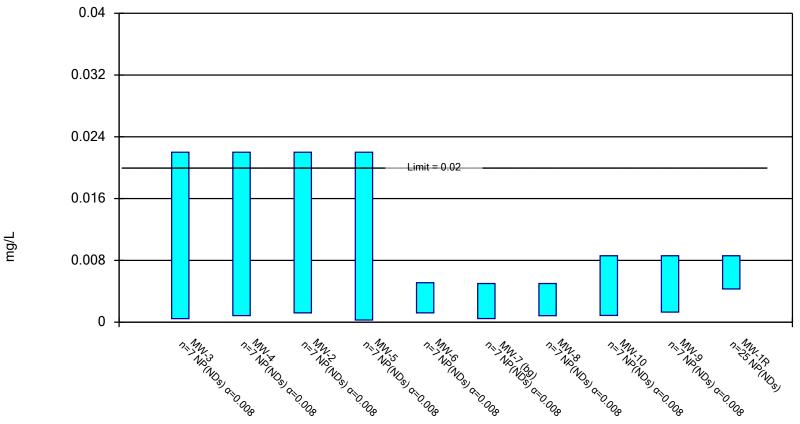

Constituent: Chloride Analysis Run 4/27/2021 1:09 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

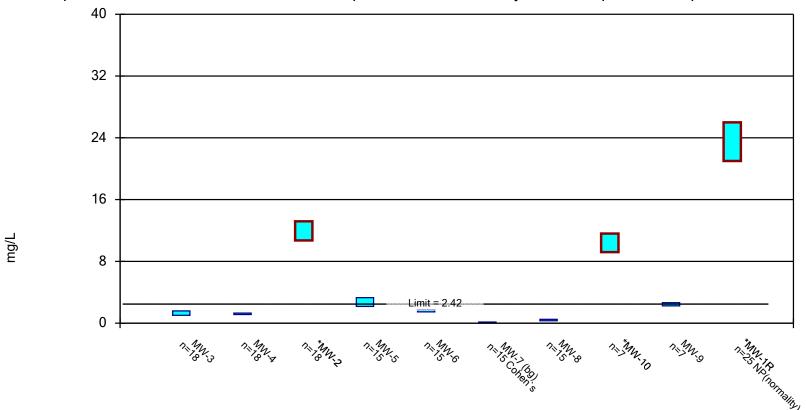

Constituent: Chromium Analysis Run 4/27/2021 1:09 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Cobalt Analysis Run 4/27/2021 1:09 PM View: MI GWPS

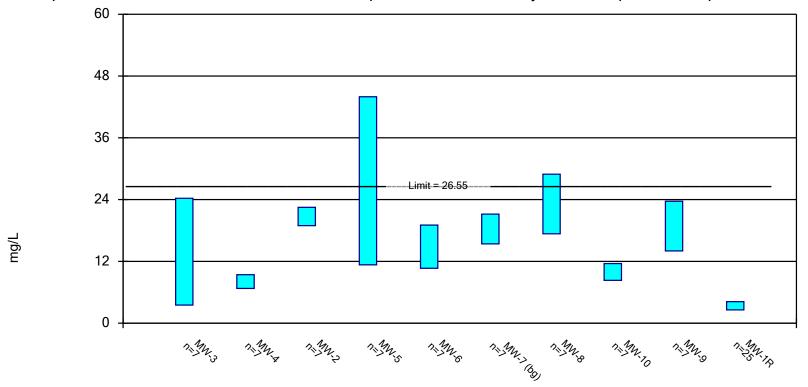

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Combined Radium 226 + 228 Analysis Run 4/27/2021 1:09 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

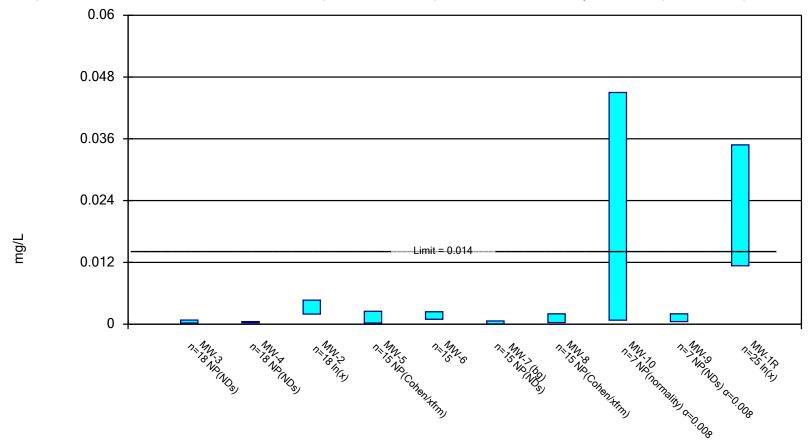

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

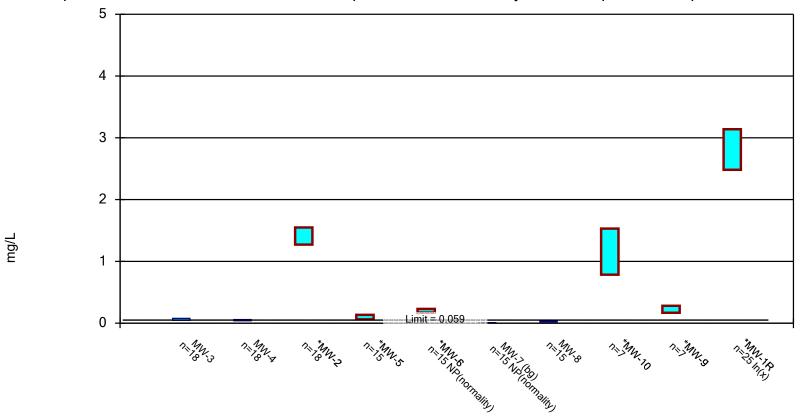
Constituent: Copper Analysis Run 4/27/2021 1:09 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

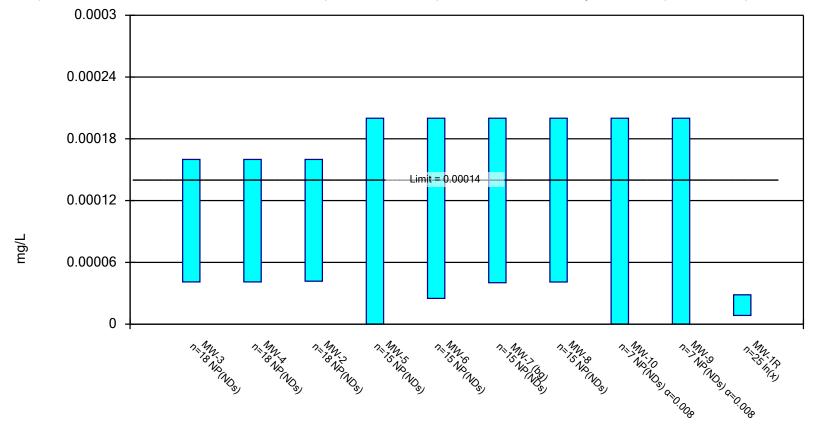
Constituent: Fluoride Analysis Run 4/27/2021 1:09 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Parametric Confidence Interval

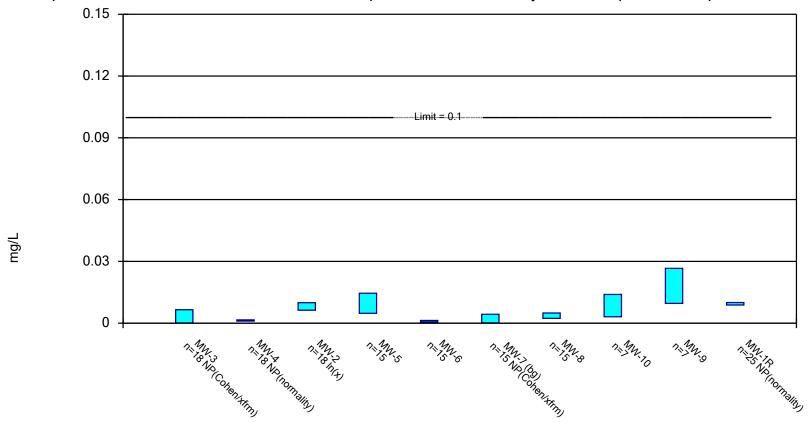
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Iron Analysis Run 4/27/2021 1:09 PM View: MI GWPS

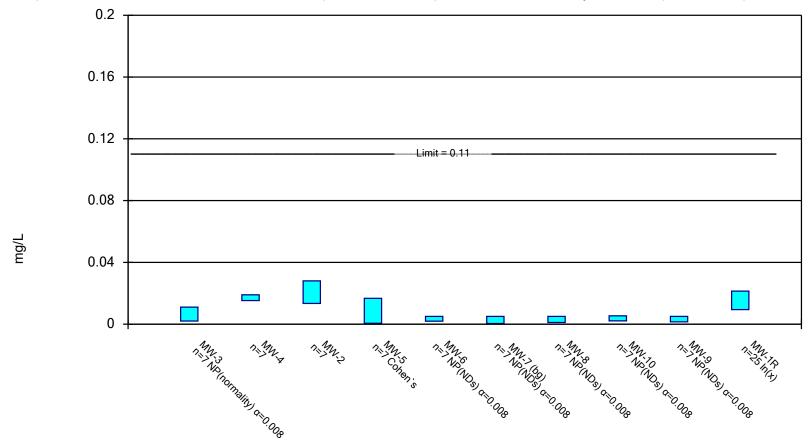
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Lead Analysis Run 4/27/2021 1:09 PM View: MI GWPS

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Lithium Analysis Run 4/27/2021 1:09 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

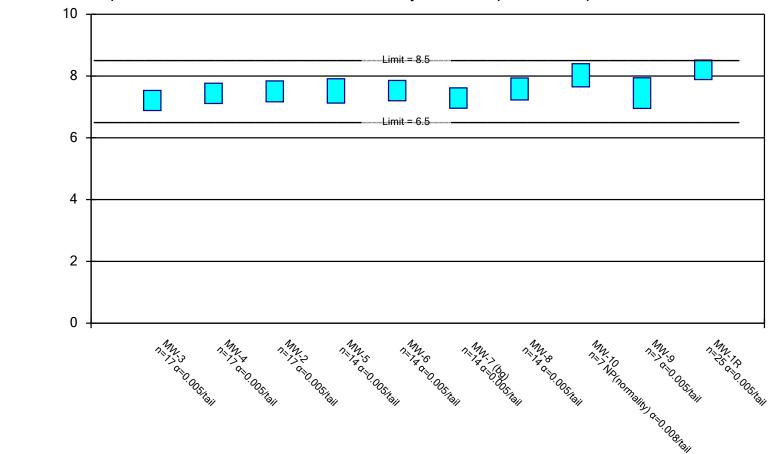
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Mercury Analysis Run 4/27/2021 1:09 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Molybdenum Analysis Run 4/27/2021 1:09 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

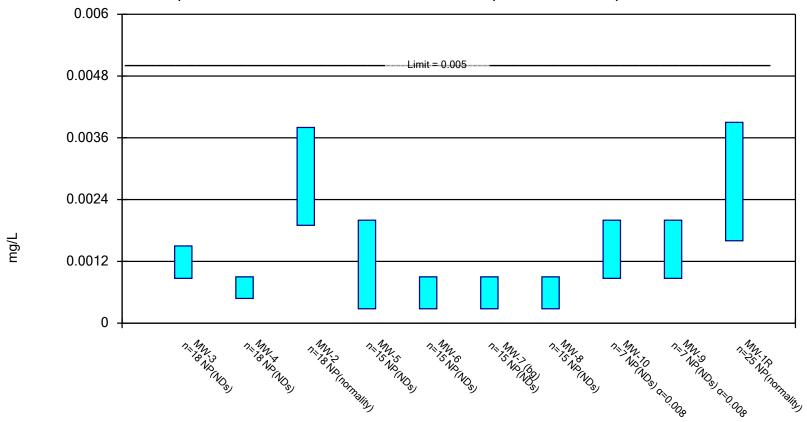
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Nickel Analysis Run 4/27/2021 1:09 PM View: MI GWPS

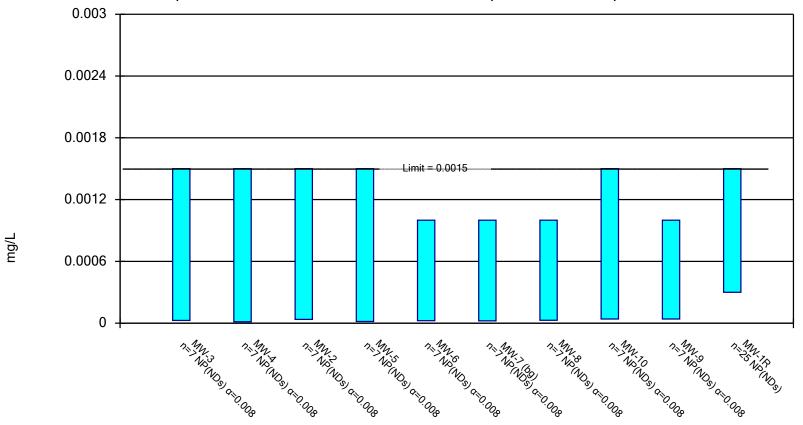
S

Parametric and Non-Parametric (NP) Confidence Interval

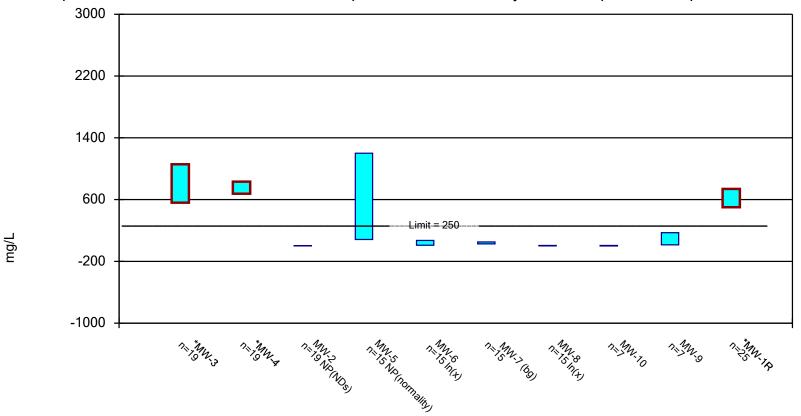

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: pH Analysis Run 4/27/2021 1:09 PM View: MI GWPS

Non-Parametric Confidence Interval

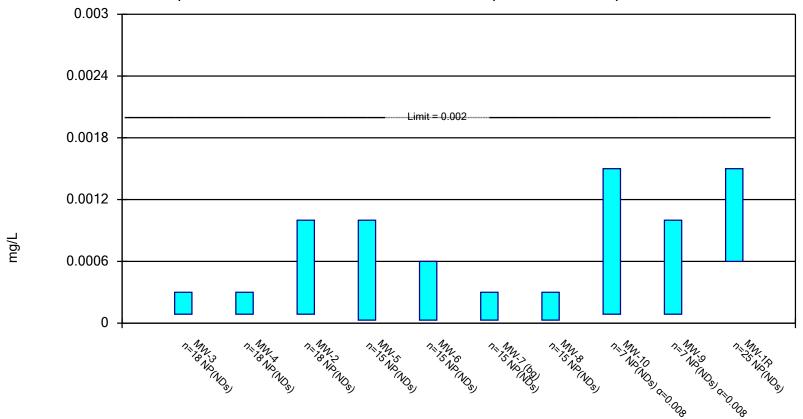

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

Constituent: Selenium Analysis Run 4/27/2021 1:09 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

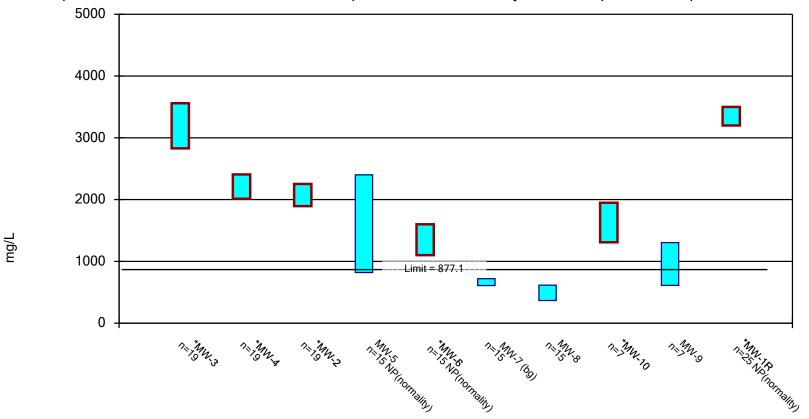

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

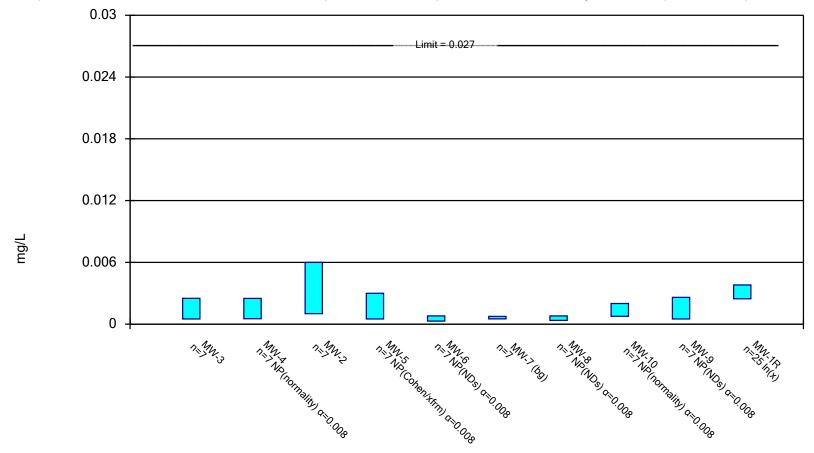
Constituent: Silver Analysis Run 4/27/2021 1:09 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Sulfate Analysis Run 4/27/2021 1:09 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

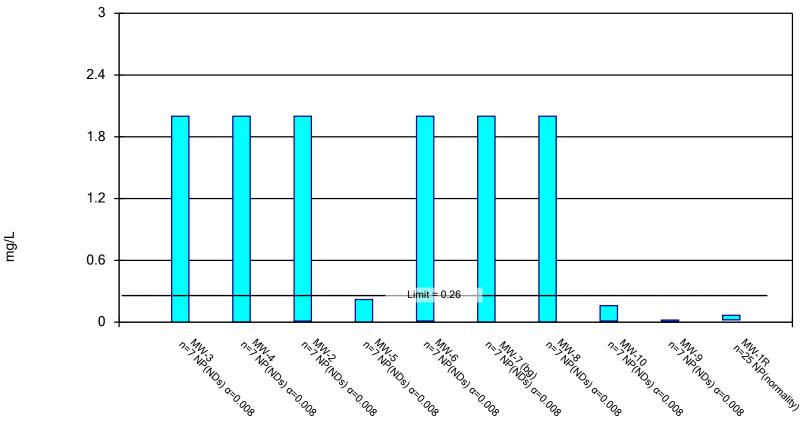

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.


Constituent: Thallium Analysis Run 4/27/2021 1:09 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Total Dissolved Solids Analysis Run 4/27/2021 1:09 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Vanadium Analysis Run 4/27/2021 1:09 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

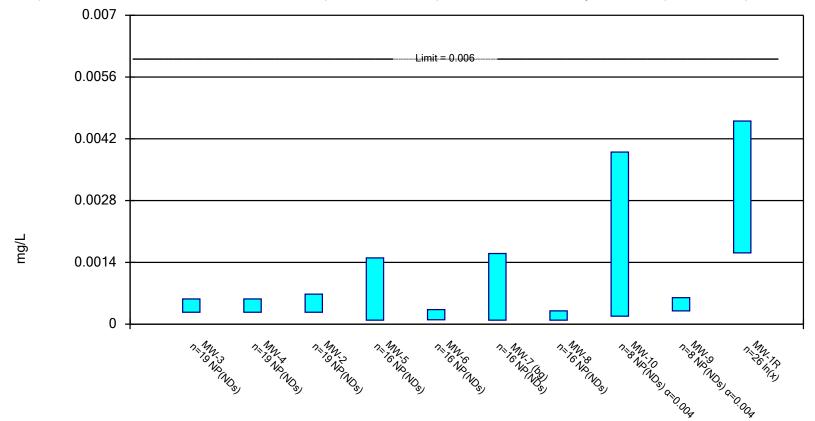
Constituent: Zinc Analysis Run 4/27/2021 1:09 PM View: MI GWPS

	Grand Have	n BLP Clie	nt: Golder Ass	ociates [Data: I							
Constituent	Well	Upper Lim.	Lower Lim.	Compliano	eSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	MW-3	0.00057	0.00027	0.006	No	18	0.0004936	0.000394	94.44	No	0.01	NP (NDs)
Antimony (mg/L)	MW-4	0.00057	0.00027	0.006	No	18	0.0004251	0.0003038	94.44	No	0.01	NP (NDs)
Antimony (mg/L)	MW-2	0.00068	0.00027	0.006	No	18	0.001032	0.001726	61.11	No	0.01	NP (NDs)
Antimony (mg/L)	MW-5	0.0015	0.00009	0.006	No	15	0.000296	0.0003466	100	No	0.01	NP (NDs)
Antimony (mg/L)	MW-6	0.00033	0.00009	0.006	No	15	0.0002253	0.0001031	73.33	No	0.01	NP (NDs)
Antimony (mg/L)	MW-7 (bg)	0.0016	0.00009	0.006	No	15	0.0003123	0.0003688	86.67	No	0.01	NP (NDs)
Antimony (mg/L)	MW-8	0.00031	0.00009	0.006	No	15	0.0002187	0.000097	86.67	No	0.01	NP (NDs)
Antimony (mg/L)	MW-10	0.0039	0.00018	0.006	No	7	0.001011	0.001352	71.43	No	800.0	NP (NDs)
Antimony (mg/L)	MW-9	0.0006	0.0003	0.006	No	7	0.0003429	0.0001134	100	No	800.0	NP (NDs)
Antimony (mg/L)	MW-1R	0.004684	0.001571	0.006	No	25	0.004789	0.005666	12	In(x)	0.01	Param.
Arsenic (mg/L)	MW-3	0.00221	0.001662	0.01	No	18	0.001936	0.000453	5.556	No	0.01	Param.
Arsenic (mg/L)	MW-4	0.0018	0.00125	0.01	No	18	0.001442	0.0002912	5.556	No	0.01	NP (normality)
Arsenic (mg/L)	MW-2	0.009338	0.006701	0.01	No	18	0.008019	0.002179	5.556	No	0.01	Param.
Arsenic (mg/L)	MW-5	0.1791	0.06648	0.01	Yes	15	0.1228	0.08307	0	No	0.01	Param.
Arsenic (mg/L)	MW-6	0.001537	0.0009308	0.01	No	15	0.001234	0.0004475	6.667	No	0.01	Param.
Arsenic (mg/L)	MW-7 (bg)	0.0019	0.00025	0.01	No	14	0.001134	0.00127	35.71	No	0.01	NP (Cohens/xfrm)
Arsenic (mg/L)	MW-8	0.005907	0.003773	0.01	No	15	0.004987	0.001853	0	In(x)	0.01	Param.
Arsenic (mg/L)	MW-10	0.001418	0.0008333	0.01	No	7	0.001126	0.0002462	0	No	0.01	Param.
Arsenic (mg/L)	MW-9	0.00395	0.001935	0.01	No	7	0.002943	0.0008482	0	No	0.01	Param.
Arsenic (mg/L)	MW-1R	0.0084	0.0068	0.01	No	25	0.007346	0.001841	4	No	0.01	NP (normality)
Barium (mg/L)	MW-3	0.4421	0.3235	1.3	No	18	0.3828	0.09803	0	No	0.01	Param.
Barium (mg/L)	MW-4	0.1572	0.1229	1.3	No	18	0.1401	0.02835	0	No	0.01	Param.
Barium (mg/L)	MW-2	0.4828	0.4483	1.3	No	18	0.4656	0.02854	0	No	0.01	Param.
Barium (mg/L)	MW-5	0.2983	0.1157	1.3	No	15	0.207	0.1348	0	No	0.01	Param.
Barium (mg/L)	MW-6	1.298	0.7787	1.3	No	15	1.038	0.3832	0	No	0.01	Param.
Barium (mg/L)	MW-7 (bg)	0.4137	0.3316	1.3	No	15	0.3727	0.06053	0	No	0.01	Param.
Barium (mg/L)	MW-8	0.7634	0.5299	1.3	No	15	0.6467	0.1722	0	No	0.01	Param.
Barium (mg/L)	MW-10	1.3	1.1	1.3	No	7	1.229	0.07559	0	No	0.008	NP (normality)
Barium (mg/L)	MW-9	2.126	0.7369	1.3	No	7	1.431	0.5847	0	No	0.01	Param.
Barium (mg/L)	MW-1R	0.6305	0.4447	1.3	No	25	0.5376	0.1864	0	No	0.01	Param.
Beryllium (mg/L)	MW-3	0.001	0.00031	0.004	No	18	0.0006856	0.0004719	100	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-4	0.001	0.00031	0.004	No	18	0.0006856	0.0004719	100	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-2	0.0015	0.00031	0.004	No	18	0.001023	0.0009046	83.33	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-5	0.002	0.00006	0.004	No	15	0.0007533	0.0005673	100	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-6	0.002	0.00006	0.004	No	15	0.000722	0.0005657	100	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-7 (bg)	0.002	0.00006	0.004	No	15	0.000722	0.0005657	100	No	0.01	NP (NDs)

	Grand Haven BLP Client: Golder Associates		Data:	DT-Gra	and Haven BL	P Printed 4	Printed 4/27/2021, 1:10 PM					
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliand	eSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	Transform	<u>Alpha</u>	Method
Beryllium (mg/L)	MW-8	0.002	0.00006	0.004	No	15	0.0006926	0.0005874	93.33	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-10	0.002	0.001	0.004	No	7	0.001143	0.000378	100	No	0.008	NP (NDs)
Beryllium (mg/L)	MW-9	0.002	0.001	0.004	No	7	0.001143	0.000378	100	No	0.008	NP (NDs)
Beryllium (mg/L)	MW-1R	0.001	0.001	0.004	No	25	0.001	0	100	No	0.01	NP (NDs)
Boron (ug/L)	MW-3	5661	4581	16000	No	18	5167	926.1	0	In(x)	0.01	Param.
Boron (ug/L)	MW-4	4000	3400	16000	No	18	3750	613.8	0	No	0.01	NP (normality)
Boron (ug/L)	MW-2	140000	110000	16000	Yes	18	128000	41507	0	No	0.01	NP (normality)
Boron (ug/L)	MW-5	4600	2700	16000	No	15	4140	2845	0	No	0.01	NP (normality)
Boron (ug/L)	MW-6	14000	9200	16000	No	15	11107	3812	0	No	0.01	NP (normality)
Boron (ug/L)	MW-7 (bg)	16000	9200	16000	No	15	12707	3620	0	No	0.01	NP (normality)
Boron (ug/L)	MW-8	2969	1292	16000	No	15	2387	1749	0	In(x)	0.01	Param.
Boron (ug/L)	MW-10	48623	36520	16000	Yes	7	42571	5094	0	No	0.01	Param.
Boron (ug/L)	MW-9	6374	4168	16000	No	7	5271	928.6	0	No	0.01	Param.
Boron (ug/L)	MW-1R	187203	159197	16000	Yes	25	173200	28095	0	No	0.01	Param.
Cadmium (mg/L)	MW-3	0.0006	0.00004	0.0025	No	18	0.0005814	0.0009144	94.44	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-4	0.0006	0.00004	0.0025	No	18	0.0004429	0.0006888	88.89	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-2	0.0011	0.00014	0.0025	No	18	0.0007272	0.0008428	61.11	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-5	0.001	0.000017	0.0025	No	15	0.0004052	0.000785	80	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-6	0.0006	0.0000285	0.0025	No	15	0.0002582	0.0003238	60	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-7 (bg)	0.0006	0.000017	0.0025	No	15	0.0002469	0.0003313	93.33	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-8	0.0006	0.000017	0.0025	No	15	0.0002513	0.0003284	86.67	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-10	0.003	0.00003	0.0025	No	7	0.001019	0.0009547	71.43	No	0.008	NP (NDs)
Cadmium (mg/L)	MW-9	0.0012	0.00004	0.0025	No	7	0.0006629	0.0003665	100	No	0.008	NP (NDs)
Cadmium (mg/L)	MW-1R	0.0043	0.0016	0.0025	No	25	0.004544	0.005151	32	No	0.01	NP (Cohens/xfrm)
Calcium (ug/L)	MW-3	620000	530000	200000	Yes	19	591053	87235	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-4	469869	428026	200000	Yes	19	448947	35730	0	No	0.01	Param.
Calcium (ug/L)	MW-2	210000	180000	200000	No	19	201579	35787	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-5	610000	210000	200000	Yes	15	439333	173307	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-6	260000	190000	200000	No	15	215420	65691	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-7 (bg)	150000	130000	200000	No	15	146000	16388	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-8	141420	120580	200000	No	15	131000	15376	0	No	0.01	Param.
Calcium (ug/L)	MW-10	160000	130000	200000	No	7	138571	12150	0	No	0.008	NP (normality)
Calcium (ug/L)	MW-9	267263	229880	200000	Yes	7	248571	15736	0	No	0.01	Param.
Calcium (ug/L)	MW-1R	254886	165994	200000	No	25	210440	89171	0	No	0.01	Param.
Chloride (mg/L)	MW-3	469.3	360	150	Yes	19	421.6	102.6	0	In(x)	0.01	Param.
Chloride (mg/L)	MW-4	327.1	254	150	Yes	19	290.5	62.4	0	No	0.01	Param.

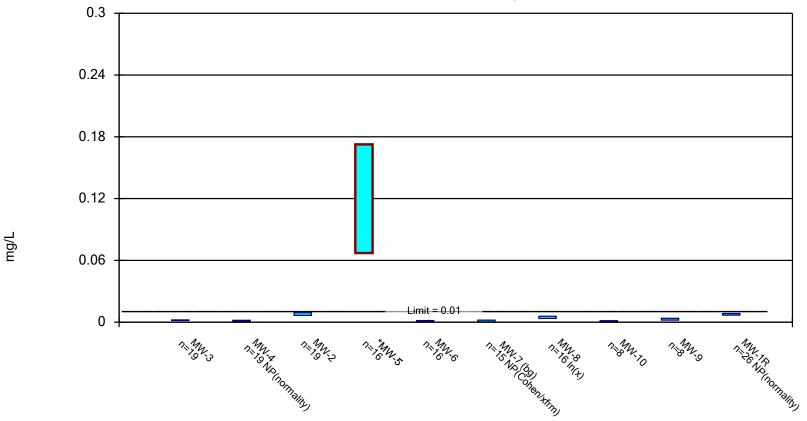
	Grand Have	en BLP Clie	Client: Golder Associates		Data: DT-Grand Haven BLP			P Printed 4	/27/2021			
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Complian	ceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Chloride (mg/L)	MW-2	150	140	150	No	19	145.8	8.377	0	No	0.01	NP (normality)
Chloride (mg/L)	MW-5	21.64	14.24	150	No	15	17.94	5.457	0	No	0.01	Param.
Chloride (mg/L)	MW-6	300	150	150	No	15	235.3	69.06	0	No	0.01	NP (normality)
Chloride (mg/L)	MW-7 (bg)	15	13	150	No	15	14.27	0.7988	0	No	0.01	NP (normality)
Chloride (mg/L)	MW-8	47.18	16.63	150	No	15	37.43	31.62	0	ln(x)	0.01	Param.
Chloride (mg/L)	MW-10	622.4	366.2	150	Yes	7	494.3	107.8	0	No	0.01	Param.
Chloride (mg/L)	MW-9	18	9.5	150	No	7	11.93	2.775	0	No	0.008	NP (normality)
Chloride (mg/L)	MW-1R	266.4	255.2	150	Yes	25	260.8	11.15	0	No	0.01	Param.
Chromium (mg/L)	MW-3	0.00237	0.001413	0.011	No	18	0.002003	0.0009243	0	In(x)	0.01	Param.
Chromium (mg/L)	MW-4	0.002231	0.001736	0.011	No	18	0.002011	0.0004664	5.556	ln(x)	0.01	Param.
Chromium (mg/L)	MW-2	0.05566	0.03534	0.011	Yes	18	0.0455	0.01679	0	No	0.01	Param.
Chromium (mg/L)	MW-5	0.0008	0.00034	0.011	No	15	0.000858	0.0007535	80	No	0.01	NP (NDs)
Chromium (mg/L)	MW-6	0.0038	0.00099	0.011	No	15	0.001752	0.001037	0	No	0.01	NP (normality)
Chromium (mg/L)	MW-7 (bg)	0.0009	0.00037	0.011	No	15	0.0007753	0.0005885	66.67	No	0.01	NP (NDs)
Chromium (mg/L)	MW-8	0.0008904	0.0006096	0.011	No	15	0.00075	0.0002072	26.67	No	0.01	Param.
Chromium (mg/L)	MW-10	0.01181	0.006302	0.011	No	7	0.009057	0.002319	0	No	0.01	Param.
Chromium (mg/L)	MW-9	0.002726	0.001731	0.011	No	7	0.002229	0.0004192	0	No	0.01	Param.
Chromium (mg/L)	MW-1R	0.006933	0.003687	0.011	No	25	0.00614	0.004144	0	In(x)	0.01	Param.
Cobalt (mg/L)	MW-3	0.00099	0.00067	0.006	No	18	0.0009639	0.0004594	22.22	No	0.01	NP (normality)
Cobalt (mg/L)	MW-4	0.00083	0.00032	0.006	No	18	0.0006328	0.0005625	38.89	No	0.01	NP (normality)
Cobalt (mg/L)	MW-2	0.008114	0.005819	0.006	No	18	0.006967	0.001897	0	No	0.01	Param.
Cobalt (mg/L)	MW-5	0.003953	0.001172	0.006	No	15	0.002563	0.002051	33.33	No	0.01	Param.
Cobalt (mg/L)	MW-6	0.00099	0.00036	0.006	No	15	0.0006627	0.0003262	46.67	No	0.01	NP (Cohens/xfrm)
Cobalt (mg/L)	MW-7 (bg)	0.0008634	0.0007314	0.006	No	15	0.000784	0.00008305	20	No	0.01	Param.
Cobalt (mg/L)	MW-8	0.0018	0.00034	0.006	No	15	0.0008107	0.0006521	40	No	0.01	NP (normality)
Cobalt (mg/L)	MW-10	0.0026	0.00062	0.006	No	7	0.001053	0.0007008	0	No	0.008	NP (normality)
Cobalt (mg/L)	MW-9	0.002107	0.0004606	0.006	No	7	0.001187	0.0008206	0	ln(x)	0.01	Param.
Cobalt (mg/L)	MW-1R	0.01743	0.00595	0.006	No	25	0.01828	0.02303	0	ln(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-3	1.461	0.7527	5	No	18	1.107	0.5854	27.78	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-4	1.05	0.515	5	No	18	0.914	0.3972	44.44	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-2	2.27	1	5	No	18	1.583	0.8372	33.33	No	0.01	NP (Cohens/xfrm)
Combined Radium 226 + 228 (pCi/L)	MW-5	1.1	0.61	5	No	15	0.984	0.3854	60	No	0.01	NP (NDs)
Combined Radium 226 + 228 (pCi/L)	MW-6	2.22	0.87	5	No	15	1.388	0.768	40	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-7 (bg)	1.65	0.762	5	No	15	1.172	0.4241	60	No	0.01	NP (NDs)
Combined Radium 226 + 228 (pCi/L)	MW-8	2.31	0.952	5	No	15	1.607	1.036	40	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-10	2.226	0.463	5	No	6	1.48	0.4722	33.33	No	0.01	Param.

	Grand Have	en BLP Clie	nt: Golder Ass	sociates [Data:	DT-Gra	and Haven BL	P Printed 4	/27/2021,	1:10 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Complianc	eSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Combined Radium 226 + 228 (pCi/L)	MW-9	1.725	1.115	5	No	7	1.42	0.2566	14.29	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-1R	2.25	0.79	5	No	4	1.26	0.6674	50	No	0.0625	NP (Cohens/xfrm)
Copper (mg/L)	MW-3	0.022	0.00045	0.02	No	7	0.005876	0.007344	71.43	No	0.008	NP (NDs)
Copper (mg/L)	MW-4	0.022	0.00085	0.02	No	7	0.006036	0.007216	71.43	No	0.008	NP (NDs)
Copper (mg/L)	MW-2	0.022	0.0012	0.02	No	7	0.006343	0.007014	71.43	No	0.008	NP (NDs)
Copper (mg/L)	MW-5	0.022	0.00028	0.02	No	7	0.006126	0.007178	71.43	No	0.008	NP (NDs)
Copper (mg/L)	MW-6	0.0051	0.0012	0.02	No	7	0.003943	0.001333	57.14	No	0.008	NP (NDs)
Copper (mg/L)	MW-7 (bg)	0.005	0.00046	0.02	No	7	0.003321	0.001928	71.43	No	0.008	NP (NDs)
Copper (mg/L)	MW-8	0.005	0.00084	0.02	No	7	0.003426	0.001751	71.43	No	0.008	NP (NDs)
Copper (mg/L)	MW-10	0.0086	0.00087	0.02	No	7	0.004524	0.002251	85.71	No	0.008	NP (NDs)
Copper (mg/L)	MW-9	0.0086	0.0013	0.02	No	7	0.004586	0.002137	85.71	No	0.008	NP (NDs)
Copper (mg/L)	MW-1R	0.0086	0.0043	0.02	No	25	0.00962	0.008324	64	No	0.01	NP (NDs)
Fluoride (mg/L)	MW-3	1.581	1.012	2.42	No	18	1.297	0.4707	0	No	0.01	Param.
Fluoride (mg/L)	MW-4	1.3	1.115	2.42	No	18	1.208	0.1531	0	No	0.01	Param.
Fluoride (mg/L)	MW-2	13.18	10.71	2.42	Yes	18	11.94	2.045	0	No	0.01	Param.
Fluoride (mg/L)	MW-5	3.302	2.165	2.42	No	15	2.733	0.8389	0	No	0.01	Param.
Fluoride (mg/L)	MW-6	1.725	1.462	2.42	No	15	1.593	0.1944	0	No	0.01	Param.
Fluoride (mg/L)	MW-7 (bg)	0.1444	0.08629	2.42	No	15	0.1082	0.0517	20	No	0.01	Param.
Fluoride (mg/L)	MW-8	0.4943	0.3111	2.42	No	15	0.4027	0.1352	0	No	0.01	Param.
Fluoride (mg/L)	MW-10	11.6	9.202	2.42	Yes	7	10.4	1.008	0	No	0.01	Param.
Fluoride (mg/L)	MW-9	2.647	2.239	2.42	No	7	2.443	0.1718	0	No	0.01	Param.
Fluoride (mg/L)	MW-1R	26	21	2.42	Yes	25	21.98	7.108	4	No	0.01	NP (normality)
Iron (mg/L)	MW-3	24.26	3.513	26.55	No	7	13.89	8.733	0	No	0.01	Param.
Iron (mg/L)	MW-4	9.408	6.735	26.55	No	7	8.071	1.125	0	No	0.01	Param.
Iron (mg/L)	MW-2	22.49	18.94	26.55	No	7	20.71	1.496	0	No	0.01	Param.
Iron (mg/L)	MW-5	43.97	11.32	26.55	No	7	27.64	13.74	0	No	0.01	Param.
Iron (mg/L)	MW-6	19.05	10.66	26.55	No	7	14.86	3.532	0	No	0.01	Param.
Iron (mg/L)	MW-7 (bg)	21.17	15.4	26.55	No	7	18.29	2.43	0	No	0.01	Param.
Iron (mg/L)	MW-8	28.94	17.35	26.55	No	7	23.14	4.88	0	No	0.01	Param.
Iron (mg/L)	MW-10	11.57	8.316	26.55	No	7	9.943	1.37	0	No	0.01	Param.
Iron (mg/L)	MW-9	23.68	14.04	26.55	No	7	18.86	4.059	0	No	0.01	Param.
Iron (mg/L)	MW-1R	4.172	2.572	26.55	No	25	3.372	1.604	0	No	0.01	Param.
Lead (mg/L)	MW-3	0.00079	0.00022	0.014	No	18	0.0007055	0.0007729	61.11	No	0.01	NP (NDs)
Lead (mg/L)	MW-4	0.0005	0.00028	0.014	No	18	0.0005894	0.0006191	61.11	No	0.01	NP (NDs)
Lead (mg/L)	MW-2	0.004665	0.001961	0.014	No	18	0.003731	0.002432	11.11	In(x)	0.01	Param.
Lead (mg/L)	MW-5	0.0025	0.00022	0.014	No	15	0.002832	0.007091	46.67	No	0.01	NP (Cohens/xfrm)

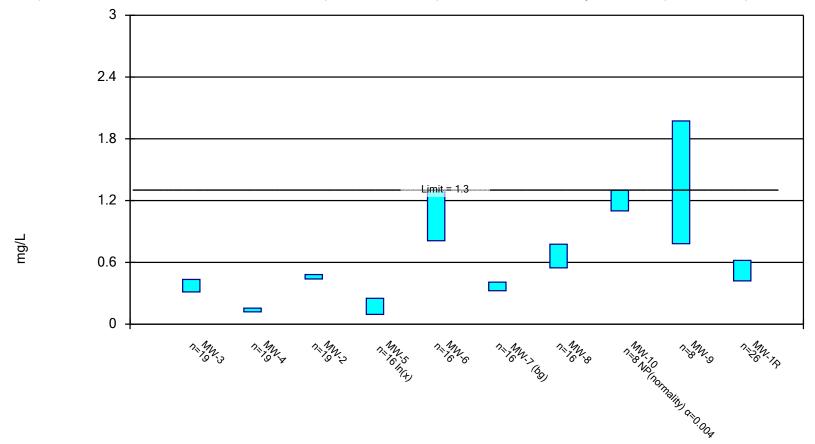

	Grand Hav	en BLP Clie	ent: Golder Ass	sociates	Data:	DT-Gr	and Haven BL	P Printed 4	/27/2021	, 1:10 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Complian	ceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	Transform	<u>Alpha</u>	Method
Lead (mg/L)	MW-6	0.002402	0.0009473	0.014	No	15	0.001675	0.001073	20	No	0.01	Param.
Lead (mg/L)	MW-7 (bg)	0.00062	0.00004	0.014	No	15	0.0005767	0.000806	66.67	No	0.01	NP (NDs)
Lead (mg/L)	MW-8	0.002	0.0003	0.014	No	15	0.0009647	0.001002	40	No	0.01	NP (Cohens/xfrm)
Lead (mg/L)	MW-10	0.045	0.00078	0.014	No	7	0.008211	0.01625	14.29	No	0.008	NP (normality)
Lead (mg/L)	MW-9	0.002	0.0005	0.014	No	7	0.001133	0.0007089	57.14	No	0.008	NP (NDs)
Lead (mg/L)	MW-1R	0.03482	0.01134	0.014	No	25	0.03532	0.04256	0	In(x)	0.01	Param.
Lithium (mg/L)	MW-3	0.07697	0.04614	0.059	No	18	0.06156	0.02547	5.556	No	0.01	Param.
Lithium (mg/L)	MW-4	0.05796	0.03838	0.059	No	18	0.04817	0.01618	5.556	No	0.01	Param.
Lithium (mg/L)	MW-2	1.549	1.271	0.059	Yes	18	1.41	0.2294	0	No	0.01	Param.
Lithium (mg/L)	MW-5	0.1338	0.06164	0.059	Yes	15	0.0977	0.05322	13.33	No	0.01	Param.
Lithium (mg/L)	MW-6	0.23	0.17	0.059	Yes	15	0.1903	0.06661	6.667	No	0.01	NP (normality)
Lithium (mg/L)	MW-7 (bg)	0.0061	0.0022	0.059	No	15	0.00798	0.01429	33.33	No	0.01	NP (normality)
Lithium (mg/L)	MW-8	0.03678	0.02149	0.059	No	15	0.02913	0.01128	6.667	No	0.01	Param.
Lithium (mg/L)	MW-10	1.53	0.7844	0.059	Yes	7	1.157	0.3138	0	No	0.01	Param.
Lithium (mg/L)	MW-9	0.2808	0.1678	0.059	Yes	7	0.2243	0.04756	0	No	0.01	Param.
Lithium (mg/L)	MW-1R	3.138	2.482	0.059	Yes	25	2.868	0.7028	0	ln(x)	0.01	Param.
Mercury (mg/L)	MW-3	0.00016	0.000041	0.00014	No	18	0.0001158	0.00006123	83.33	No	0.01	NP (NDs)
Mercury (mg/L)	MW-4	0.00016	0.000041	0.00014	No	18	0.0001157	0.00006142	94.44	No	0.01	NP (NDs)
Mercury (mg/L)	MW-2	0.00016	0.0000417	0.00014	No	18	0.0001811	0.0002857	83.33	No	0.01	NP (NDs)
Mercury (mg/L)	MW-5	0.0002	1.6e-7	0.00014	No	15	0.00009709	0.00007709	93.33	No	0.01	NP (NDs)
Mercury (mg/L)	MW-6	0.0002	0.000025	0.00014	No	15	0.00009465	0.00007028	66.67	No	0.01	NP (NDs)
Mercury (mg/L)	MW-7 (bg)	0.0002	0.00004025	0.00014	No	15	0.00009497	0.00007243	73.33	No	0.01	NP (NDs)
Mercury (mg/L)	MW-8	0.0002	0.0000409	0.00014	No	15	0.00008852	0.00007242	73.33	No	0.01	NP (NDs)
Mercury (mg/L)	MW-10	0.0002	1.6e-7	0.00014	No	7	0.000086	0.00009617	57.14	No	0.008	NP (NDs)
Mercury (mg/L)	MW-9	0.0002	1.6e-7	0.00014	No	7	0.000086	0.00009614	57.14	No	0.008	NP (NDs)
Mercury (mg/L)	MW-1R	0.00002851	0.000008453	3 0.00014	No	25	0.00003098	0.00004101	4	In(x)	0.01	Param.
Molybdenum (mg/L)	MW-3	0.0065	0.00012	0.1	No	18	0.002575	0.003164	50	No	0.01	NP (Cohens/xfrm)
Molybdenum (mg/L)	MW-4	0.0016	0.001	0.1	No	18	0.0013	0.000625	22.22	No	0.01	NP (normality)
Molybdenum (mg/L)	MW-2	0.009949	0.006288	0.1	No	18	0.008494	0.003494	11.11	In(x)	0.01	Param.
Molybdenum (mg/L)	MW-5	0.01452	0.004768	0.1	No	15	0.009646	0.007198	13.33	No	0.01	Param.
Molybdenum (mg/L)	MW-6	0.001304	0.0006123	0.1	No	15	0.0009582	0.0005105	26.67	No	0.01	Param.
Molybdenum (mg/L)	MW-7 (bg)	0.0043	0.00016	0.1	No	15	0.002012	0.002117	20	No	0.01	NP (Cohens/xfrm)
Molybdenum (mg/L)	MW-8	0.004907	0.002332	0.1	No	15	0.003619	0.0019	13.33	No	0.01	Param.
Molybdenum (mg/L)	MW-10	0.01395	0.003104	0.1	No	7	0.008529	0.004567	0	No	0.01	Param.
Molybdenum (mg/L)	MW-9	0.0266	0.009603	0.1	No	7	0.0181	0.007153	0	No	0.01	Param.
Molybdenum (mg/L)	MW-1R	0.01	0.0088	0.1	No	25	0.00914	0.002778	0	No	0.01	NP (normality)

	Grand Have	en BLP Clie	ent: Golder Ass	sociates I	Data:	DT-Gra	and Haven BLF	Printed 4	/27/2021,	1:10 PM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliano	eSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Nickel (mg/L)	MW-3	0.011	0.002	0.11	No	7	0.004343	0.0034	28.57	No	0.008	NP (normality)
Nickel (mg/L)	MW-4	0.01901	0.01527	0.11	No	7	0.01714	0.001574	0	No	0.01	Param.
Nickel (mg/L)	MW-2	0.02803	0.0134	0.11	No	7	0.02071	0.006157	0	No	0.01	Param.
Nickel (mg/L)	MW-5	0.01671	0.0005356	0.11	No	7	0.004106	0.003527	42.86	No	0.01	Param.
Nickel (mg/L)	MW-6	0.005	0.0019	0.11	No	7	0.002586	0.001075	71.43	No	0.008	NP (NDs)
Nickel (mg/L)	MW-7 (bg)	0.005	0.0004	0.11	No	7	0.002089	0.001536	71.43	No	0.008	NP (NDs)
Nickel (mg/L)	MW-8	0.005	0.0011	0.11	No	7	0.002314	0.001276	71.43	No	0.008	NP (NDs)
Nickel (mg/L)	MW-10	0.0054	0.0021	0.11	No	7	0.002957	0.001359	71.43	No	0.008	NP (NDs)
Nickel (mg/L)	MW-9	0.005	0.0015	0.11	No	7	0.003014	0.001322	71.43	No	0.008	NP (NDs)
Nickel (mg/L)	MW-1R	0.02139	0.009438	0.11	No	25	0.02034	0.0202	0	ln(x)	0.01	Param.
pH (SU)	MW-3	7.535	6.883	8.5	No	17	7.209	0.4599	0	No	0.005	Param.
pH (SU)	MW-4	7.766	7.113	8.5	No	17	7.439	0.4611	0	No	0.005	Param.
pH (SU)	MW-2	7.841	7.167	8.5	No	17	7.504	0.476	0	No	0.005	Param.
pH (SU)	MW-5	7.912	7.125	8.5	No	14	7.519	0.4888	0	No	0.005	Param.
pH (SU)	MW-6	7.857	7.2	8.5	No	14	7.529	0.4076	0	No	0.005	Param.
pH (SU)	MW-7 (bg)	7.618	6.96	8.5	No	14	7.289	0.4087	0	No	0.005	Param.
pH (SU)	MW-8	7.938	7.226	8.5	No	14	7.582	0.4425	0	No	0.005	Param.
pH (SU)	MW-10	8.4	7.65	8.5	No	7	7.857	0.2646	0	No	0.008	NP (normality)
pH (SU)	MW-9	7.943	6.951	8.5	No	7	7.447	0.3537	0	No	0.005	Param.
pH (SU)	MW-1R	8.517	7.887	8.5	No	25	8.202	0.5636	0	No	0.005	Param.
Selenium (mg/L)	MW-3	0.0015	0.00087	0.005	No	18	0.001201	0.0009387	61.11	No	0.01	NP (NDs)
Selenium (mg/L)	MW-4	0.0009	0.00048	0.005	No	18	0.001022	0.0009557	83.33	No	0.01	NP (NDs)
Selenium (mg/L)	MW-2	0.0038	0.0019	0.005	No	18	0.003456	0.003129	16.67	No	0.01	NP (normality)
Selenium (mg/L)	MW-5	0.002	0.00028	0.005	No	15	0.0008787	0.00111	100	No	0.01	NP (NDs)
Selenium (mg/L)	MW-6	0.0009	0.00028	0.005	No	15	0.0006387	0.0004827	100	No	0.01	NP (NDs)
Selenium (mg/L)	MW-7 (bg)	0.0009	0.00028	0.005	No	15	0.0006387	0.0004827	100	No	0.01	NP (NDs)
Selenium (mg/L)	MW-8	0.0009	0.00028	0.005	No	15	0.0006387	0.0004827	100	No	0.01	NP (NDs)
Selenium (mg/L)	MW-10	0.002	0.00087	0.005	No	7	0.001181	0.0004944	100	No	0.008	NP (NDs)
Selenium (mg/L)	MW-9	0.002	0.00087	0.005	No	7	0.001181	0.0004944	100	No	0.008	NP (NDs)
Selenium (mg/L)	MW-1R	0.0039	0.0016	0.005	No	25	0.002492	0.001261	16	No	0.01	NP (normality)
Silver (mg/L)	MW-3	0.0015	0.000026	0.0015	No	7	0.0006666	0.0006547	85.71	No	0.008	NP (NDs)
Silver (mg/L)	MW-4	0.0015	0.000014	0.0015	No	7	0.0004899	0.0005539	71.43	No	0.008	NP (NDs)
Silver (mg/L)	MW-2	0.0015	0.000036	0.0015	No	7	0.0004966	0.0005472	85.71	No	0.008	NP (NDs)
Silver (mg/L)	MW-5	0.0015	0.000016	0.0015	No	7	0.0004937	0.0005501	85.71	No	0.008	NP (NDs)
Silver (mg/L)	MW-6	0.001	0.000024	0.0015	No	7	0.0003234	0.000324	85.71	No	0.008	NP (NDs)
Silver (mg/L)	MW-7 (bg)	0.001	0.000022	0.0015	No	7	0.0003223	0.0003252	71.43	No	0.008	NP (NDs)

	Grand Have	en BLP Clie	nt: Golder As	sociates l	Data:	DT-Gra	and Haven BL	P Printed 4	/27/2021,	1:10 PM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliano	eSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	Transform	<u>Alpha</u>	Method
Silver (mg/L)	MW-8	0.001	0.000028	0.0015	No	7	0.000324	0.0003234	85.71	No	0.008	NP (NDs)
Silver (mg/L)	MW-10	0.0015	0.00004	0.0015	No	7	0.0005771	0.0005083	100	No	0.008	NP (NDs)
Silver (mg/L)	MW-9	0.001	0.00004	0.0015	No	7	0.0004057	0.0003081	100	No	0.008	NP (NDs)
Silver (mg/L)	MW-1R	0.0015	0.0003	0.0015	No	25	0.000732	0.0005483	100	No	0.01	NP (NDs)
Sulfate (mg/L)	MW-3	1057	559.6	250	Yes	19	808.4	424.8	0	No	0.01	Param.
Sulfate (mg/L)	MW-4	832.1	676.3	250	Yes	19	754.2	133.1	0	No	0.01	Param.
Sulfate (mg/L)	MW-2	3.3	1	250	No	19	2.908	3.498	57.89	No	0.01	NP (NDs)
Sulfate (mg/L)	MW-5	1200	83	250	No	15	730.5	478.6	0	No	0.01	NP (normality)
Sulfate (mg/L)	MW-6	70.61	8.99	250	No	15	53.15	52.28	6.667	In(x)	0.01	Param.
Sulfate (mg/L)	MW-7 (bg)	51.22	26.11	250	No	15	38.67	18.52	0	No	0.01	Param.
Sulfate (mg/L)	MW-8	6.168	1.749	250	No	15	5.125	6.464	6.667	In(x)	0.01	Param.
Sulfate (mg/L)	MW-10	5.254	-0.2356	250	No	7	2.509	2.311	28.57	No	0.01	Param.
Sulfate (mg/L)	MW-9	171.1	13.67	250	No	7	92.37	66.25	0	No	0.01	Param.
Sulfate (mg/L)	MW-1R	737.8	500.6	250	Yes	25	619.2	237.9	0	No	0.01	Param.
Thallium (mg/L)	MW-3	0.0003	0.000087	0.002	No	18	0.0003787	0.0004579	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-4	0.0003	0.000087	0.002	No	18	0.0003121	0.0003625	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-2	0.001	0.000087	0.002	No	18	0.0005121	0.0006502	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-5	0.001	0.000029	0.002	No	15	0.0002653	0.0004231	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-6	0.0006	0.000029	0.002	No	15	0.0002038	0.0002733	93.33	No	0.01	NP (NDs)
Thallium (mg/L)	MW-7 (bg)	0.0003	0.000029	0.002	No	15	0.0001853	0.0002517	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-8	0.0003	0.000029	0.002	No	15	0.0001896	0.0002494	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-10	0.0015	0.000087	0.002	No	7	0.0005839	0.0005002	100	No	0.008	NP (NDs)
Thallium (mg/L)	MW-9	0.001	0.000087	0.002	No	7	0.0004481	0.0003377	85.71	No	0.008	NP (NDs)
Thallium (mg/L)	MW-1R	0.0015	0.0006	0.002	No	25	0.001108	0.000657	96	No	0.01	NP (NDs)
Total Dissolved Solids (mg/L)	MW-3	3560	2829	877.1	Yes	19	3195	624	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-4	2408	2014	877.1	Yes	19	2211	336.5	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-2	2253	1894	877.1	Yes	19	2074	307	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-5	2400	820	877.1	No	15	1779	679.2	0	No	0.01	NP (normality)
Total Dissolved Solids (mg/L)	MW-6	1600	1100	877.1	Yes	15	1413	213.4	0	No	0.01	NP (normality)
Total Dissolved Solids (mg/L)	MW-7 (bg)	720.3	607.7	877.1	No	15	664	83.05	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-8	614.6	366.8	877.1	No	15	490.7	182.9	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-10	1948	1309	877.1	Yes	7	1629	269	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-9	1304	610.5	877.1	No	7	957.1	291.8	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-1R	3500	3200	877.1	Yes	25	3212	488.5	0	No	0.01	NP (normality)
Vanadium (mg/L)	MW-3	0.002507	0.0005015	0.027	No	7	0.001504	0.0008442	14.29	No	0.01	Param.
Vanadium (mg/L)	MW-4	0.0025	0.00053	0.027	No	7	0.00093	0.0007057	14.29	No	0.008	NP (normality)

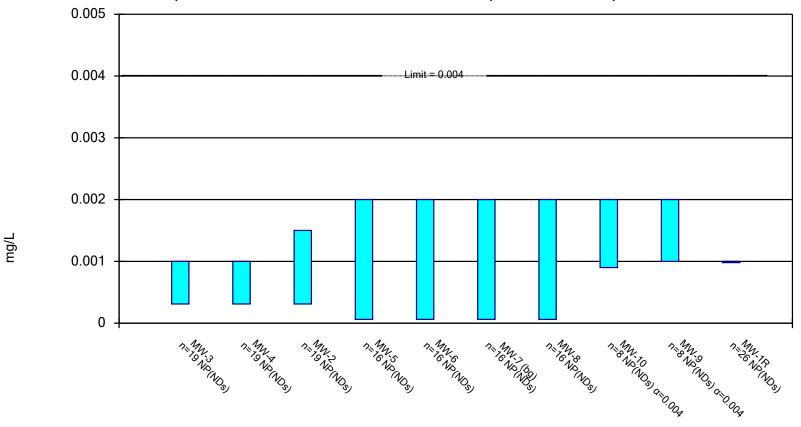

	Grand Haven BLP Client: Golder Associates		Data:	DT-G	rand Haven Bl	P Printed 4	, 1:10 PM					
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliar	nceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Vanadium (mg/L)	MW-2	0.005995	0.001013	0.027	No	7	0.003504	0.002097	0	No	0.01	Param.
Vanadium (mg/L)	MW-5	0.003	0.0005	0.027	No	7	0.001356	0.001001	42.86	No	0.008	NP (Cohens/xfrm)
Vanadium (mg/L)	MW-6	0.0008	0.00029	0.027	No	7	0.0005729	0.000178	57.14	No	0.008	NP (NDs)
Vanadium (mg/L)	MW-7 (bg)	0.0007488	0.0005112	0.027	No	7	0.00063	0.0001	0	No	0.01	Param.
Vanadium (mg/L)	MW-8	0.0008	0.00036	0.027	No	7	0.0005214	0.0001332	71.43	No	0.008	NP (NDs)
Vanadium (mg/L)	MW-10	0.002	0.00076	0.027	No	7	0.001353	0.0005529	0	No	0.008	NP (normality)
Vanadium (mg/L)	MW-9	0.0026	0.0005	0.027	No	7	0.001071	0.000892	71.43	No	0.008	NP (NDs)
Vanadium (mg/L)	MW-1R	0.003805	0.002464	0.027	No	25	0.00338	0.001704	0	In(x)	0.01	Param.
Zinc (mg/L)	MW-3	2	0.00081	0.26	No	7	0.299	0.7501	85.71	No	0.008	NP (NDs)
Zinc (mg/L)	MW-4	2	0.003	0.26	No	7	0.2993	0.75	85.71	No	0.008	NP (NDs)
Zinc (mg/L)	MW-2	2	0.0099	0.26	No	7	0.3003	0.7495	85.71	No	0.008	NP (NDs)
Zinc (mg/L)	MW-5	0.22	0.0025	0.26	No	7	0.04493	0.07743	71.43	No	0.008	NP (NDs)
Zinc (mg/L)	MW-6	2	0.011	0.26	No	7	0.3004	0.7494	85.71	No	0.008	NP (NDs)
Zinc (mg/L)	MW-7 (bg)	2	0.0023	0.26	No	7	0.2996	0.7498	71.43	No	0.008	NP (NDs)
Zinc (mg/L)	MW-8	2	0.0026	0.26	No	7	0.2992	0.75	85.71	No	0.008	NP (NDs)
Zinc (mg/L)	MW-10	0.16	0.011	0.26	No	7	0.03729	0.05417	71.43	No	0.008	NP (NDs)
Zinc (mg/L)	MW-9	0.02	0.0064	0.26	No	7	0.01663	0.004572	85.71	No	0.008	NP (NDs)
Zinc (mg/L)	MW-1R	0.067	0.022	0.26	No	25	0.07124	0.07947	24	No	0.01	NP (normality)

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

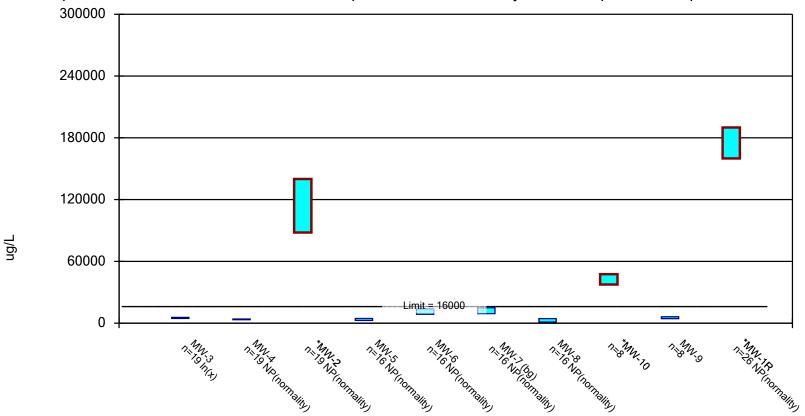

Constituent: Antimony Analysis Run 6/7/2021 2:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Arsenic Analysis Run 6/7/2021 2:32 PM View: MI GWPS


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

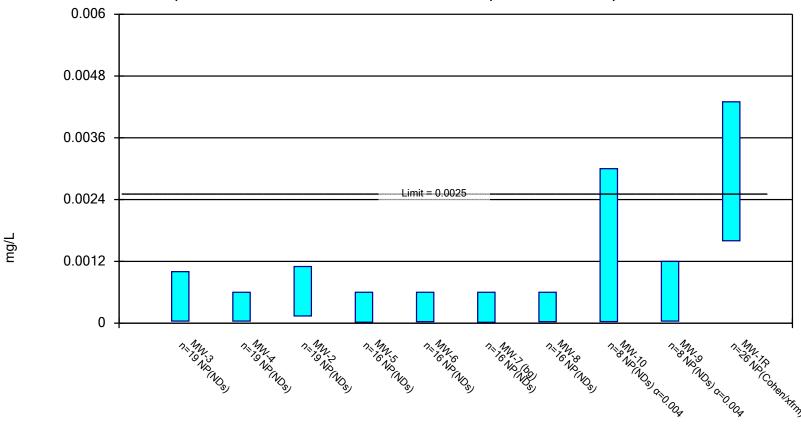
Constituent: Barium Analysis Run 6/7/2021 2:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

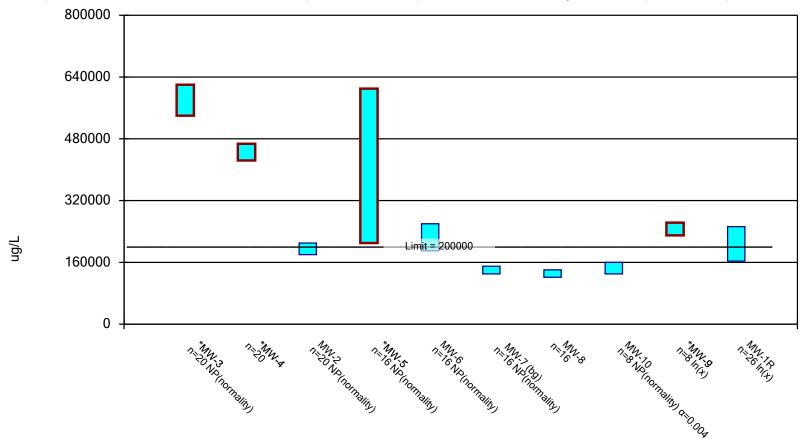
Constituent: Beryllium Analysis Run 6/7/2021 2:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

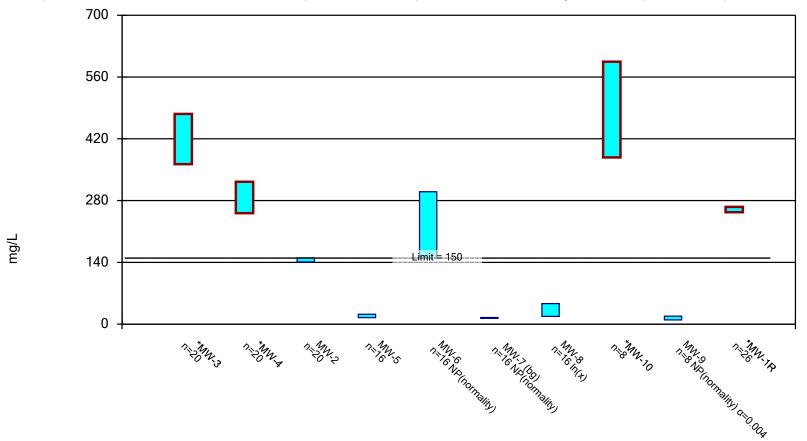


Constituent: Boron Analysis Run 6/7/2021 2:32 PM View: MI GWPS

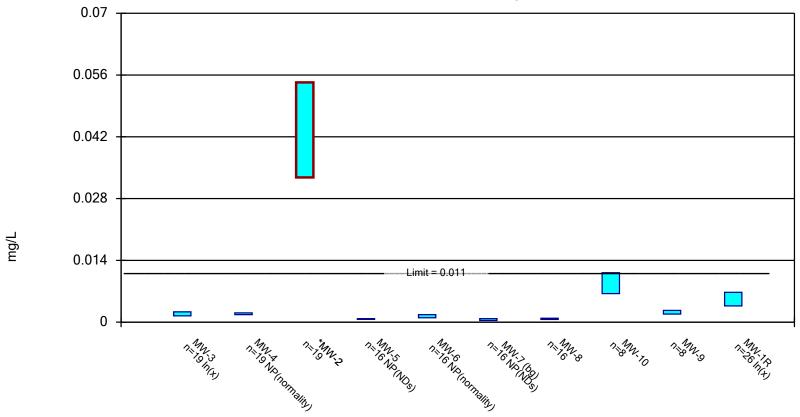
Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Non-Parametric Confidence Interval

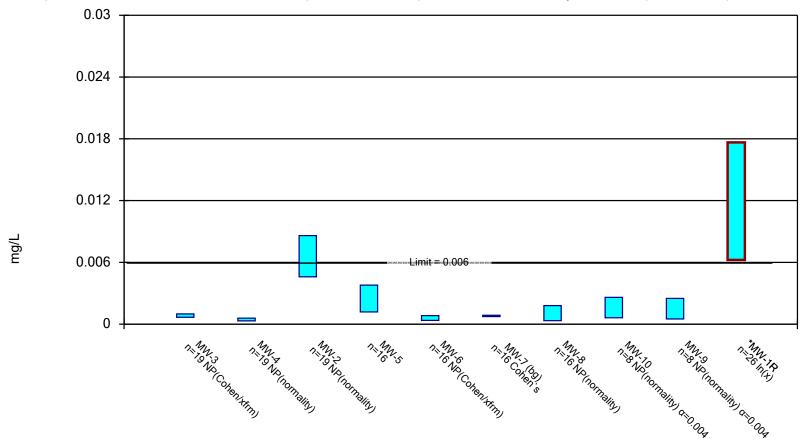
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.


Constituent: Cadmium Analysis Run 6/7/2021 2:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

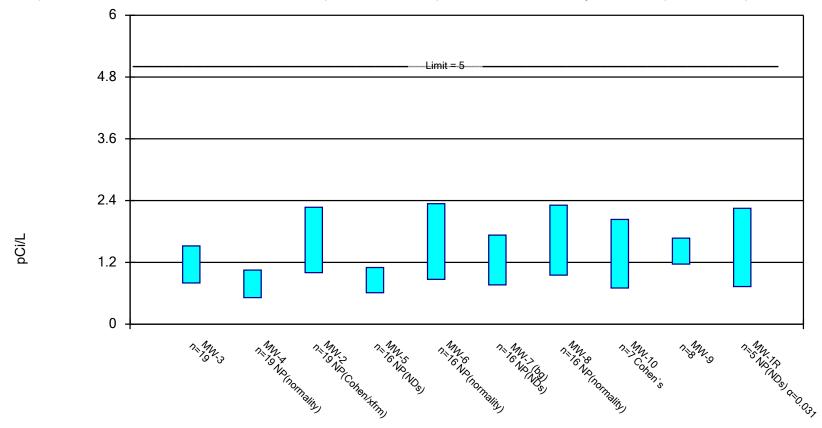

Constituent: Calcium Analysis Run 6/7/2021 2:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Chloride Analysis Run 6/7/2021 2:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Chromium Analysis Run 6/7/2021 2:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

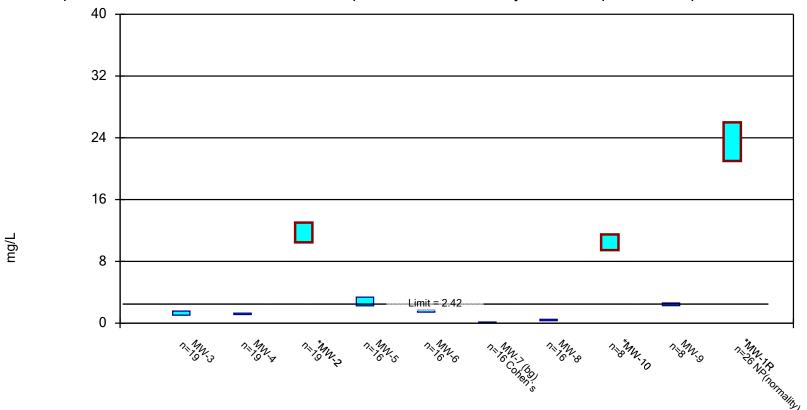

Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Cobalt Analysis Run 6/7/2021 2:32 PM View: MI GWPS

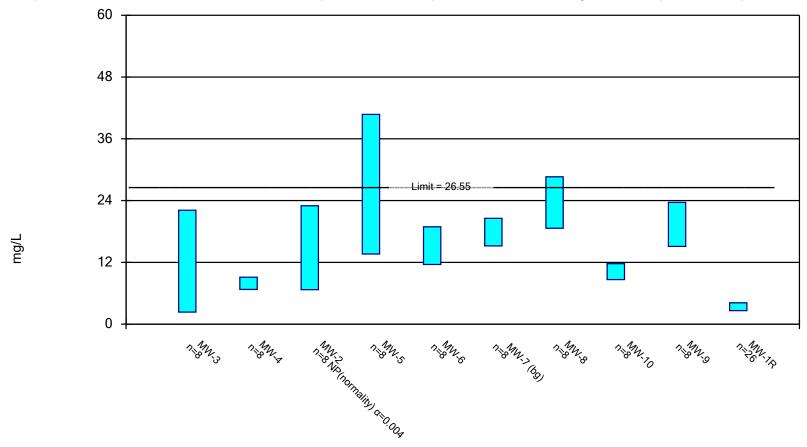
Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Combined Radium 226 + 228 Analysis Run 6/7/2021 2:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

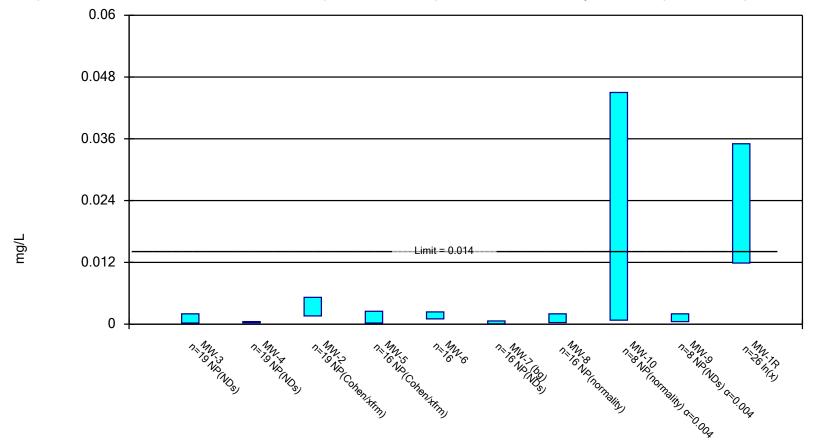

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

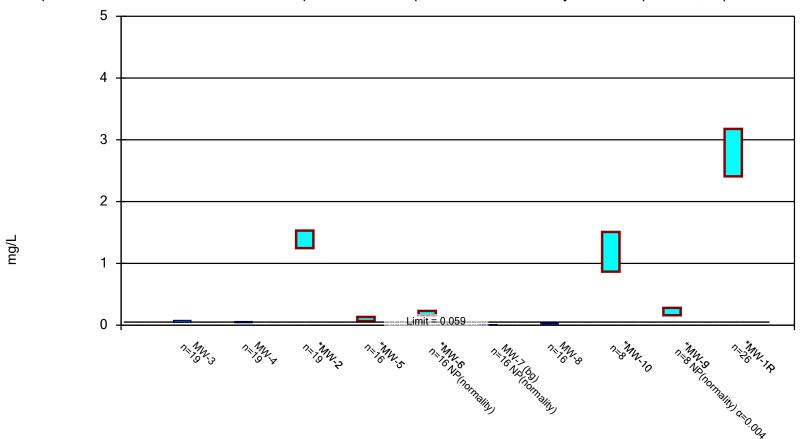

Constituent: Copper Analysis Run 6/7/2021 2:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

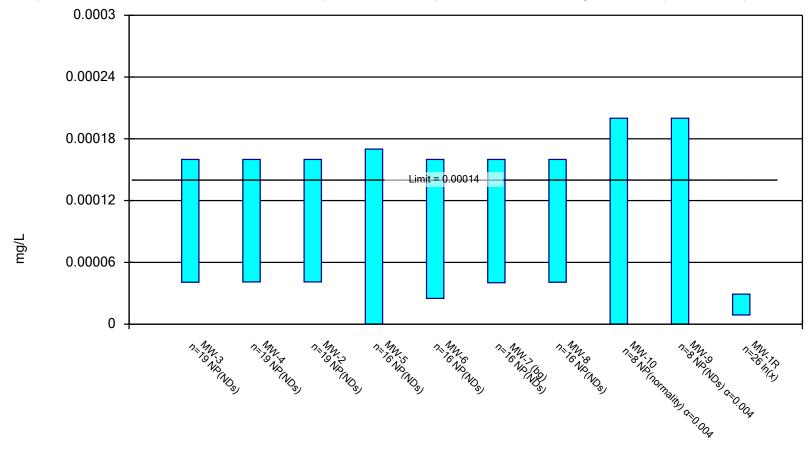
Constituent: Fluoride Analysis Run 6/7/2021 2:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

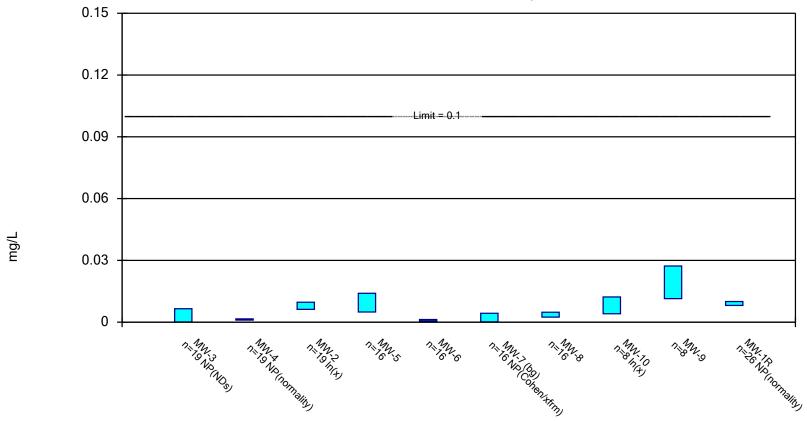
Constituent: Iron Analysis Run 6/7/2021 2:32 PM View: MI GWPS


Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

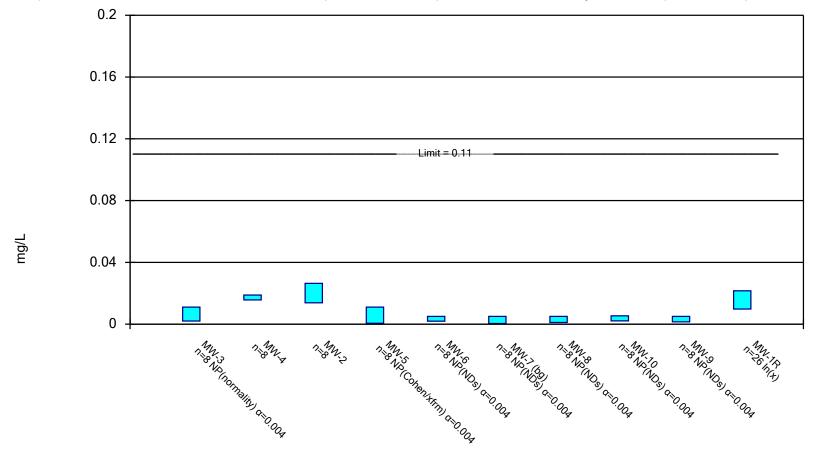
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Lead Analysis Run 6/7/2021 2:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

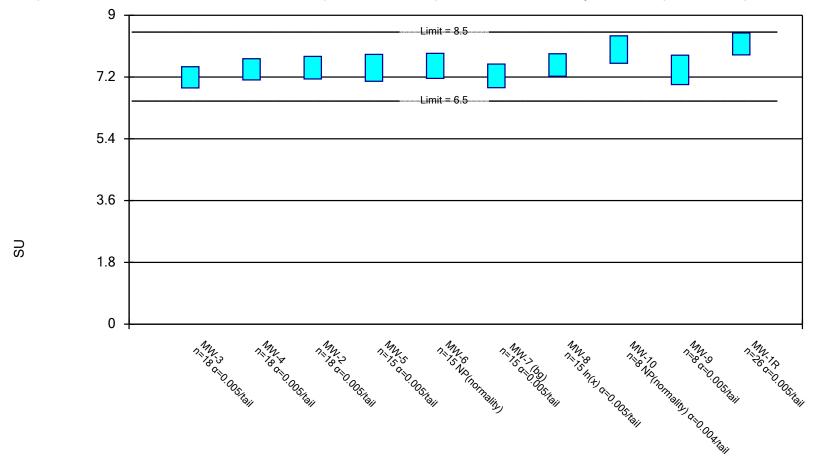

Constituent: Lithium Analysis Run 6/7/2021 2:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Mercury Analysis Run 6/7/2021 2:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

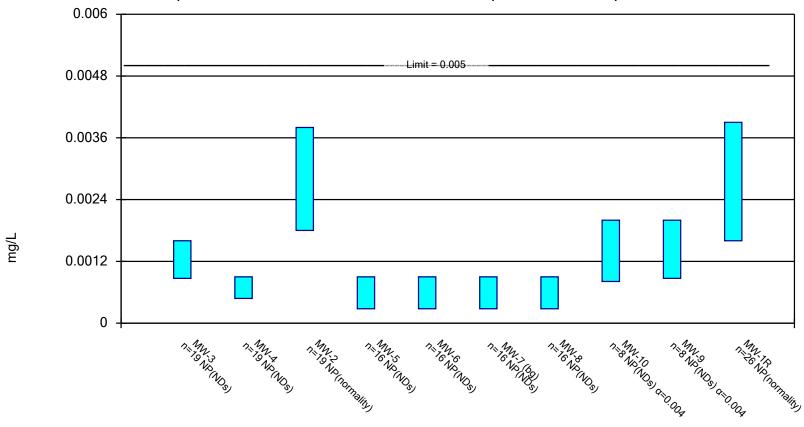
Constituent: Molybdenum Analysis Run 6/7/2021 2:32 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Nickel Analysis Run 6/7/2021 2:32 PM View: MI GWPS

Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

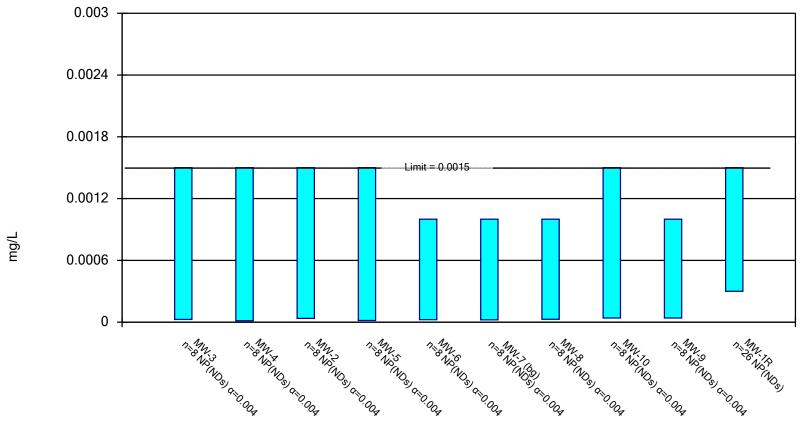
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



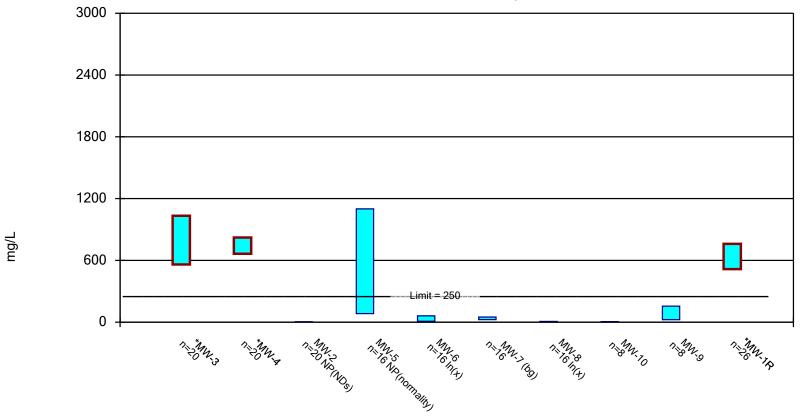
Constituent: pH Analysis Run 6/7/2021 2:33 PM View: MI GWPS

Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Non-Parametric Confidence Interval

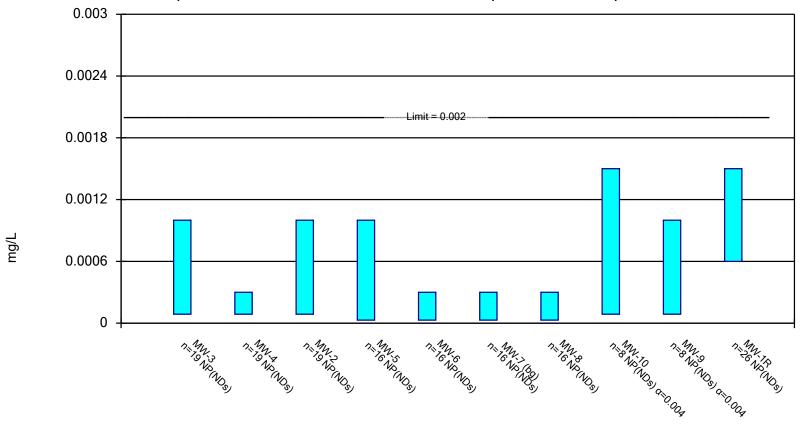

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

Constituent: Selenium Analysis Run 6/7/2021 2:33 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

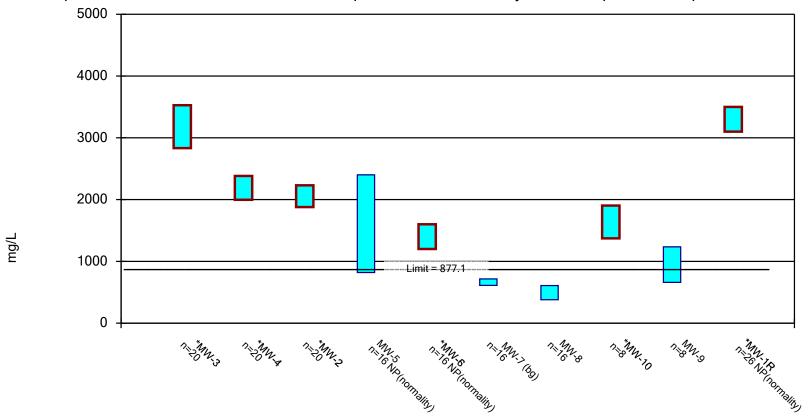

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

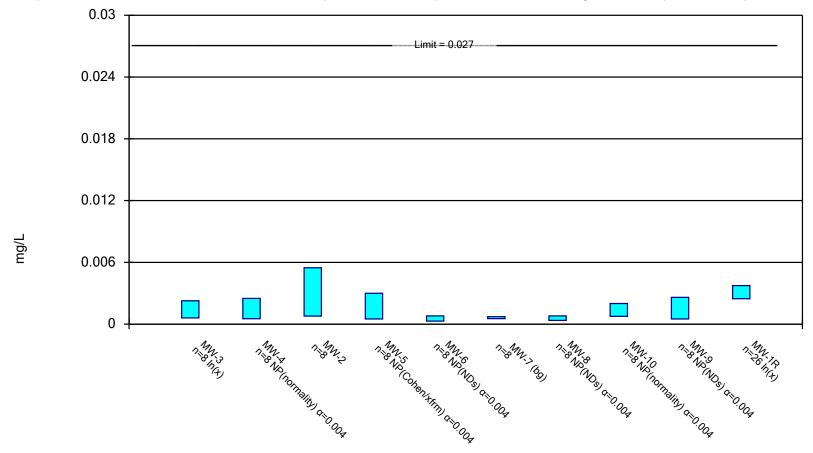
Constituent: Silver Analysis Run 6/7/2021 2:33 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Sulfate Analysis Run 6/7/2021 2:33 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

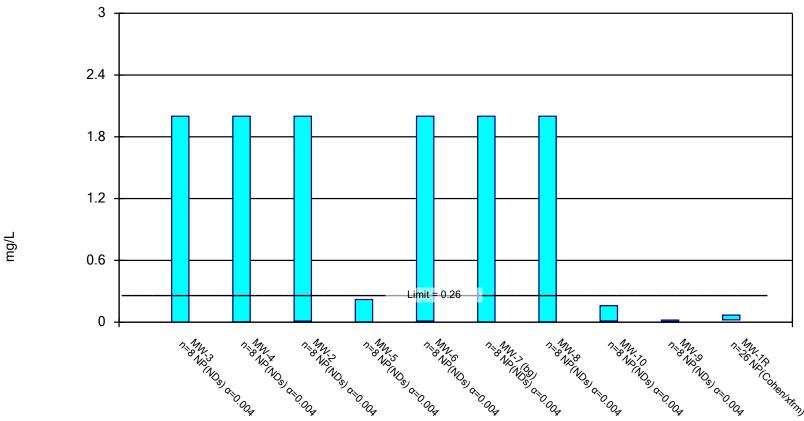

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.


Constituent: Thallium Analysis Run 6/7/2021 2:33 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Total Dissolved Solids Analysis Run 6/7/2021 2:33 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Vanadium Analysis Run 6/7/2021 2:33 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

Constituent: Zinc Analysis Run 6/7/2021 2:33 PM View: MI GWPS

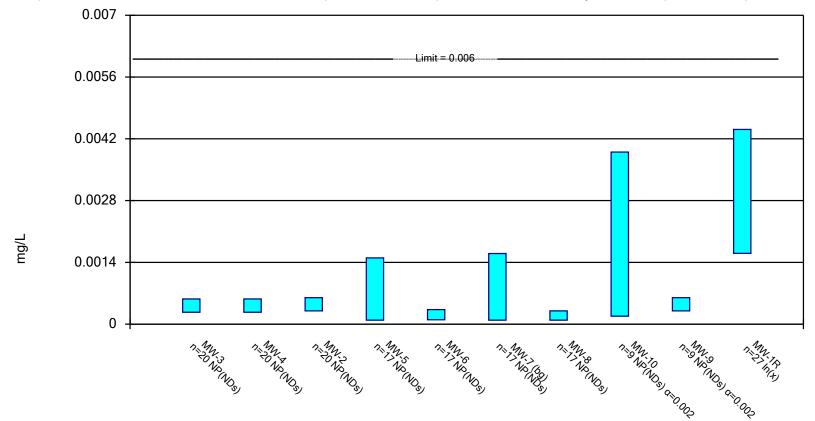
Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

	Grand Hav	en BLP Cli	ent: Golder As	sociates	Data:	DT-Gr	and Haven BL	.P Printed 6	/7/2021,	2:34 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliand	ceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	MW-3	0.00057	0.00027	0.006	No	19	0.0005466	0.0004471	94.74	No	0.01	NP (NDs)
Antimony (mg/L)	MW-4	0.00057	0.00027	0.006	No	19	0.0004185	0.0002967	94.74	No	0.01	NP (NDs)
Antimony (mg/L)	MW-2	0.00068	0.00027	0.006	No	19	0.0009932	0.001686	63.16	No	0.01	NP (NDs)
Antimony (mg/L)	MW-5	0.0015	0.00009	0.006	No	16	0.0003713	0.0004503	100	No	0.01	NP (NDs)
Antimony (mg/L)	MW-6	0.00033	0.0001	0.006	No	16	0.00023	0.0001014	75	No	0.01	NP (NDs)
Antimony (mg/L)	MW-7 (bg)	0.0016	0.00009	0.006	No	16	0.0003116	0.0003563	87.5	No	0.01	NP (NDs)
Antimony (mg/L)	MW-8	0.0003	0.00009	0.006	No	16	0.0002238	0.00009589	87.5	No	0.01	NP (NDs)
Antimony (mg/L)	MW-10	0.0039	0.00018	0.006	No	8	0.00106	0.001259	75	No	0.004	NP (NDs)
Antimony (mg/L)	MW-9	0.0006	0.0003	0.006	No	8	0.0003375	0.0001061	100	No	0.004	NP (NDs)
Antimony (mg/L)	MW-1R	0.004602	0.001616	0.006	No	26	0.004724	0.005562	11.54	ln(x)	0.01	Param.
Arsenic (mg/L)	MW-3	0.002174	0.001626	0.01	No	19	0.0019	0.0004676	10.53	No	0.01	Param.
Arsenic (mg/L)	MW-4	0.0018	0.0012	0.01	No	19	0.001429	0.0002883	5.263	No	0.01	NP (normality)
Arsenic (mg/L)	MW-2	0.009166	0.006565	0.01	No	19	0.007866	0.002221	5.263	No	0.01	Param.
Arsenic (mg/L)	MW-5	0.1726	0.06709	0.01	Yes	16	0.1199	0.0811	0	No	0.01	Param.
Arsenic (mg/L)	MW-6	0.001498	0.0009199	0.01	No	16	0.001209	0.0004439	6.25	No	0.01	Param.
Arsenic (mg/L)	MW-7 (bg)	0.0019	0.00025	0.01	No	15	0.001075	0.001245	40	No	0.01	NP (Cohens/xfrm)
Arsenic (mg/L)	MW-8	0.00572	0.00365	0.01	No	16	0.00485	0.001872	0	In(x)	0.01	Param.
Arsenic (mg/L)	MW-10	0.001366	0.000766	0.01	No	8	0.001066	0.0002832	0	No	0.01	Param.
Arsenic (mg/L)	MW-9	0.003736	0.002039	0.01	No	8	0.002888	0.0008008	0	No	0.01	Param.
Arsenic (mg/L)	MW-1R	0.0084	0.0068	0.01	No	26	0.007152	0.002058	3.846	No	0.01	NP (normality)
Barium (mg/L)	MW-3	0.4341	0.3133	1.3	No	19	0.3737	0.1032	0	No	0.01	Param.
Barium (mg/L)	MW-4	0.1549	0.1195	1.3	No	19	0.1372	0.03021	0	No	0.01	Param.
Barium (mg/L)	MW-2	0.4816	0.4384	1.3	No	19	0.46	0.03682	0	No	0.01	Param.
Barium (mg/L)	MW-5	0.2508	0.09471	1.3	No	16	0.1974	0.1357	0	In(x)	0.01	Param.
Barium (mg/L)	MW-6	1.299	0.8101	1.3	No	16	1.055	0.3759	0	No	0.01	Param.
Barium (mg/L)	MW-7 (bg)	0.4078	0.3247	1.3	No	16	0.3663	0.06386	0	No	0.01	Param.
Barium (mg/L)	MW-8	0.776	0.5465	1.3	No	16	0.6613	0.1763	0	No	0.01	Param.
Barium (mg/L)	MW-10	1.3	1.1	1.3	No	8	1.225	0.07071	0	No	0.004	NP (normality)
Barium (mg/L)	MW-9	1.974	0.7814	1.3	No	8	1.378	0.5624	0	No	0.01	Param.
Barium (mg/L)	MW-1R	0.6192	0.4204	1.3	No	26	0.5198	0.2039	0	No	0.01	Param.
Beryllium (mg/L)	MW-3	0.001	0.00031	0.004	No	19	0.0007021	0.0004642	100	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-4	0.001	0.00031	0.004	No	19	0.0007021	0.0004642	100	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-2	0.0015	0.00031	0.004	No	19	0.001022	0.0008791	84.21	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-5	0.002	0.00006	0.004	No	16	0.0007688	0.0005515	100	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-6	0.002	0.00006	0.004	No	16	0.0007394	0.0005509	100	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-7 (bg)	0.002	0.00006	0.004	No	16	0.0007394	0.0005509	100	No	0.01	NP (NDs)

	Grand Haven BLP Client: Golder Asso			ssociates	Data	DT-G	2:34 PM					
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Complian	ceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Beryllium (mg/L)	MW-8	0.002	0.00006	0.004	No	16	0.0007118	0.0005727	93.75	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-10	0.002	0.0009	0.004	No	8	0.001113	0.0003603	100	No	0.004	NP (NDs)
Beryllium (mg/L)	MW-9	0.002	0.001	0.004	No	8	0.001125	0.0003536	100	No	0.004	NP (NDs)
Beryllium (mg/L)	MW-1R	0.001	0.001	0.004	No	26	0.001	0	100	No	0.01	NP (NDs)
Boron (ug/L)	MW-3	5590	4557	16000	No	19	5121	921.7	0	In(x)	0.01	Param.
Boron (ug/L)	MW-4	4000	3300	16000	No	19	3726	605.4	0	No	0.01	NP (normality)
Boron (ug/L)	MW-2	140000	88000	16000	Yes	19	124684	42849	0	No	0.01	NP (normality)
Boron (ug/L)	MW-5	4600	2600	16000	No	16	4025	2787	0	No	0.01	NP (normality)
Boron (ug/L)	MW-6	14000	8600	16000	No	16	10951	3736	0	No	0.01	NP (normality)
Boron (ug/L)	MW-7 (bg)	15000	9200	16000	No	16	12725	3498	0	No	0.01	NP (normality)
Boron (ug/L)	MW-8	4400	1100	16000	No	16	2298	1727	0	No	0.01	NP (normality)
Boron (ug/L)	MW-10	47504	37496	16000	Yes	8	42500	4721	0	No	0.01	Param.
Boron (ug/L)	MW-9	6186	4364	16000	No	8	5275	859.8	0	No	0.01	Param.
Boron (ug/L)	MW-1R	190000	160000	16000	Yes	26	168077	37949	0	No	0.01	NP (normality)
Cadmium (mg/L)	MW-3	0.001	0.00004	0.0025	No	19	0.0007087	0.001048	94.74	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-4	0.0006	0.00004	0.0025	No	19	0.0004512	0.0006704	89.47	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-2	0.0011	0.00014	0.0025	No	19	0.0007205	0.0008195	63.16	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-5	0.0006	0.000018	0.0025	No	16	0.0004173	0.0007599	81.25	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-6	0.0006	0.0000285	0.0025	No	16	0.0002795	0.0003243	62.5	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-7 (bg)	0.0006	0.000017	0.0025	No	16	0.000269	0.000332	93.75	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-8	0.0006	0.0000285	0.0025	No	16	0.0002731	0.000329	87.5	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-10	0.003	0.00003	0.0025	No	8	0.0009588	0.0008999	75	No	0.004	NP (NDs)
Cadmium (mg/L)	MW-9	0.0012	0.00004	0.0025	No	8	0.000655	0.00034	100	No	0.004	NP (NDs)
Cadmium (mg/L)	MW-1R	0.0043	0.0016	0.0025	No	26	0.004573	0.005049	30.77	No	0.01	NP (Cohens/xfrm)
Calcium (ug/L)	MW-3	620000	540000	200000	Yes	20	595500	87207	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-4	467101	423899	200000	Yes	20	445500	38041	0	No	0.01	Param.
Calcium (ug/L)	MW-2	210000	180000	200000	No	20	202500	35075	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-5	610000	210000	200000	Yes	16	446875	170126	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-6	260000	190000	200000	No	16	216331	63569	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-7 (bg)	150000	130000	200000	No	16	145625	15903	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-8	140604	121271	200000	No	16	130938	14857	0	No	0.01	Param.
Calcium (ug/L)	MW-10	160000	130000	200000	No	8	141250	13562	0	No	0.004	NP (normality)
Calcium (ug/L)	MW-9	262795	229931	200000	Yes	8	246250	15980	0	ln(x)	0.01	Param.
Calcium (ug/L)	MW-1R	252620	163291	200000	No	26	225038	114780	0	ln(x)	0.01	Param.
Chloride (mg/L)	MW-3	476.4	362.6	150	Yes	20	419.5	100.3	0	No	0.01	Param.
Chloride (mg/L)	MW-4	322.6	251.4	150	Yes	20	287	62.75	0	No	0.01	Param.

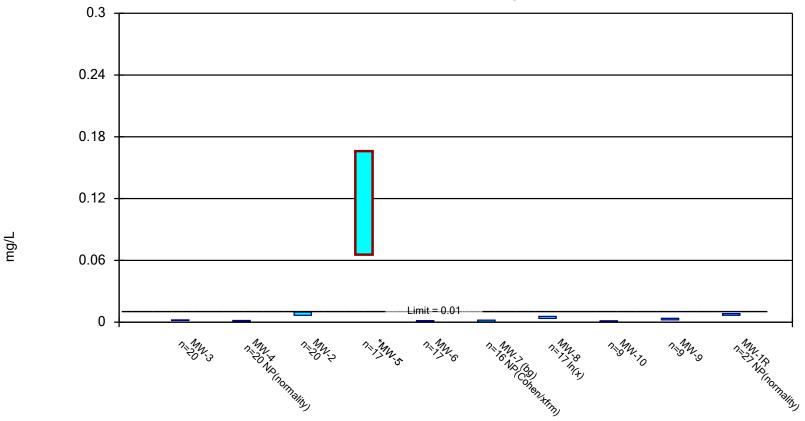
	Grand Haven BLP Client: Golder Associa		ssociates	Data	DT-G	rand Haven Bl	P Printed 6	3/7/2021,	2:34 PM			
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Complian	ceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Chloride (mg/L)	MW-2	150.2	140.8	150	No	20	145.5	8.256	0	No	0.01	Param.
Chloride (mg/L)	MW-5	22.37	14.77	150	No	16	18.57	5.841	0	No	0.01	Param.
Chloride (mg/L)	MW-6	300	150	150	No	16	230	70.05	0	No	0.01	NP (normality)
Chloride (mg/L)	MW-7 (bg)	15	13	150	No	16	14.19	0.8342	0	No	0.01	NP (normality)
Chloride (mg/L)	MW-8	46.62	17.59	150	No	16	37.59	30.55	0	In(x)	0.01	Param.
Chloride (mg/L)	MW-10	594.8	377.7	150	Yes	8	486.3	102.4	0	No	0.01	Param.
Chloride (mg/L)	MW-9	18	9.5	150	No	8	11.94	2.57	0	No	0.004	NP (normality)
Chloride (mg/L)	MW-1R	265.7	253.5	150	Yes	26	259.6	12.48	0	No	0.01	Param.
Chromium (mg/L)	MW-3	0.002326	0.001429	0.011	No	19	0.001987	0.0009009	0	In(x)	0.01	Param.
Chromium (mg/L)	MW-4	0.0021	0.0017	0.011	No	19	0.002005	0.000454	5.263	No	0.01	NP (normality)
Chromium (mg/L)	MW-2	0.05432	0.03279	0.011	Yes	19	0.04356	0.01839	0	No	0.01	Param.
Chromium (mg/L)	MW-5	8000.0	0.00063	0.011	No	16	0.0008481	0.0007291	81.25	No	0.01	NP (NDs)
Chromium (mg/L)	MW-6	0.0017	0.00099	0.011	No	16	0.001698	0.001025	0	No	0.01	NP (normality)
Chromium (mg/L)	MW-7 (bg)	8000.0	0.00037	0.011	No	16	0.0007706	0.0005688	68.75	No	0.01	NP (NDs)
Chromium (mg/L)	MW-8	0.0008773	0.0006164	0.011	No	16	0.0007469	0.0002005	31.25	No	0.01	Param.
Chromium (mg/L)	MW-10	0.01121	0.006468	0.011	No	8	0.008838	0.002235	0	No	0.01	Param.
Chromium (mg/L)	MW-9	0.002666	0.001834	0.011	No	8	0.00225	0.0003928	0	No	0.01	Param.
Chromium (mg/L)	MW-1R	0.006759	0.003676	0.011	No	26	0.006038	0.004093	3.846	In(x)	0.01	Param.
Cobalt (mg/L)	MW-3	0.00099	0.00067	0.006	No	19	0.0009395	0.0004589	26.32	No	0.01	NP (Cohens/xfrm)
Cobalt (mg/L)	MW-4	0.00058	0.00032	0.006	No	19	0.0006258	0.0005475	42.11	No	0.01	NP (normality)
Cobalt (mg/L)	MW-2	0.0086	0.0046	0.006	No	19	0.006758	0.002056	0	No	0.01	NP (normality)
Cobalt (mg/L)	MW-5	0.003793	0.001187	0.006	No	16	0.00249	0.002003	31.25	No	0.01	Param.
Cobalt (mg/L)	MW-6	0.00083	0.00036	0.006	No	16	0.0006525	0.0003177	50	No	0.01	NP (Cohens/xfrm)
Cobalt (mg/L)	MW-7 (bg)	0.0008568	0.0007357	0.006	No	16	0.0007844	0.00008025	18.75	No	0.01	Param.
Cobalt (mg/L)	MW-8	0.0018	0.00034	0.006	No	16	0.0007913	0.0006348	43.75	No	0.01	NP (normality)
Cobalt (mg/L)	MW-10	0.0026	0.00062	0.006	No	8	0.001009	0.0006607	0	No	0.004	NP (normality)
Cobalt (mg/L)	MW-9	0.0025	0.0005	0.006	No	8	0.001101	0.0007976	12.5	No	0.004	NP (normality)
Cobalt (mg/L)	MW-1R	0.01765	0.006236	0.006	Yes	26	0.01842	0.02257	0	In(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-3	1.519	0.8004	5	No	19	1.16	0.6137	26.32	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-4	1.05	0.515	5	No	19	0.9027	0.3891	42.11	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-2	2.27	1	5	No	19	1.576	0.8142	31.58	No	0.01	NP (Cohens/xfrm)
Combined Radium 226 + 228 (pCi/L)	MW-5	1.1	0.61	5	No	16	0.9781	0.3731	56.25	No	0.01	NP (NDs)
Combined Radium 226 + 228 (pCi/L)	MW-6	2.34	0.87	5	No	16	1.454	0.788	37.5	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-7 (bg)	1.73	0.762	5	No	16	1.207	0.4328	56.25	No	0.01	NP (NDs)
Combined Radium 226 + 228 (pCi/L)	MW-8	2.31	0.952	5	No	16	1.643	1.011	37.5	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-10	2.033	0.702	5	No	7	1.464	0.4331	28.57	No	0.01	Param.

	Grand Haven BLP Client: Golder Associates		ssociates	Data	: DT-G	rand Haven B	LP Printed	6/7/2021,	2:34 PM			
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Complian	ceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Combined Radium 226 + 228 (pCi/L)	MW-9	1.671	1.167	5	No	8	1.419	0.2376	12.5	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-1R	2.25	0.73	5	No	5	1.154	0.6247	60	No	0.031	NP (NDs)
Copper (mg/L)	MW-3	0.022	0.00045	0.02	No	8	0.005366	0.00695	75	No	0.004	NP (NDs)
Copper (mg/L)	MW-4	0.022	0.00085	0.02	No	8	0.005531	0.006831	62.5	No	0.004	NP (NDs)
Copper (mg/L)	MW-2	0.022	0.0012	0.02	No	8	0.005775	0.006689	75	No	0.004	NP (NDs)
Copper (mg/L)	MW-5	0.022	0.00028	0.02	No	8	0.005585	0.00682	75	No	0.004	NP (NDs)
Copper (mg/L)	MW-6	0.0051	0.0012	0.02	No	8	0.003675	0.001448	62.5	No	0.004	NP (NDs)
Copper (mg/L)	MW-7 (bg)	0.005	0.00046	0.02	No	8	0.003131	0.001864	75	No	0.004	NP (NDs)
Copper (mg/L)	MW-8	0.005	0.00084	0.02	No	8	0.003223	0.00172	75	No	0.004	NP (NDs)
Copper (mg/L)	MW-10	0.0086	0.00087	0.02	No	8	0.004159	0.002326	87.5	No	0.004	NP (NDs)
Copper (mg/L)	MW-9	0.0086	0.0013	0.02	No	8	0.004238	0.00221	87.5	No	0.004	NP (NDs)
Copper (mg/L)	MW-1R	0.0099	0.0043	0.02	No	26	0.009631	0.008156	61.54	No	0.01	NP (NDs)
Fluoride (mg/L)	MW-3	1.565	1.029	2.42	No	19	1.297	0.4574	0	No	0.01	Param.
Fluoride (mg/L)	MW-4	1.29	1.114	2.42	No	19	1.202	0.1508	0	No	0.01	Param.
Fluoride (mg/L)	MW-2	13.02	10.46	2.42	Yes	19	11.74	2.184	0	No	0.01	Param.
Fluoride (mg/L)	MW-5	3.367	2.246	2.42	No	16	2.806	0.8614	0	No	0.01	Param.
Fluoride (mg/L)	MW-6	1.707	1.431	2.42	No	16	1.569	0.212	0	No	0.01	Param.
Fluoride (mg/L)	MW-7 (bg)	0.1409	0.08589	2.42	No	16	0.1067	0.05031	18.75	No	0.01	Param.
Fluoride (mg/L)	MW-8	0.4943	0.322	2.42	No	16	0.4081	0.1324	0	No	0.01	Param.
Fluoride (mg/L)	MW-10	11.49	9.46	2.42	Yes	8	10.48	0.9573	0	No	0.01	Param.
Fluoride (mg/L)	MW-9	2.607	2.268	2.42	No	8	2.438	0.1598	0	No	0.01	Param.
Fluoride (mg/L)	MW-1R	26	21	2.42	Yes	26	21.47	7.421	3.846	No	0.01	NP (normality)
Iron (mg/L)	MW-3	22.13	2.348	26.55	No	8	12.24	9.331	0	No	0.01	Param.
Iron (mg/L)	MW-4	9.113	6.737	26.55	No	8	7.925	1.121	0	No	0.01	Param.
Iron (mg/L)	MW-2	23	6.7	26.55	No	8	18.96	5.145	0	No	0.004	NP (normality)
Iron (mg/L)	MW-5	40.74	13.63	26.55	No	8	27.19	12.79	0	No	0.01	Param.
Iron (mg/L)	MW-6	18.91	11.59	26.55	No	8	15.25	3.454	0	No	0.01	Param.
Iron (mg/L)	MW-7 (bg)	20.56	15.19	26.55	No	8	17.88	2.532	0	No	0.01	Param.
Iron (mg/L)	MW-8	28.63	18.62	26.55	No	8	23.63	4.719	0	No	0.01	Param.
Iron (mg/L)	MW-10	11.75	8.65	26.55	No	8	10.2	1.462	0	No	0.01	Param.
Iron (mg/L)	MW-9	23.65	15.1	26.55	No	8	19.38	4.033	0	No	0.01	Param.
Iron (mg/L)	MW-1R	4.151	2.618	26.55	No	26	3.385	1.573	0	No	0.01	Param.
Lead (mg/L)	MW-3	0.002	0.00022	0.014	No	19	0.0007999	0.0008566	63.16	No	0.01	NP (NDs)
Lead (mg/L)	MW-4	0.0005	0.00028	0.014	No	19	0.0005847	0.000602	63.16	No	0.01	NP (NDs)
Lead (mg/L)	MW-2	0.0052	0.0016	0.014	No	19	0.003561	0.002477	15.79	No	0.01	NP (Cohens/xfrm)
Lead (mg/L)	MW-5	0.0025	0.00022	0.014	No	16	0.002811	0.006851	50	No	0.01	NP (Cohens/xfrm)

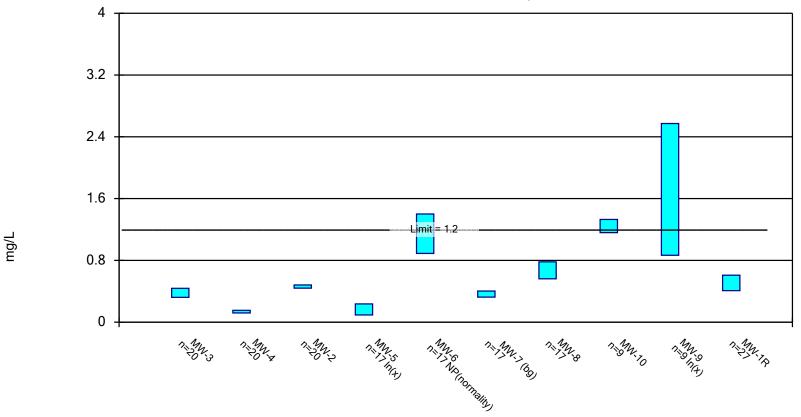

	Grand Hav	ven BLP Cli	ent: Golder As	ssociates	Data:	DT-G	rand Haven BL	P Printed 6	6/7/2021,	2:34 PM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Complian	ceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Lead (mg/L)	MW-6	0.002379	0.001023	0.014	No	16	0.001701	0.001042	18.75	No	0.01	Param.
Lead (mg/L)	MW-7 (bg)	0.00062	0.000057	0.014	No	16	0.0005719	0.0007789	68.75	No	0.01	NP (NDs)
Lead (mg/L)	MW-8	0.002	0.0003	0.014	No	16	0.0009356	0.0009747	43.75	No	0.01	NP (normality)
Lead (mg/L)	MW-10	0.045	0.00078	0.014	No	8	0.00746	0.0152	25	No	0.004	NP (normality)
Lead (mg/L)	MW-9	0.002	0.0005	0.014	No	8	0.001054	0.0006934	62.5	No	0.004	NP (NDs)
Lead (mg/L)	MW-1R	0.03504	0.01187	0.014	No	26	0.03547	0.04171	0	ln(x)	0.01	Param.
Lithium (mg/L)	MW-3	0.07654	0.04746	0.059	No	19	0.062	0.02483	5.263	No	0.01	Param.
Lithium (mg/L)	MW-4	0.05813	0.03945	0.059	No	19	0.04879	0.01596	5.263	No	0.01	Param.
Lithium (mg/L)	MW-2	1.53	1.247	0.059	Yes	19	1.388	0.242	0	No	0.01	Param.
Lithium (mg/L)	MW-5	0.1327	0.06545	0.059	Yes	16	0.09909	0.05171	12.5	No	0.01	Param.
Lithium (mg/L)	MW-6	0.23	0.16	0.059	Yes	16	0.1884	0.0648	6.25	No	0.01	NP (normality)
Lithium (mg/L)	MW-7 (bg)	0.0061	0.0022	0.059	No	16	0.007691	0.01386	37.5	No	0.01	NP (normality)
Lithium (mg/L)	MW-8	0.03657	0.0223	0.059	No	16	0.02944	0.01097	6.25	No	0.01	Param.
Lithium (mg/L)	MW-10	1.509	0.8664	0.059	Yes	8	1.188	0.3029	0	No	0.01	Param.
Lithium (mg/L)	MW-9	0.28	0.16	0.059	Yes	8	0.2288	0.04581	0	No	0.004	NP (normality)
Lithium (mg/L)	MW-1R	3.177	2.408	0.059	Yes	26	2.793	0.7884	0	No	0.01	Param.
Mercury (mg/L)	MW-3	0.00016	0.0000407	0.00014	No	19	0.0001118	0.00006198	78.95	No	0.01	NP (NDs)
Mercury (mg/L)	MW-4	0.00016	0.000041	0.00014	No	19	0.000118	0.00006055	94.74	No	0.01	NP (NDs)
Mercury (mg/L)	MW-2	0.00016	0.000041	0.00014	No	19	0.0001737	0.0002795	78.95	No	0.01	NP (NDs)
Mercury (mg/L)	MW-5	0.00017	1.6e-7	0.00014	No	16	0.000101	0.00007612	93.75	No	0.01	NP (NDs)
Mercury (mg/L)	MW-6	0.00016	0.000025	0.00014	No	16	0.00009142	0.00006911	62.5	No	0.01	NP (NDs)
Mercury (mg/L)	MW-7 (bg)	0.00016	0.00004025	0.00014	No	16	0.00009904	0.00007184	75	No	0.01	NP (NDs)
Mercury (mg/L)	MW-8	0.00016	0.0000407	0.00014	No	16	0.00008553	0.00007098	68.75	No	0.01	NP (NDs)
Mercury (mg/L)	MW-10	0.0002	1.6e-7	0.00014	No	8	0.00008031	0.00009047	50	No	0.004	NP (normality)
Mercury (mg/L)	MW-9	0.0002	1.6e-7	0.00014	No	8	0.00009525	0.00009277	62.5	No	0.004	NP (NDs)
Mercury (mg/L)	MW-1R	0.00002908	0.000008938	8 0.00014	No	26	0.00003138	0.00004023	3.846	In(x)	0.01	Param.
Molybdenum (mg/L)	MW-3	0.0065	0.00012	0.1	No	19	0.002464	0.003113	52.63	No	0.01	NP (NDs)
Molybdenum (mg/L)	MW-4	0.0016	0.001	0.1	No	19	0.001276	0.0006161	21.05	No	0.01	NP (normality)
Molybdenum (mg/L)	MW-2	0.00967	0.00619	0.1	No	19	0.008321	0.003479	10.53	ln(x)	0.01	Param.
Molybdenum (mg/L)	MW-5	0.01402	0.00492	0.1	No	16	0.009468	0.00699	12.5	No	0.01	Param.
Molybdenum (mg/L)	MW-6	0.001258	0.0005951	0.1	No	16	0.0009264	0.0005093	25	No	0.01	Param.
Molybdenum (mg/L)	MW-7 (bg)	0.0043	0.00016	0.1	No	16	0.001896	0.002096	18.75	No	0.01	NP (Cohens/xfrm)
Molybdenum (mg/L)	MW-8	0.004812	0.002424	0.1	No	16	0.003618	0.001836	12.5	No	0.01	Param.
Molybdenum (mg/L)	MW-10	0.01222	0.004076	0.1	No	8	0.007988	0.004496	0	ln(x)	0.01	Param.
Molybdenum (mg/L)	MW-9	0.02728	0.0114	0.1	No	8	0.01934	0.007491	0	No	0.01	Param.
Molybdenum (mg/L)	MW-1R	0.01	0.0081	0.1	No	26	0.009012	0.002799	0	No	0.01	NP (normality)

	Grand Hav	nd Haven BLP Client: Golder Associates		ssociates	Data: DT-Grand Haven B		BLP Printed 6/7/2021,		, 2:34 PM			
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Complian	ceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Nickel (mg/L)	MW-3	0.011	0.002	0.11	No	8	0.004087	0.00323	25	No	0.004	NP (normality)
Nickel (mg/L)	MW-4	0.01883	0.01567	0.11	No	8	0.01725	0.001488	0	No	0.01	Param.
Nickel (mg/L)	MW-2	0.02642	0.01383	0.11	No	8	0.02013	0.005939	0	No	0.01	Param.
Nickel (mg/L)	MW-5	0.011	0.00054	0.11	No	8	0.00388	0.003327	37.5	No	0.004	NP (Cohens/xfrm)
Nickel (mg/L)	MW-6	0.005	0.0019	0.11	No	8	0.002537	0.001004	75	No	0.004	NP (NDs)
Nickel (mg/L)	MW-7 (bg)	0.005	0.0004	0.11	No	8	0.002102	0.001423	75	No	0.004	NP (NDs)
Nickel (mg/L)	MW-8	0.005	0.0011	0.11	No	8	0.0023	0.001182	75	No	0.004	NP (NDs)
Nickel (mg/L)	MW-10	0.0054	0.0021	0.11	No	8	0.002987	0.001261	62.5	No	0.004	NP (NDs)
Nickel (mg/L)	MW-9	0.005	0.0015	0.11	No	8	0.003025	0.001224	62.5	No	0.004	NP (NDs)
Nickel (mg/L)	MW-1R	0.02157	0.009776	0.11	No	26	0.02052	0.01982	0	ln(x)	0.01	Param.
pH (SU)	MW-3	7.501	6.884	8.5	No	18	7.192	0.4517	0	No	0.005	Param.
pH (SU)	MW-4	7.733	7.117	8.5	No	18	7.425	0.4515	0	No	0.005	Param.
pH (SU)	MW-2	7.801	7.145	8.5	No	18	7.473	0.4805	0	No	0.005	Param.
pH (SU)	MW-5	7.86	7.076	8.5	No	15	7.468	0.5101	0	No	0.005	Param.
pH (SU)	MW-6	7.89	7.16	8.5	No	15	7.505	0.4035	0	No	0.01	NP (normality)
pH (SU)	MW-7 (bg)	7.578	6.89	8.5	No	15	7.234	0.447	0	No	0.005	Param.
pH (SU)	MW-8	7.878	7.224	8.5	No	15	7.555	0.4389	0	ln(x)	0.005	Param.
pH (SU)	MW-10	8.4	7.6	8.5	No	8	7.825	0.2613	0	No	0.004	NP (normality)
pH (SU)	MW-9	7.836	6.982	8.5	No	8	7.409	0.345	0	No	0.005	Param.
pH (SU)	MW-1R	8.484	7.847	8.5	No	26	8.165	0.5829	0	No	0.005	Param.
Selenium (mg/L)	MW-3	0.0016	0.00087	0.005	No	19	0.001374	0.001185	63.16	No	0.01	NP (NDs)
Selenium (mg/L)	MW-4	0.0009	0.00048	0.005	No	19	0.001016	0.0009292	84.21	No	0.01	NP (NDs)
Selenium (mg/L)	MW-2	0.0038	0.0018	0.005	No	19	0.003321	0.003097	21.05	No	0.01	NP (normality)
Selenium (mg/L)	MW-5	0.0009	0.00028	0.005	No	16	0.00088	0.001072	100	No	0.01	NP (NDs)
Selenium (mg/L)	MW-6	0.0009	0.00028	0.005	No	16	0.000655	0.0004709	100	No	0.01	NP (NDs)
Selenium (mg/L)	MW-7 (bg)	0.0009	0.00028	0.005	No	16	0.000655	0.0004709	100	No	0.01	NP (NDs)
Selenium (mg/L)	MW-8	0.0009	0.00028	0.005	No	16	0.000655	0.0004709	100	No	0.01	NP (NDs)
Selenium (mg/L)	MW-10	0.002	0.00081	0.005	No	8	0.001135	0.0004762	100	No	0.004	NP (NDs)
Selenium (mg/L)	MW-9	0.002	0.00087	0.005	No	8	0.001146	0.0004684	100	No	0.004	NP (NDs)
Selenium (mg/L)	MW-1R	0.0039	0.0016	0.005	No	26	0.002477	0.001238	15.38	No	0.01	NP (normality)
Silver (mg/L)	MW-3	0.0015	0.000026	0.0015	No	8	0.0007708	0.000674	87.5	No	0.004	NP (NDs)
Silver (mg/L)	MW-4	0.0015	0.000014	0.0015	No	8	0.0004661	0.0005172	75	No	0.004	NP (NDs)
Silver (mg/L)	MW-2	0.0015	0.000036	0.0015	No	8	0.000472	0.0005114	87.5	No	0.004	NP (NDs)
Silver (mg/L)	MW-5	0.0015	0.000016	0.0015	No	8	0.0004695	0.0005139	87.5	No	0.004	NP (NDs)
Silver (mg/L)	MW-6	0.001	0.000024	0.0015	No	8	0.0003205	0.0003001	87.5	No	0.004	NP (NDs)
Silver (mg/L)	MW-7 (bg)	0.001	0.000022	0.0015	No	8	0.0003195	0.0003012	75	No	0.004	NP (NDs)

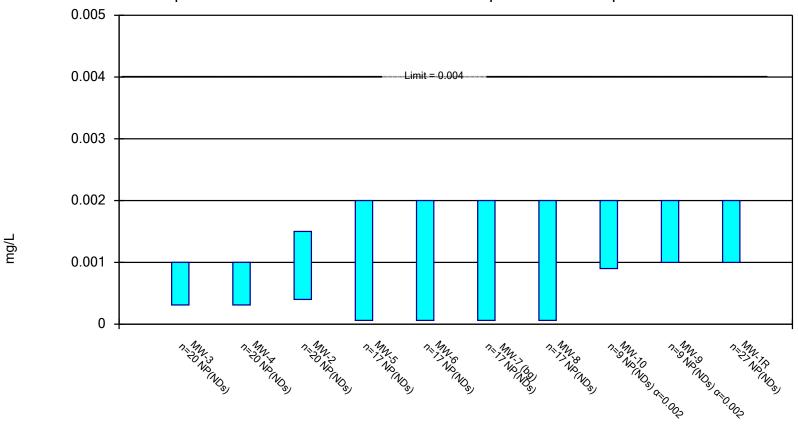
	Grand Hav	ven BLP Cli	ent: Golder As	ssociates	Data:	DT-G	and Haven Bl	P Printed 6	6/7/2021,	2:34 PM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliand	ceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Silver (mg/L)	MW-8	0.001	0.000028	0.0015	No	8	0.000321	0.0002995	87.5	No	0.004	NP (NDs)
Silver (mg/L)	MW-10	0.0015	0.00004	0.0015	No	8	0.0005388	0.0004829	100	No	0.004	NP (NDs)
Silver (mg/L)	MW-9	0.001	0.00004	0.0015	No	8	0.0003925	0.0002876	100	No	0.004	NP (NDs)
Silver (mg/L)	MW-1R	0.0015	0.0003	0.0015	No	26	0.0007615	0.0005579	100	No	0.01	NP (NDs)
Sulfate (mg/L)	MW-3	1033	559.7	250	Yes	20	796.5	416.9	0	No	0.01	Param.
Sulfate (mg/L)	MW-4	821.9	664.1	250	Yes	20	743	138.9	0	No	0.01	Param.
Sulfate (mg/L)	MW-2	3.3	1	250	No	20	2.838	3.419	55	No	0.01	NP (NDs)
Sulfate (mg/L)	MW-5	1100	83	250	No	16	718.6	464.8	0	No	0.01	NP (normality)
Sulfate (mg/L)	MW-6	61.54	8.566	250	No	16	50.18	51.89	6.25	In(x)	0.01	Param.
Sulfate (mg/L)	MW-7 (bg)	49.45	24.92	250	No	16	37.19	18.85	0	No	0.01	Param.
Sulfate (mg/L)	MW-8	6.563	1.912	250	No	16	5.493	6.415	6.25	In(x)	0.01	Param.
Sulfate (mg/L)	MW-10	4.802	0.2643	250	No	8	2.533	2.14	25	No	0.01	Param.
Sulfate (mg/L)	MW-9	155.2	24.19	250	No	8	89.7	61.8	0	No	0.01	Param.
Sulfate (mg/L)	MW-1R	760.2	515.2	250	Yes	26	637.7	251.4	0	No	0.01	Param.
Thallium (mg/L)	MW-3	0.001	0.000087	0.002	No	19	0.0004377	0.000514	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-4	0.0003	0.000087	0.002	No	19	0.0003114	0.0003523	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-2	0.001	0.000087	0.002	No	19	0.0005009	0.0006337	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-5	0.001	0.000029	0.002	No	16	0.0003425	0.0005122	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-6	0.0003	0.000029	0.002	No	16	0.0002098	0.0002651	93.75	No	0.01	NP (NDs)
Thallium (mg/L)	MW-7 (bg)	0.0003	0.000029	0.002	No	16	0.0001925	0.0002448	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-8	0.0003	0.000029	0.002	No	16	0.0001965	0.0002425	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-10	0.0015	0.000087	0.002	No	8	0.0006859	0.0005457	100	No	0.004	NP (NDs)
Thallium (mg/L)	MW-9	0.001	0.000087	0.002	No	8	0.0004296	0.000317	87.5	No	0.004	NP (NDs)
Thallium (mg/L)	MW-1R	0.0015	0.0006	0.002	No	26	0.001123	0.0006483	96.15	No	0.01	NP (NDs)
Total Dissolved Solids (mg/L)	MW-3	3527	2833	877.1	Yes	20	3180	611	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-4	2383	1997	877.1	Yes	20	2190	340.1	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-2	2231	1879	877.1	Yes	20	2055	310.3	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-5	2400	820	877.1	No	16	1793	658.5	0	No	0.01	NP (normality)
Total Dissolved Solids (mg/L)	MW-6	1600	1200	877.1	Yes	16	1400	212.9	0	No	0.01	NP (normality)
Total Dissolved Solids (mg/L)	MW-7 (bg)	716	611.5	877.1	No	16	663.8	80.24	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-8	609	378.5	877.1	No	16	493.8	177.1	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-10	1903	1372	877.1	Yes	8	1638	250.4	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-9	1235	659.7	877.1	No	8	947.5	271.5	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-1R	3500	3100	877.1	Yes	26	3200	482.5	0	No	0.01	NP (normality)
Vanadium (mg/L)	MW-3	0.002264	0.0006012	0.027	No	8	0.001384	0.0008527	12.5	ln(x)	0.01	Param.
Vanadium (mg/L)	MW-4	0.0025	0.00053	0.027	No	8	0.0008825	0.000667	12.5	No	0.004	NP (normality)


	Grand Haven BLP Client: Golder Associates		sociates	Data: DT-Grand Haven BLP Printed 6/7/2021, 2:34 PM								
Constituent	Well	Upper Lim.	Lower Lim.	Compliano	eSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	Transform	<u>Alpha</u>	Method
Vanadium (mg/L)	MW-2	0.005474	0.0007831	0.027	No	8	0.003129	0.002213	12.5	No	0.01	Param.
Vanadium (mg/L)	MW-5	0.003	0.0005	0.027	No	8	0.001249	0.0009745	50	No	0.004	NP (Cohens/xfrm)
Vanadium (mg/L)	MW-6	0.0008	0.00029	0.027	No	8	0.0005638	0.0001668	62.5	No	0.004	NP (NDs)
Vanadium (mg/L)	MW-7 (bg)	0.0007309	0.0005341	0.027	No	8	0.0006325	0.00009285	0	No	0.01	Param.
Vanadium (mg/L)	MW-8	0.0008	0.00036	0.027	No	8	0.0005188	0.0001236	75	No	0.004	NP (NDs)
Vanadium (mg/L)	MW-10	0.002	0.00076	0.027	No	8	0.001279	0.0005531	0	No	0.004	NP (normality)
Vanadium (mg/L)	MW-9	0.0026	0.0005	0.027	No	8	0.001	0.0008502	75	No	0.004	NP (NDs)
Vanadium (mg/L)	MW-1R	0.003745	0.002465	0.027	No	26	0.003346	0.001679	3.846	ln(x)	0.01	Param.
Zinc (mg/L)	MW-3	2	0.00081	0.26	No	8	0.2639	0.7015	87.5	No	0.004	NP (NDs)
Zinc (mg/L)	MW-4	2	0.003	0.26	No	8	0.2641	0.7014	87.5	No	0.004	NP (NDs)
Zinc (mg/L)	MW-2	2	0.0099	0.26	No	8	0.265	0.7011	87.5	No	0.004	NP (NDs)
Zinc (mg/L)	MW-5	0.22	0.0025	0.26	No	8	0.04156	0.07232	75	No	0.004	NP (NDs)
Zinc (mg/L)	MW-6	2	0.011	0.26	No	8	0.2651	0.701	87.5	No	0.004	NP (NDs)
Zinc (mg/L)	MW-7 (bg)	2	0.0023	0.26	No	8	0.2644	0.7013	75	No	0.004	NP (NDs)
Zinc (mg/L)	MW-8	2	0.0026	0.26	No	8	0.2641	0.7014	87.5	No	0.004	NP (NDs)
Zinc (mg/L)	MW-10	0.16	0.011	0.26	No	8	0.03462	0.05072	75	No	0.004	NP (NDs)
Zinc (mg/L)	MW-9	0.02	0.0064	0.26	No	8	0.0168	0.00426	87.5	No	0.004	NP (NDs)
Zinc (mg/L)	MW-1R	0.068	0.022	0.26	No	26	0.0735	0.07872	23.08	No	0.01	NP (Cohens/xfrm)

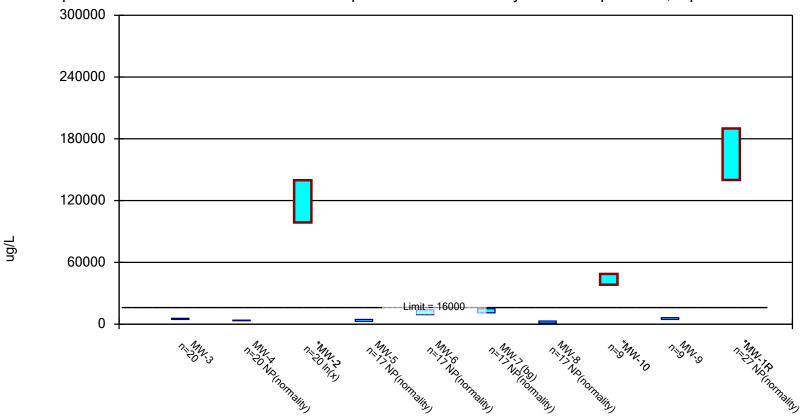
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Antimony Analysis Run 9/24/2021 3:54 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

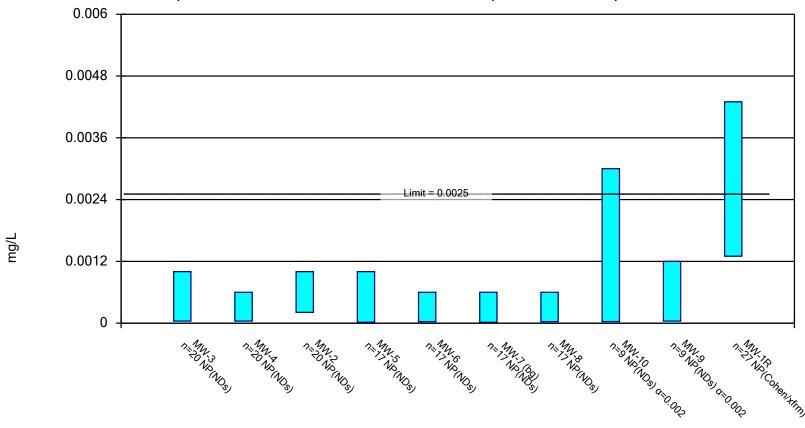
Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Arsenic Analysis Run 9/24/2021 3:54 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

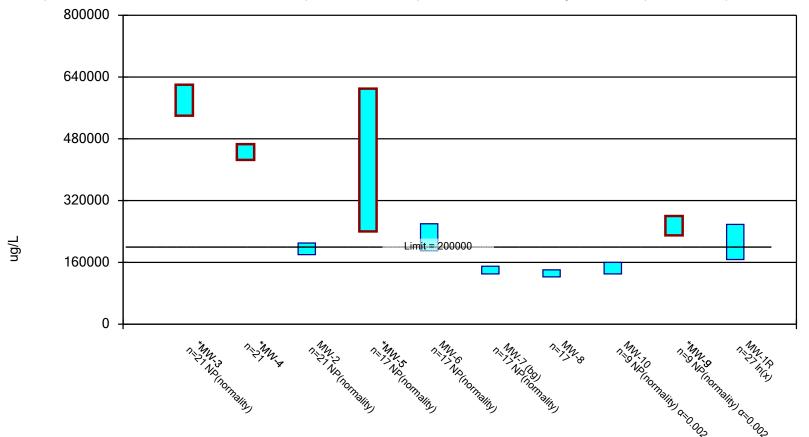
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Barium Analysis Run 9/24/2021 3:54 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

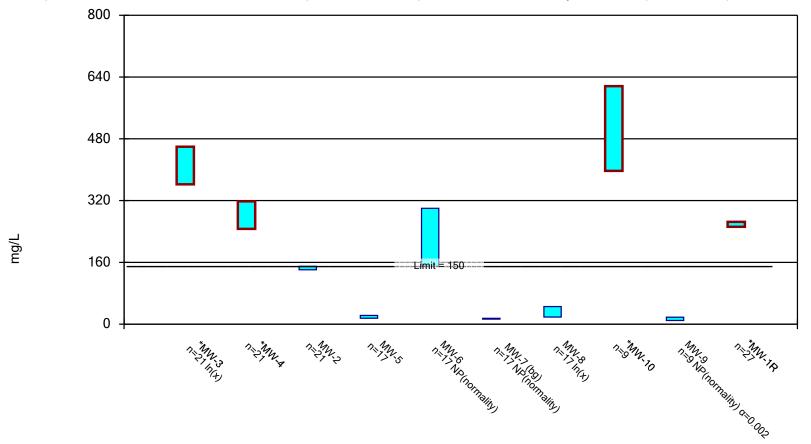
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.


Constituent: Beryllium Analysis Run 9/24/2021 3:54 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

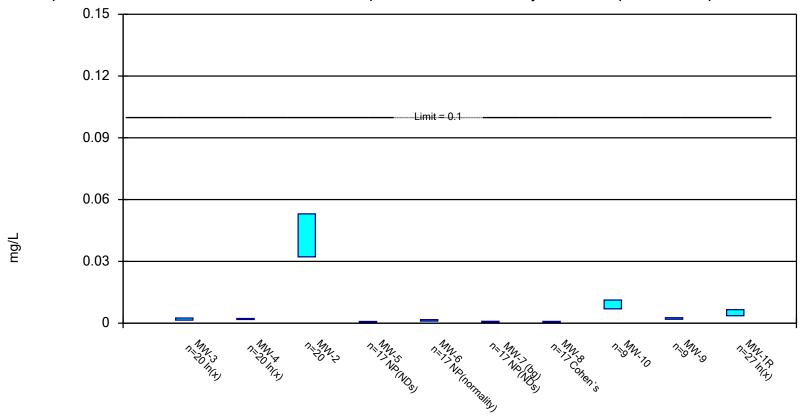
Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Boron Analysis Run 9/24/2021 3:54 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

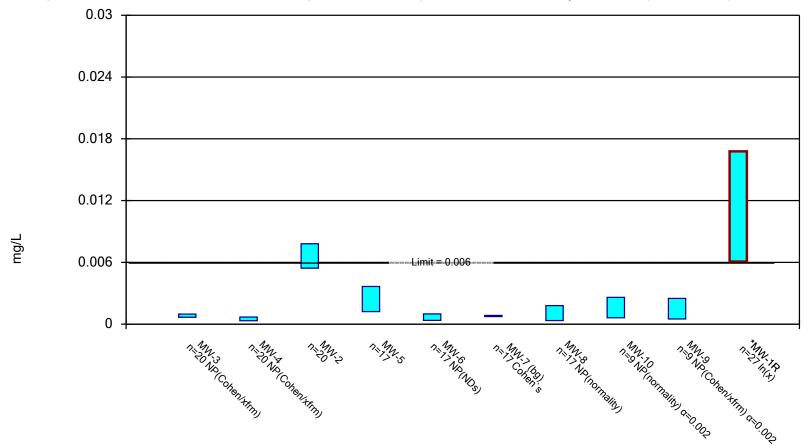
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.


Constituent: Cadmium Analysis Run 9/24/2021 3:54 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

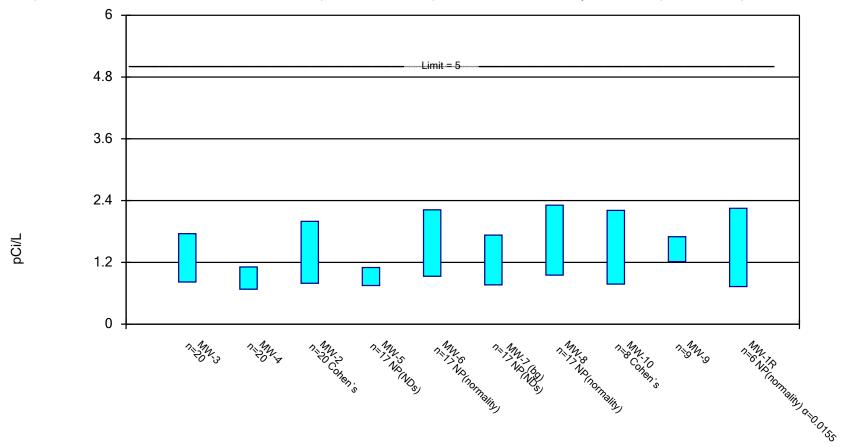
Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Calcium Analysis Run 9/24/2021 3:54 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

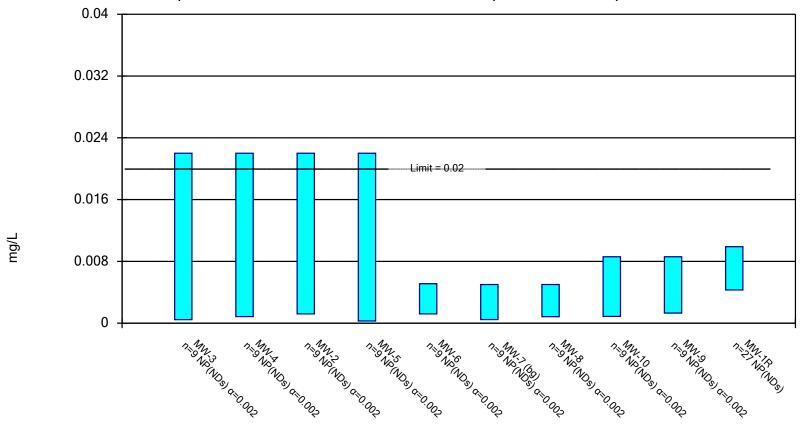
Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Chloride Analysis Run 9/24/2021 3:54 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

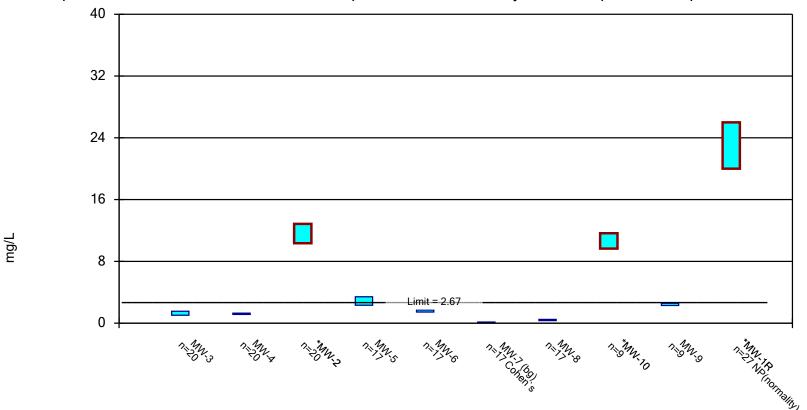
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Chromium Analysis Run 9/24/2021 3:54 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

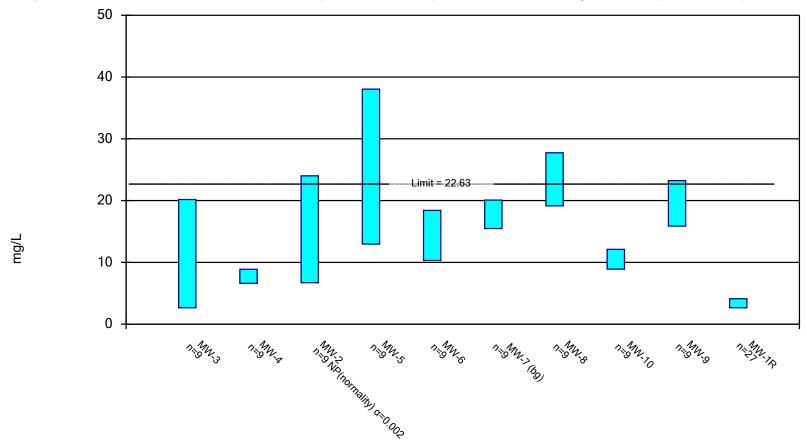
Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Cobalt Analysis Run 9/24/2021 3:54 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

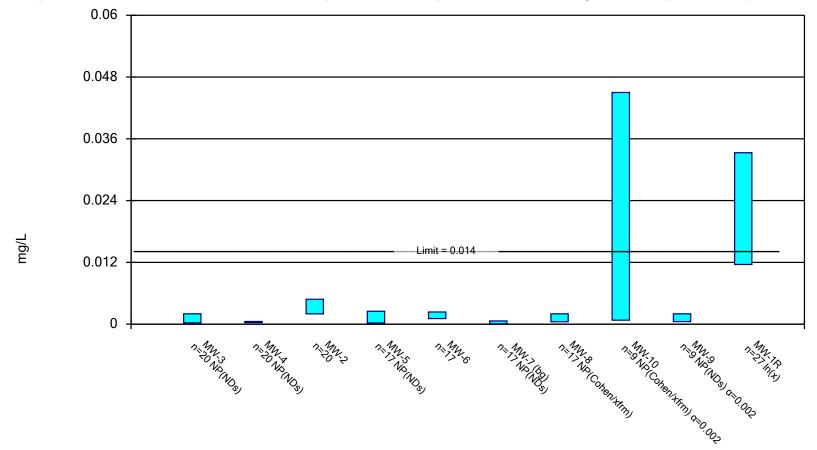

Constituent: Combined Radium 226 + 228 Analysis Run 9/24/2021 3:54 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.


Constituent: Copper Analysis Run 9/24/2021 3:54 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Fluoride Analysis Run 9/24/2021 3:54 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

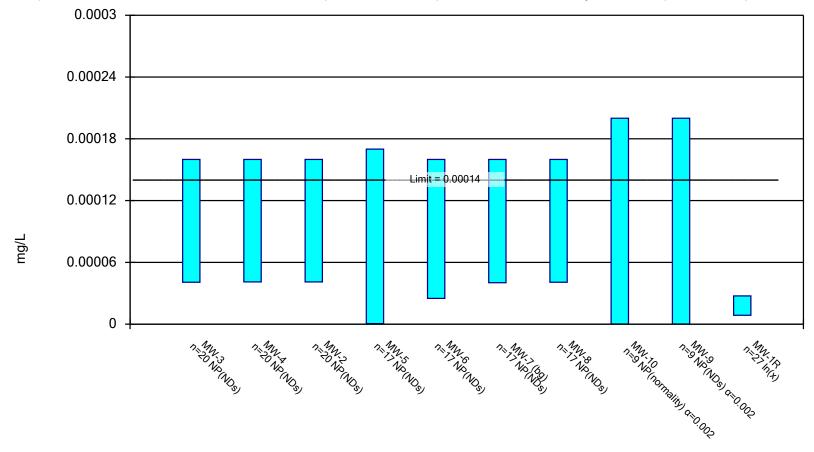

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Iron Analysis Run 9/24/2021 3:54 PM View: MI GWPS

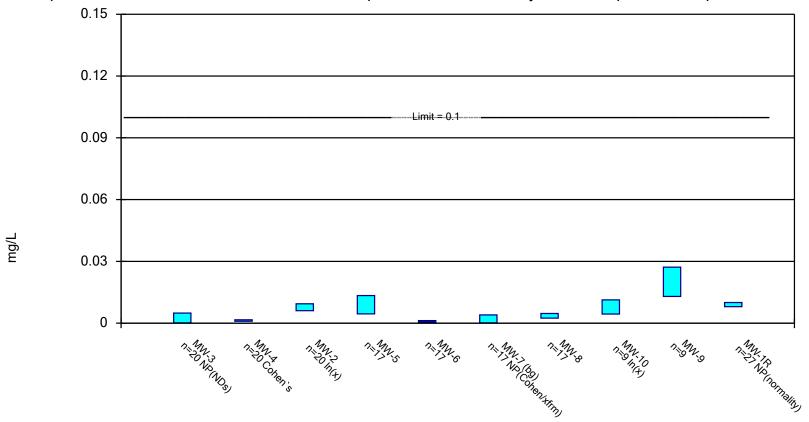
Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

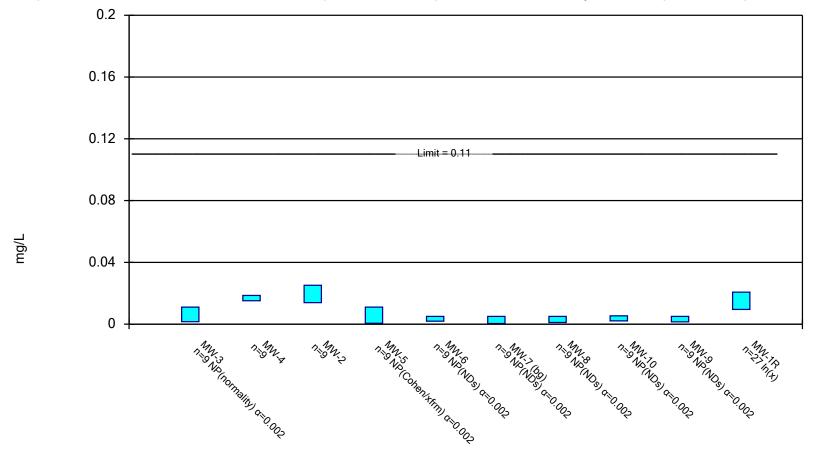
Constituent: Lead Analysis Run 9/24/2021 3:54 PM View: MI GWPS


Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

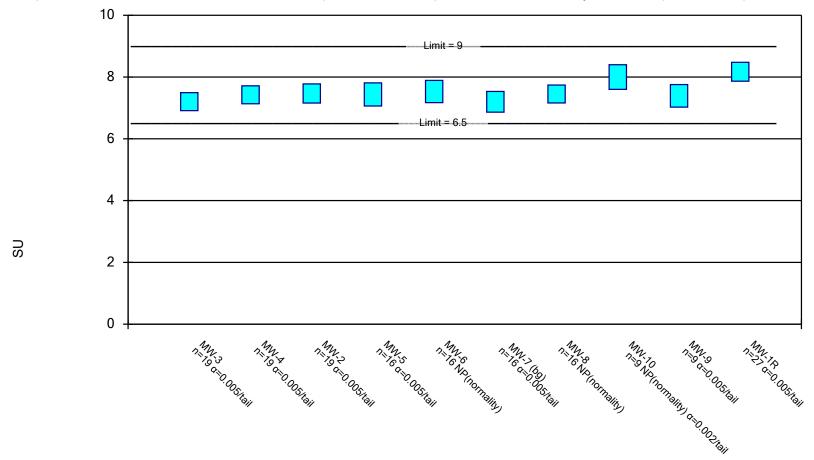
Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Lithium Analysis Run 9/24/2021 3:54 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

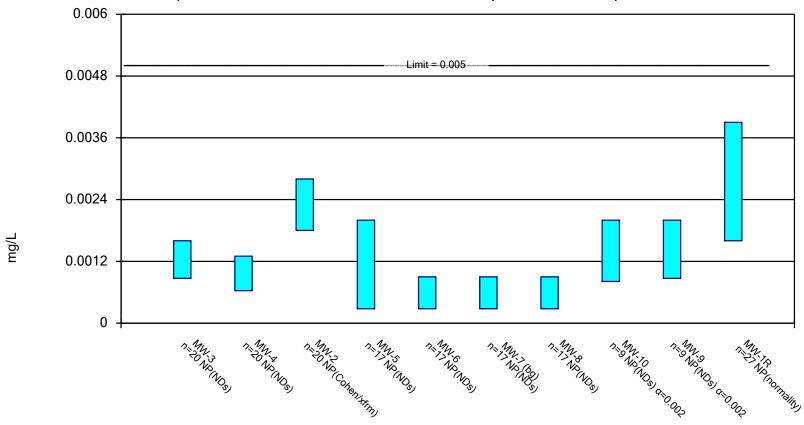

Constituent: Mercury Analysis Run 9/24/2021 3:54 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

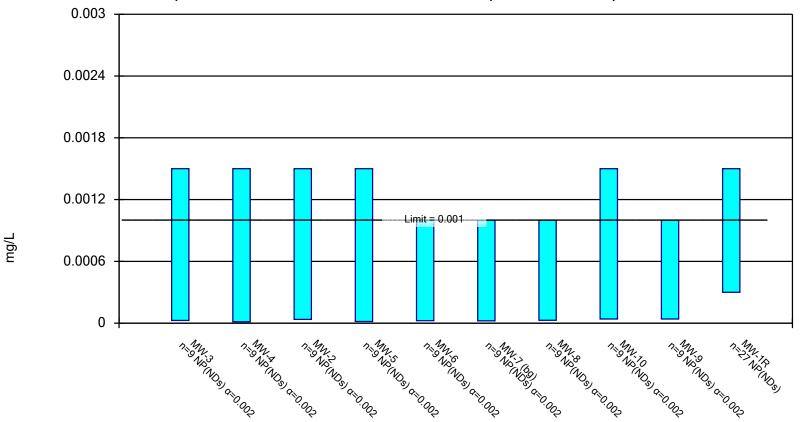

Constituent: Molybdenum Analysis Run 9/24/2021 3:54 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

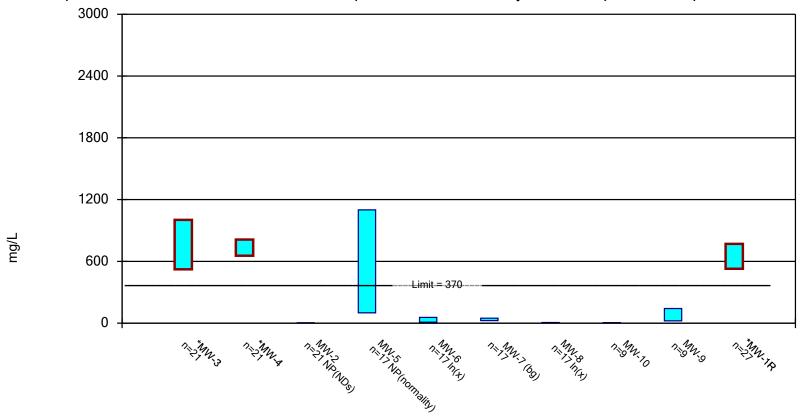
Constituent: Nickel Analysis Run 9/24/2021 3:54 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

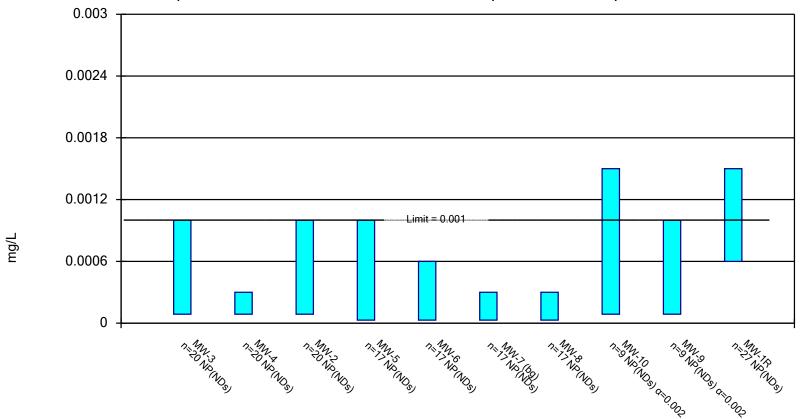
Constituent: pH Analysis Run 9/24/2021 3:54 PM View: MI GWPS


Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

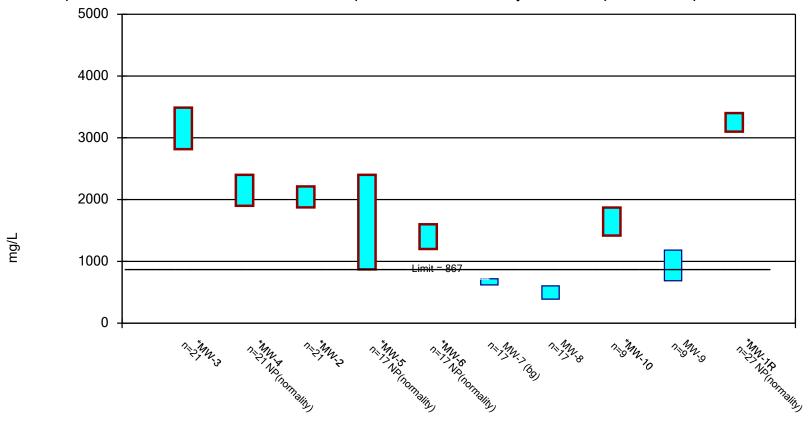
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.


Constituent: Selenium Analysis Run 9/24/2021 3:55 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

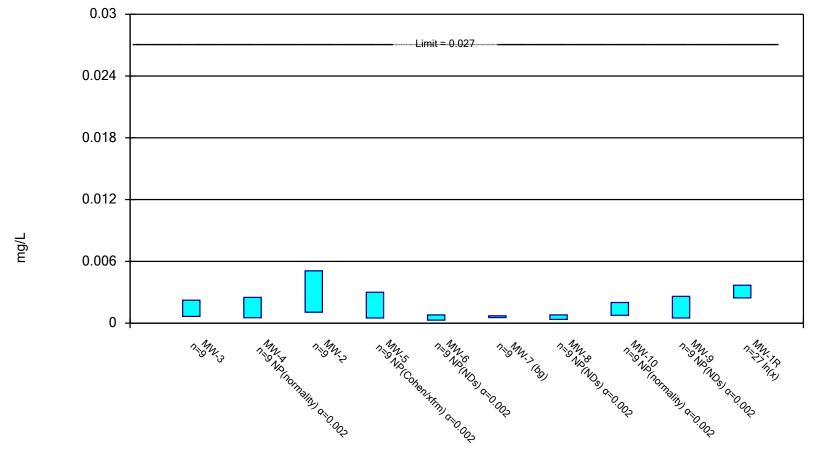
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.


Constituent: Silver Analysis Run 9/24/2021 3:55 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

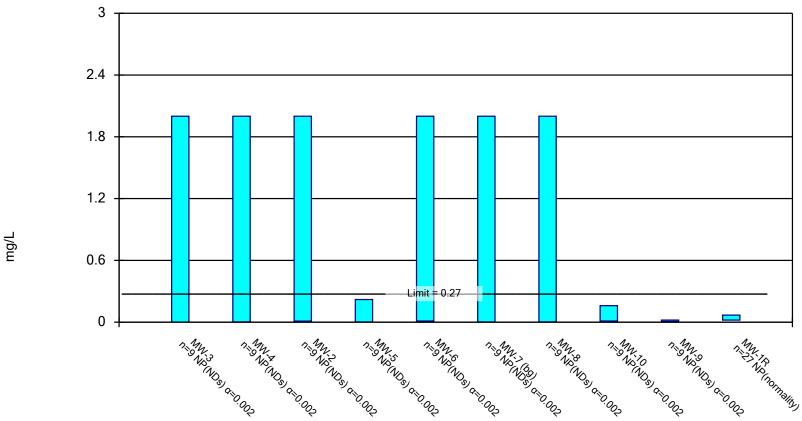
Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Sulfate Analysis Run 9/24/2021 3:55 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.


Constituent: Thallium Analysis Run 9/24/2021 3:55 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Total Dissolved Solids Analysis Run 9/24/2021 3:55 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Vanadium Analysis Run 9/24/2021 3:55 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

Constituent: Zinc Analysis Run 9/24/2021 3:55 PM View: MI GWPS

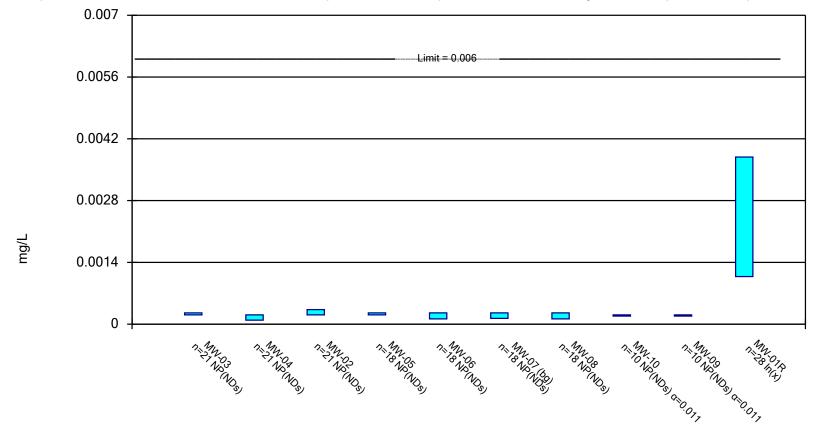
Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

	Grand Hav	en BLP Cli	ent: Golder As	sociates	es Data: DT-Grand Haven BLP Printed 9/24/2021, 3:55 PM							
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Complian	nceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	Transform	<u>Alpha</u>	<u>Method</u>
Antimony (mg/L)	MW-3	0.00057	0.00027	0.006	No	20	0.0005343	0.0004387	95	No	0.01	NP (NDs)
Antimony (mg/L)	MW-4	0.00057	0.00027	0.006	No	20	0.0004125	0.00029	95	No	0.01	NP (NDs)
Antimony (mg/L)	MW-2	0.0006	0.0003	0.006	No	20	0.0009585	0.001648	65	No	0.01	NP (NDs)
Antimony (mg/L)	MW-5	0.0015	0.00009	0.006	No	17	0.0003671	0.0004363	100	No	0.01	NP (NDs)
Antimony (mg/L)	MW-6	0.00033	0.0001	0.006	No	17	0.0002341	0.00009961	76.47	No	0.01	NP (NDs)
Antimony (mg/L)	MW-7 (bg)	0.0016	0.00009	0.006	No	17	0.0003109	0.000345	88.24	No	0.01	NP (NDs)
Antimony (mg/L)	MW-8	0.0003	0.00009	0.006	No	17	0.0002282	0.00009467	88.24	No	0.01	NP (NDs)
Antimony (mg/L)	MW-10	0.0039	0.00018	0.006	No	9	0.0009756	0.001205	77.78	No	0.002	NP (NDs)
Antimony (mg/L)	MW-9	0.0006	0.0003	0.006	No	9	0.0003333	0.0001	100	No	0.002	NP (NDs)
Antimony (mg/L)	MW-1R	0.004413	0.001604	0.006	No	27	0.004601	0.005491	11.11	In(x)	0.01	Param.
Arsenic (mg/L)	MW-3	0.00215	0.00163	0.01	No	20	0.00189	0.0004573	10	No	0.01	Param.
Arsenic (mg/L)	MW-4	0.0016	0.00125	0.01	No	20	0.001427	0.0002807	5	No	0.01	NP (normality)
Arsenic (mg/L)	MW-2	0.009748	0.006697	0.01	No	20	0.008222	0.002686	5	No	0.01	Param.
Arsenic (mg/L)	MW-5	0.1661	0.06559	0.01	Yes	17	0.1159	0.08023	0	No	0.01	Param.
Arsenic (mg/L)	MW-6	0.001468	0.0009253	0.01	No	17	0.001196	0.0004328	5.882	No	0.01	Param.
Arsenic (mg/L)	MW-7 (bg)	0.0019	0.00025	0.01	No	16	0.001039	0.001211	43.75	No	0.01	NP (Cohens/xfrm)
Arsenic (mg/L)	MW-8	0.005568	0.003634	0.01	No	17	0.004771	0.001842	0	In(x)	0.01	Param.
Arsenic (mg/L)	MW-10	0.001326	0.000814	0.01	No	9	0.00107	0.0002652	0	No	0.01	Param.
Arsenic (mg/L)	MW-9	0.003686	0.002203	0.01	No	9	0.002944	0.0007683	0	No	0.01	Param.
Arsenic (mg/L)	MW-1R	0.0083	0.0067	0.01	No	27	0.007043	0.002096	3.704	No	0.01	NP (normality)
Barium (mg/L)	MW-3	0.4376	0.3204	1.2	No	20	0.379	0.1032	0	No	0.01	Param.
Barium (mg/L)	MW-4	0.1529	0.1188	1.2	No	20	0.1359	0.03003	0	No	0.01	Param.
Barium (mg/L)	MW-2	0.4815	0.4405	1.2	No	20	0.461	0.03611	0	No	0.01	Param.
Barium (mg/L)	MW-5	0.2358	0.09283	1.2	No	17	0.1904	0.1346	0	ln(x)	0.01	Param.
Barium (mg/L)	MW-6	1.4	0.89	1.2	No	17	1.069	0.3688	0	No	0.01	NP (normality)
Barium (mg/L)	MW-7 (bg)	0.4029	0.3242	1.2	No	17	0.3635	0.06284	0	No	0.01	Param.
Barium (mg/L)	MW-8	0.7812	0.5612	1.2	No	17	0.6712	0.1756	0	No	0.01	Param.
Barium (mg/L)	MW-10	1.33	1.159	1.2	No	9	1.244	0.08819	0	No	0.01	Param.
Barium (mg/L)	MW-9	2.572	0.8662	1.2	No	9	1.758	1.256	0	ln(x)	0.01	Param.
Barium (mg/L)	MW-1R	0.6077	0.4082	1.2	No	27	0.508	0.2092	0	No	0.01	Param.
Beryllium (mg/L)	MW-3	0.001	0.00031	0.004	No	20	0.000767	0.000537	100	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-4	0.001	0.00031	0.004	No	20	0.000767	0.000537	100	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-2	0.0015	0.0004	0.004	No	20	0.001071	0.0008832	85	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-5	0.002	0.00006	0.004	No	17	0.0008412	0.0006118	100	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-6	0.002	0.00006	0.004	No	17	0.0008135	0.0006148	100	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-7 (bg)	0.002	0.00006	0.004	No	17	0.0008135	0.0006148	100	No	0.01	NP (NDs)

	Grand Haven BLP Client: Golder Associates				Data:	DT-Gra	and Haven BL	Printed 9/24/2021, 3:55 PM				
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliand	eSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	Transform	<u>Alpha</u>	Method
Beryllium (mg/L)	MW-8	0.002	0.00006	0.004	No	17	0.0007876	0.0006364	94.12	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-10	0.002	0.0009	0.004	No	9	0.001211	0.0004485	100	No	0.002	NP (NDs)
Beryllium (mg/L)	MW-9	0.002	0.001	0.004	No	9	0.001222	0.000441	100	No	0.002	NP (NDs)
Beryllium (mg/L)	MW-1R	0.002	0.001	0.004	No	27	0.001037	0.0001925	100	No	0.01	NP (NDs)
Boron (ug/L)	MW-3	5616	4594	16000	No	20	5105	900	0	No	0.01	Param.
Boron (ug/L)	MW-4	3900	3300	16000	No	20	3725	589.3	0	No	0.01	NP (normality)
Boron (ug/L)	MW-2	139778	98764	16000	Yes	20	123100	42303	0	In(x)	0.01	Param.
Boron (ug/L)	MW-5	4600	2600	16000	No	17	3959	2712	0	No	0.01	NP (normality)
Boron (ug/L)	MW-6	14000	9200	16000	No	17	10954	3617	0	No	0.01	NP (normality)
Boron (ug/L)	MW-7 (bg)	15000	11000	16000	No	17	12859	3432	0	No	0.01	NP (normality)
Boron (ug/L)	MW-8	3000	1100	16000	No	17	2239	1690	0	No	0.01	NP (normality)
Boron (ug/L)	MW-10	48802	38309	16000	Yes	9	43556	5434	0	No	0.01	Param.
Boron (ug/L)	MW-9	6257	4543	16000	No	9	5400	887.4	0	No	0.01	Param.
Boron (ug/L)	MW-1R	190000	140000	16000	Yes	27	165926	38855	0	No	0.01	NP (normality)
Cadmium (mg/L)	MW-3	0.001	0.00004	0.0025	No	20	0.0007233	0.001022	95	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-4	0.0006	0.00004	0.0025	No	20	0.0004786	0.0006639	90	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-2	0.001	0.00021	0.0025	No	20	0.0007345	0.0008001	65	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-5	0.001	0.000018	0.0025	No	17	0.0004516	0.0007492	82.35	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-6	0.0006	0.0000285	0.0025	No	17	0.0003219	0.0003593	64.71	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-7 (bg)	0.0006	0.000017	0.0025	No	17	0.000312	0.0003671	94.12	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-8	0.0006	0.0000285	0.0025	No	17	0.0003159	0.0003641	88.24	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-10	0.003	0.00003	0.0025	No	9	0.0009633	0.0008419	77.78	No	0.002	NP (NDs)
Cadmium (mg/L)	MW-9	0.0012	0.00004	0.0025	No	9	0.0006933	0.0003382	100	No	0.002	NP (NDs)
Cadmium (mg/L)	MW-1R	0.0043	0.0013	0.0025	No	27	0.004426	0.005009	29.63	No	0.01	NP (Cohens/xfrm)
Calcium (ug/L)	MW-3	620000	540000	200000	Yes	21	594286	85180	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-4	466175	425253	200000	Yes	21	445714	37091	0	No	0.01	Param.
Calcium (ug/L)	MW-2	210000	180000	200000	No	21	203810	34710	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-5	610000	240000	200000	Yes	17	450588	165434	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-6	260000	190000	200000	No	17	215959	61569	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-7 (bg)	150000	130000	200000	No	17	145882	15435	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-8	140589	122352	200000	No	17	131471	14552	0	No	0.01	Param.
Calcium (ug/L)	MW-10	160000	130000	200000	No	9	141111	12693	0	No	0.002	NP (normality)
Calcium (ug/L)	MW-9	280000	230000	200000	Yes	9	245556	15092	0	No	0.002	NP (normality)
Calcium (ug/L)	MW-1R	258284	167296	200000	No	27	230778	116435	0	In(x)	0.01	Param.
Chloride (mg/L)	MW-3	459.6	362.1	150	Yes	21	417.6	98.13	0	In(x)	0.01	Param.
Chloride (mg/L)	MW-4	318.1	246.7	150	Yes	21	282.4	64.72	0	No	0.01	Param.

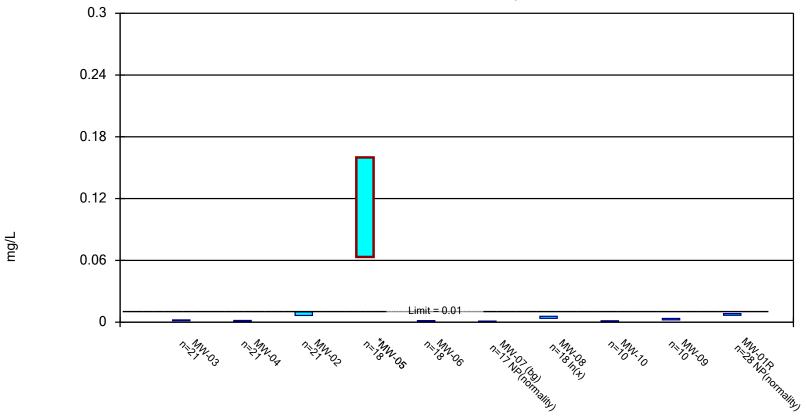
	Grand Have	Haven BLP Client: Golder Associates		Data:	DT-Gra	and Haven BL	P Printed 9	/24/2021	3:55 PM			
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Complian	ceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Chloride (mg/L)	MW-2	149.7	140.7	150	No	21	145.2	8.136	0	No	0.01	Param.
Chloride (mg/L)	MW-5	22.53	15.25	150	No	17	18.89	5.807	0	No	0.01	Param.
Chloride (mg/L)	MW-6	300	150	150	No	17	228.8	68	0	No	0.01	NP (normality)
Chloride (mg/L)	MW-7 (bg)	15	13	150	No	17	14.12	0.8575	0	No	0.01	NP (normality)
Chloride (mg/L)	MW-8	45.51	18.33	150	No	17	37.32	29.6	0	In(x)	0.01	Param.
Chloride (mg/L)	MW-10	616.4	396.9	150	Yes	9	506.7	113.7	0	No	0.01	Param.
Chloride (mg/L)	MW-9	18	9.5	150	No	9	12.06	2.43	0	No	0.002	NP (normality)
Chloride (mg/L)	MW-1R	265	252.1	150	Yes	27	258.5	13.5	0	No	0.01	Param.
Chromium (mg/L)	MW-3	0.00246	0.001476	0.1	No	20	0.002108	0.00103	0	In(x)	0.01	Param.
Chromium (mg/L)	MW-4	0.002255	0.001773	0.1	No	20	0.002045	0.0004763	5	In(x)	0.01	Param.
Chromium (mg/L)	MW-2	0.05306	0.0322	0.1	No	20	0.04263	0.01837	0	No	0.01	Param.
Chromium (mg/L)	MW-5	8000.0	0.00063	0.1	No	17	0.0008512	0.000706	82.35	No	0.01	NP (NDs)
Chromium (mg/L)	MW-6	0.0017	0.00099	0.1	No	17	0.001698	0.000992	0	No	0.01	NP (normality)
Chromium (mg/L)	MW-7 (bg)	0.0009	0.00045	0.1	No	17	0.0007782	0.0005517	70.59	No	0.01	NP (NDs)
Chromium (mg/L)	MW-8	0.0008547	0.0005643	0.1	No	17	0.0007476	0.0001942	29.41	No	0.01	Param.
Chromium (mg/L)	MW-10	0.01121	0.006942	0.1	No	9	0.009078	0.002212	0	No	0.01	Param.
Chromium (mg/L)	MW-9	0.002625	0.001909	0.1	No	9	0.002267	0.0003708	0	No	0.01	Param.
Chromium (mg/L)	MW-1R	0.006562	0.003618	0.1	No	27	0.005915	0.004065	3.704	In(x)	0.01	Param.
Cobalt (mg/L)	MW-3	0.00098	0.00067	0.006	No	20	0.0009355	0.0004471	25	No	0.01	NP (Cohens/xfrm)
Cobalt (mg/L)	MW-4	0.00069	0.00033	0.006	No	20	0.000629	0.0005331	40	No	0.01	NP (Cohens/xfrm)
Cobalt (mg/L)	MW-2	0.00781	0.00544	0.006	No	20	0.006625	0.002088	0	No	0.01	Param.
Cobalt (mg/L)	MW-5	0.00366	0.001215	0.006	No	17	0.002438	0.001951	35.29	No	0.01	Param.
Cobalt (mg/L)	MW-6	0.00099	0.00036	0.006	No	17	0.0007082	0.000384	52.94	No	0.01	NP (NDs)
Cobalt (mg/L)	MW-7 (bg)	0.0008489	0.0007358	0.006	No	17	0.0007818	0.00007844	17.65	No	0.01	Param.
Cobalt (mg/L)	MW-8	0.0018	0.00035	0.006	No	17	0.0008388	0.0006451	47.06	No	0.01	NP (normality)
Cobalt (mg/L)	MW-10	0.0026	0.00062	0.006	No	9	0.001019	0.0006187	0	No	0.002	NP (normality)
Cobalt (mg/L)	MW-9	0.0025	0.0005	0.006	No	9	0.001157	0.0007644	22.22	No	0.002	NP (Cohens/xfrm)
Cobalt (mg/L)	MW-1R	0.01678	0.006071	0.006	Yes	27	0.01788	0.02231	0	In(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-3	1.758	0.8179	5	No	20	1.288	0.8274	25	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-4	1.111	0.6785	5	No	20	0.8946	0.3805	40	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-2	1.997	0.7936	5	No	20	1.611	0.8076	30	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-5	1.1	0.75	5	No	17	0.9971	0.3696	52.94	No	0.01	NP (NDs)
Combined Radium 226 + 228 (pCi/L)	MW-6	2.22	0.931	5	No	17	1.457	0.763	35.29	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-7 (bg)	1.73	0.762	5	No	17	1.24	0.44	52.94	No	0.01	NP (NDs)
Combined Radium 226 + 228 (pCi/L)	MW-8	2.31	0.952	5	No	17	1.747	1.068	35.29	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-10	2.21	0.7786	5	No	8	1.593	0.5406	25	No	0.01	Param.

	Grand Have	en BLP Clie	ent: Golder As	sociates	Data:	DT-Gr	and Haven BL	Printed 9	/24/2021	, 3:55 PM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Complian	ceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Combined Radium 226 + 228 (pCi/L)	MW-9	1.698	1.216	5	No	9	1.457	0.2497	11.11	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-1R	2.25	0.73	5	No	6	1.092	0.5792	50	No	0.0155	NP (normality)
Copper (mg/L)	MW-3	0.022	0.00045	0.02	No	9	0.005214	0.006517	77.78	No	0.002	NP (NDs)
Copper (mg/L)	MW-4	0.022	0.00085	0.02	No	9	0.005361	0.006411	66.67	No	0.002	NP (NDs)
Copper (mg/L)	MW-2	0.022	0.0012	0.02	No	9	0.005578	0.006285	77.78	No	0.002	NP (NDs)
Copper (mg/L)	MW-5	0.022	0.00028	0.02	No	9	0.005409	0.006401	77.78	No	0.002	NP (NDs)
Copper (mg/L)	MW-6	0.0051	0.0012	0.02	No	9	0.003711	0.001359	66.67	No	0.002	NP (NDs)
Copper (mg/L)	MW-7 (bg)	0.005	0.00046	0.02	No	9	0.003228	0.001768	77.78	No	0.002	NP (NDs)
Copper (mg/L)	MW-8	0.005	0.00084	0.02	No	9	0.003309	0.00163	77.78	No	0.002	NP (NDs)
Copper (mg/L)	MW-10	0.0086	0.00087	0.02	No	9	0.004141	0.002177	88.89	No	0.002	NP (NDs)
Copper (mg/L)	MW-9	0.0086	0.0013	0.02	No	9	0.004211	0.002069	88.89	No	0.002	NP (NDs)
Copper (mg/L)	MW-1R	0.0099	0.0043	0.02	No	27	0.009422	0.008071	62.96	No	0.01	NP (NDs)
Fluoride (mg/L)	MW-3	1.538	1.026	2.67	No	20	1.282	0.4502	0	No	0.01	Param.
Fluoride (mg/L)	MW-4	1.291	1.123	2.67	No	20	1.207	0.1484	0	No	0.01	Param.
Fluoride (mg/L)	MW-2	12.86	10.34	2.67	Yes	20	11.6	2.212	0	No	0.01	Param.
Fluoride (mg/L)	MW-5	3.419	2.322	2.67	No	17	2.871	0.8752	0	No	0.01	Param.
Fluoride (mg/L)	MW-6	1.699	1.442	2.67	No	17	1.571	0.2054	0	No	0.01	Param.
Fluoride (mg/L)	MW-7 (bg)	0.1376	0.0854	2.67	No	17	0.1052	0.04908	17.65	No	0.01	Param.
Fluoride (mg/L)	MW-8	0.4869	0.326	2.67	No	17	0.4065	0.1284	0	No	0.01	Param.
Fluoride (mg/L)	MW-10	11.64	9.65	2.67	Yes	9	10.64	1.03	0	No	0.01	Param.
Fluoride (mg/L)	MW-9	2.578	2.289	2.67	No	9	2.433	0.15	0	No	0.01	Param.
Fluoride (mg/L)	MW-1R	26	20	2.67	Yes	27	21.12	7.502	3.704	No	0.01	NP (normality)
Iron (mg/L)	MW-3	20.17	2.652	22.63	No	9	11.41	9.074	0	No	0.01	Param.
Iron (mg/L)	MW-4	8.884	6.605	22.63	No	9	7.744	1.18	0	No	0.01	Param.
Iron (mg/L)	MW-2	24	6.7	22.63	No	9	19.52	5.097	0	No	0.002	NP (normality)
Iron (mg/L)	MW-5	38.04	12.96	22.63	No	9	25.5	12.99	0	No	0.01	Param.
Iron (mg/L)	MW-6	18.41	10.3	22.63	No	9	14.36	4.2	0	No	0.01	Param.
Iron (mg/L)	MW-7 (bg)	20.08	15.47	22.63	No	9	17.78	2.386	0	No	0.01	Param.
Iron (mg/L)	MW-8	27.74	19.15	22.63	No	9	23.44	4.447	0	No	0.01	Param.
Iron (mg/L)	MW-10	12.11	8.913	22.63	No	9	10.51	1.656	0	No	0.01	Param.
Iron (mg/L)	MW-9	23.24	15.88	22.63	No	9	19.56	3.812	0	No	0.01	Param.
Iron (mg/L)	MW-1R	4.117	2.646	22.63	No	27	3.381	1.542	0	No	0.01	Param.
Lead (mg/L)	MW-3	0.002	0.00026	0.014	No	20	0.00086	0.0008758	65	No	0.01	NP (NDs)
Lead (mg/L)	MW-4	0.00051	0.0003	0.014	No	20	0.0006555	0.000666	65	No	0.01	NP (NDs)
Lead (mg/L)	MW-2	0.004833	0.001999	0.014	No	20	0.003416	0.002496	15	No	0.01	Param.
Lead (mg/L)	MW-5	0.0025	0.00022	0.014	No	17	0.002764	0.006636	52.94	No	0.01	NP (NDs)

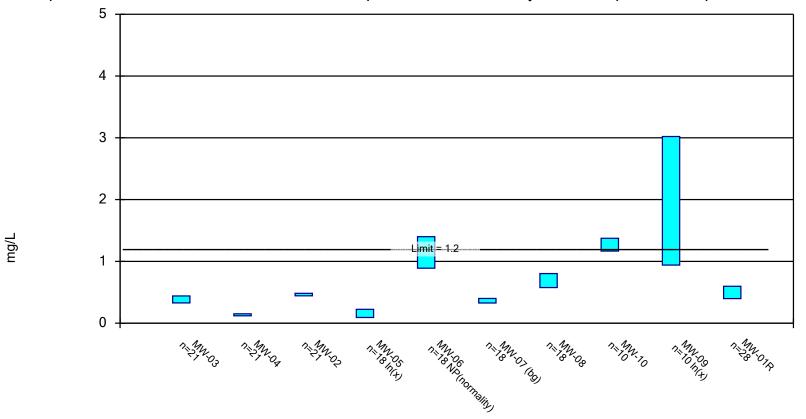

	Grand Have	en BLP Clie	nt: Golder Ass	ociates [Data:	DT-Gra	and Haven BLI	P Printed 9/	24/2021,	3:55 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Complianc	eSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Lead (mg/L)	MW-6	0.002353	0.001085	0.014	No	17	0.001719	0.001012	23.53	No	0.01	Param.
Lead (mg/L)	MW-7 (bg)	0.00062	0.000057	0.014	No	17	0.0006559	0.0008299	70.59	No	0.01	NP (NDs)
Lead (mg/L)	MW-8	0.002	0.00046	0.014	No	17	0.0009982	0.0009784	47.06	No	0.01	NP (Cohens/xfrm)
Lead (mg/L)	MW-10	0.045	0.00078	0.014	No	9	0.00762	0.01422	22.22	No	0.002	NP (Cohens/xfrm)
Lead (mg/L)	MW-9	0.002	0.0005	0.014	No	9	0.001159	0.0007213	66.67	No	0.002	NP (NDs)
Lead (mg/L)	MW-1R	0.0333	0.0116	0.014	No	27	0.03443	0.04125	0	In(x)	0.01	Param.
Lithium (mg/L)	MW-3	0.07521	0.04759	0.059	No	20	0.0614	0.02432	5	No	0.01	Param.
Lithium (mg/L)	MW-4	0.05866	0.04054	0.059	No	20	0.0496	0.01595	5	No	0.01	Param.
Lithium (mg/L)	MW-2	1.513	1.235	0.059	Yes	20	1.374	0.2442	0	No	0.01	Param.
Lithium (mg/L)	MW-5	0.1312	0.06832	0.059	Yes	17	0.09973	0.05014	11.76	No	0.01	Param.
Lithium (mg/L)	MW-6	0.23	0.17	0.059	Yes	17	0.1885	0.06274	5.882	No	0.01	NP (normality)
Lithium (mg/L)	MW-7 (bg)	0.0057	0.00335	0.059	No	17	0.007532	0.01343	41.18	No	0.01	NP (normality)
Lithium (mg/L)	MW-8	0.03681	0.02319	0.059	No	17	0.03	0.01087	5.882	No	0.01	Param.
Lithium (mg/L)	MW-10	1.493	0.9291	0.059	Yes	9	1.211	0.2921	0	No	0.01	Param.
Lithium (mg/L)	MW-9	0.28	0.16	0.059	Yes	9	0.2322	0.0441	0	No	0.002	NP (normality)
Lithium (mg/L)	MW-1R	3.146	2.403	0.059	Yes	27	2.774	0.7789	0	No	0.01	Param.
Mercury (mg/L)	MW-3	0.00016	0.0000407	0.00014	No	20	0.0001062	0.00006524	75	No	0.01	NP (NDs)
Mercury (mg/L)	MW-4	0.00016	0.000041	0.00014	No	20	0.0001121	0.00006453	95	No	0.01	NP (NDs)
Mercury (mg/L)	MW-2	0.00016	0.000041	0.00014	No	20	0.0001651	0.0002748	75	No	0.01	NP (NDs)
Mercury (mg/L)	MW-5	0.00017	5.0e-7	0.00014	No	17	0.00009511	0.00007763	94.12	No	0.01	NP (NDs)
Mercury (mg/L)	MW-6	0.00016	0.000025	0.00014	No	17	0.00008609	0.00007044	58.82	No	0.01	NP (NDs)
Mercury (mg/L)	MW-7 (bg)	0.00016	0.00004025	0.00014	No	17	0.00009324	0.00007355	76.47	No	0.01	NP (NDs)
Mercury (mg/L)	MW-8	0.00016	0.0000407	0.00014	No	17	0.00008054	0.00007174	64.71	No	0.01	NP (NDs)
Mercury (mg/L)	MW-10	0.0002	1.6e-7	0.00014	No	9	0.0000715	0.00008867	44.44	No	0.002	NP (normality)
Mercury (mg/L)	MW-9	0.0002	1.6e-7	0.00014	No	9	0.00008472	0.00009235	66.67	No	0.002	NP (NDs)
Mercury (mg/L)	MW-1R	0.00002739	0.000008605	0.00014	No	27	0.00003038	0.00003979	3.704	In(x)	0.01	Param.
Molybdenum (mg/L)	MW-3	0.0049	0.00013	0.1	No	20	0.00236	0.003065	55	No	0.01	NP (NDs)
Molybdenum (mg/L)	MW-4	0.001631	0.000918	0.1	No	20	0.001303	0.000611	20	No	0.01	Param.
Molybdenum (mg/L)	MW-2	0.009397	0.006034	0.1	No	20	0.00813	0.003492	10	In(x)	0.01	Param.
Molybdenum (mg/L)	MW-5	0.0134	0.0045	0.1	No	17	0.008948	0.007099	11.76	No	0.01	Param.
Molybdenum (mg/L)	MW-6	0.00122	0.0005935	0.1	No	17	0.0009066	0.0004998	23.53	No	0.01	Param.
Molybdenum (mg/L)	MW-7 (bg)	0.004	0.00016	0.1	No	17	0.001808	0.002062	23.53	No	0.01	NP (Cohens/xfrm)
Molybdenum (mg/L)	MW-8	0.00469	0.002449	0.1	No	17	0.00357	0.001788	11.76	No	0.01	Param.
Molybdenum (mg/L)	MW-10	0.01128	0.004424	0.1	No	9	0.007889	0.004216	0	ln(x)	0.01	Param.
Molybdenum (mg/L)	MW-9	0.02717	0.01298	0.1	No	9	0.02008	0.00735	0	No	0.01	Param.
Molybdenum (mg/L)	MW-1R	0.01	0.008	0.1	No	27	0.00877	0.003017	0	No	0.01	NP (normality)

	Grand Haven BLP Client: Golder Associate		sociates	ates Data: DT-Grand Haven BLP Printed 9/24/2021, 3:56 PM								
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Complian	ceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Nickel (mg/L)	MW-3	0.011	0.0016	0.11	No	9	0.003811	0.003133	22.22	No	0.002	NP (normality)
Nickel (mg/L)	MW-4	0.01859	0.01519	0.11	No	9	0.01689	0.001764	0	No	0.01	Param.
Nickel (mg/L)	MW-2	0.02517	0.01394	0.11	No	9	0.01956	0.005812	0	No	0.01	Param.
Nickel (mg/L)	MW-5	0.011	0.00054	0.11	No	9	0.004004	0.003135	44.44	No	0.002	NP (Cohens/xfrm)
Nickel (mg/L)	MW-6	0.005	0.0019	0.11	No	9	0.002811	0.001247	77.78	No	0.002	NP (NDs)
Nickel (mg/L)	MW-7 (bg)	0.005	0.0004	0.11	No	9	0.002424	0.001644	77.78	No	0.002	NP (NDs)
Nickel (mg/L)	MW-8	0.005	0.0011	0.11	No	9	0.0026	0.001426	77.78	No	0.002	NP (NDs)
Nickel (mg/L)	MW-10	0.0054	0.0021	0.11	No	9	0.003111	0.001236	55.56	No	0.002	NP (NDs)
Nickel (mg/L)	MW-9	0.005	0.0015	0.11	No	9	0.003044	0.001147	55.56	No	0.002	NP (NDs)
Nickel (mg/L)	MW-1R	0.0207	0.009504	0.11	No	27	0.01997	0.01964	0	In(x)	0.01	Param.
pH (SU)	MW-3	7.494	6.911	9	No	19	7.203	0.4413	0	No	0.005	Param.
pH (SU)	MW-4	7.715	7.136	9	No	19	7.425	0.4387	0	No	0.005	Param.
pH (SU)	MW-2	7.777	7.159	9	No	19	7.468	0.4675	0	No	0.005	Param.
pH (SU)	MW-5	7.811	7.061	9	No	16	7.436	0.5089	0	No	0.005	Param.
pH (SU)	MW-6	7.89	7.17	9	No	16	7.504	0.3899	0	No	0.01	NP (normality)
pH (SU)	MW-7 (bg)	7.533	6.863	9	No	16	7.198	0.455	0	No	0.005	Param.
pH (SU)	MW-8	7.74	7.16	9	No	16	7.531	0.4353	0	No	0.01	NP (normality)
pH (SU)	MW-10	8.4	7.6	9	No	9	7.811	0.2479	0	No	0.002	NP (normality)
pH (SU)	MW-9	7.757	7.025	9	No	9	7.391	0.327	0	No	0.005	Param.
pH (SU)	MW-1R	8.477	7.865	9	No	27	8.171	0.5723	0	No	0.005	Param.
Selenium (mg/L)	MW-3	0.0016	0.00087	0.005	No	20	0.001405	0.001162	65	No	0.01	NP (NDs)
Selenium (mg/L)	MW-4	0.0013	0.00063	0.005	No	20	0.001065	0.0009308	85	No	0.01	NP (NDs)
Selenium (mg/L)	MW-2	0.0028	0.0018	0.005	No	20	0.00322	0.003048	20	No	0.01	NP (Cohens/xfrm)
Selenium (mg/L)	MW-5	0.002	0.00028	0.005	No	17	0.0009459	0.001073	100	No	0.01	NP (NDs)
Selenium (mg/L)	MW-6	0.0009	0.00028	0.005	No	17	0.0007341	0.0005606	100	No	0.01	NP (NDs)
Selenium (mg/L)	MW-7 (bg)	0.0009	0.00028	0.005	No	17	0.0007341	0.0005606	100	No	0.01	NP (NDs)
Selenium (mg/L)	MW-8	0.0009	0.00028	0.005	No	17	0.0007341	0.0005606	100	No	0.01	NP (NDs)
Selenium (mg/L)	MW-10	0.002	0.00081	0.005	No	9	0.001231	0.0005306	100	No	0.002	NP (NDs)
Selenium (mg/L)	MW-9	0.002	0.00087	0.005	No	9	0.001241	0.0005225	100	No	0.002	NP (NDs)
Selenium (mg/L)	MW-1R	0.0039	0.0016	0.005	No	27	0.002459	0.001218	18.52	No	0.01	NP (normality)
Silver (mg/L)	MW-3	0.0015	0.000026	0.001	No	9	0.0007962	0.0006351	88.89	No	0.002	NP (NDs)
Silver (mg/L)	MW-4	0.0015	0.000014	0.001	No	9	0.0005254	0.0005155	77.78	No	0.002	NP (NDs)
Silver (mg/L)	MW-2	0.0015	0.000036	0.001	No	9	0.0005307	0.0005097	88.89	No	0.002	NP (NDs)
Silver (mg/L)	MW-5	0.0015	0.000016	0.001	No	9	0.0005284	0.0005122	88.89	No	0.002	NP (NDs)
Silver (mg/L)	MW-6	0.001	0.000024	0.001	No	9	0.000396	0.0003607	88.89	No	0.002	NP (NDs)
Silver (mg/L)	MW-7 (bg)	0.001	0.000022	0.001	No	9	0.0003951	0.0003617	77.78	No	0.002	NP (NDs)

	Grand Haven BLP Client: Golder Associates					Data: DT-Grand Haven BLP Printed 9/24/2021, 3:56 PM								
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Complian	ceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	Transform	<u>Alpha</u>	Method		
Silver (mg/L)	MW-8	0.001	0.000028	0.001	No	9	0.0003964	0.0003602	88.89	No	0.002	NP (NDs)		
Silver (mg/L)	MW-10	0.0015	0.00004	0.001	No	9	0.00059	0.0004772	100	No	0.002	NP (NDs)		
Silver (mg/L)	MW-9	0.001	0.00004	0.001	No	9	0.00046	0.0003367	100	No	0.002	NP (NDs)		
Silver (mg/L)	MW-1R	0.0015	0.0003	0.001	No	27	0.0007704	0.000549	100	No	0.01	NP (NDs)		
Sulfate (mg/L)	MW-3	1003	522.6	370	Yes	21	762.6	435	0	No	0.01	Param.		
Sulfate (mg/L)	MW-4	811.9	654.8	370	Yes	21	733.3	142.4	0	No	0.01	Param.		
Sulfate (mg/L)	MW-2	3.3	1	370	No	21	2.741	3.362	52.38	No	0.01	NP (NDs)		
Sulfate (mg/L)	MW-5	1100	100	370	No	17	716.9	450.1	0	No	0.01	NP (normality)		
Sulfate (mg/L)	MW-6	56.1	8.866	370	No	17	48.05	51	5.882	In(x)	0.01	Param.		
Sulfate (mg/L)	MW-7 (bg)	48.09	24.97	370	No	17	36.53	18.45	0	No	0.01	Param.		
Sulfate (mg/L)	MW-8	6.105	1.898	370	No	17	5.275	6.276	5.882	In(x)	0.01	Param.		
Sulfate (mg/L)	MW-10	4.38	0.4568	370	No	9	2.418	2.032	33.33	No	0.01	Param.		
Sulfate (mg/L)	MW-9	142.1	22.03	370	No	9	82.07	62.18	0	No	0.01	Param.		
Sulfate (mg/L)	MW-1R	769.7	528.1	370	Yes	27	648.9	253.3	0	No	0.01	Param.		
Thallium (mg/L)	MW-3	0.001	0.000087	0.001	No	20	0.0004659	0.0005159	100	No	0.01	NP (NDs)		
Thallium (mg/L)	MW-4	0.0003	0.000087	0.001	No	20	0.0003459	0.0003759	100	No	0.01	NP (NDs)		
Thallium (mg/L)	MW-2	0.001	0.000087	0.001	No	20	0.0005259	0.0006269	100	No	0.01	NP (NDs)		
Thallium (mg/L)	MW-5	0.001	0.000029	0.001	No	17	0.0003812	0.0005209	100	No	0.01	NP (NDs)		
Thallium (mg/L)	MW-6	0.0006	0.000029	0.001	No	17	0.0002563	0.0003203	94.12	No	0.01	NP (NDs)		
Thallium (mg/L)	MW-7 (bg)	0.0003	0.000029	0.001	No	17	0.00024	0.0003075	100	No	0.01	NP (NDs)		
Thallium (mg/L)	MW-8	0.0003	0.000029	0.001	No	17	0.0002438	0.0003051	100	No	0.01	NP (NDs)		
Thallium (mg/L)	MW-10	0.0015	0.000087	0.001	No	9	0.0007208	0.000521	100	No	0.002	NP (NDs)		
Thallium (mg/L)	MW-9	0.001	0.000087	0.001	No	9	0.000493	0.0003522	88.89	No	0.002	NP (NDs)		
Thallium (mg/L)	MW-1R	0.0015	0.0006	0.001	No	27	0.001119	0.0006361	96.3	No	0.01	NP (NDs)		
Total Dissolved Solids (mg/L)	MW-3	3488	2817	867	Yes	21	3152	608.8	0	No	0.01	Param.		
Total Dissolved Solids (mg/L)	MW-4	2400	1900	867	Yes	21	2101	525.8	0	No	0.01	NP (normality)		
Total Dissolved Solids (mg/L)	MW-2	2213	1873	867	Yes	21	2043	307.5	0	No	0.01	Param.		
Total Dissolved Solids (mg/L)	MW-5	2400	870	867	Yes	17	1787	638	0	No	0.01	NP (normality)		
Total Dissolved Solids (mg/L)	MW-6	1600	1200	867	Yes	17	1400	206.2	0	No	0.01	NP (normality)		
Total Dissolved Solids (mg/L)	MW-7 (bg)	718.3	618.2	867	No	17	668.2	79.86	0	No	0.01	Param.		
Total Dissolved Solids (mg/L)	MW-8	603.5	388.3	867	No	17	495.9	171.7	0	No	0.01	Param.		
Total Dissolved Solids (mg/L)	MW-10	1871	1417	867	Yes	9	1644	235.1	0	No	0.01	Param.		
Total Dissolved Solids (mg/L)	MW-9	1183	686.3	867	No	9	934.4	257	0	No	0.01	Param.		
Total Dissolved Solids (mg/L)	MW-1R	3400	3100	867	Yes	27	3200	473.1	0	No	0.01	NP (normality)		
Vanadium (mg/L)	MW-3	0.002229	0.0006533	0.027	No	9	0.001441	0.000816	11.11	No	0.01	Param.		
Vanadium (mg/L)	MW-4	0.0025	0.00053	0.027	No	9	0.0009178	0.0006328	11.11	No	0.002	NP (normality)		

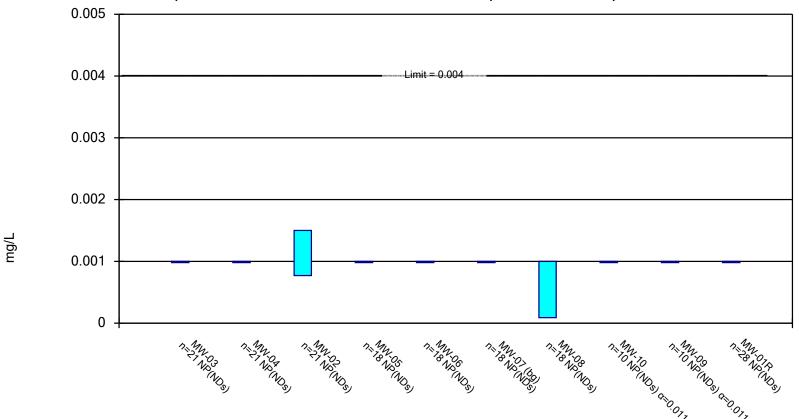

	Grand Haven BLP Client: Golder Associates			Data	DT-Gr	rand Haven Bl	, 3:56 PM					
Constituent	Well	Upper Lim.	Lower Lim.	Compliar	nceSig	<u>N</u>	Mean	Std. Dev.	<u>%NDs</u>	Transform	<u>Alpha</u>	<u>Method</u>
Vanadium (mg/L)	MW-2	0.005076	0.001064	0.027	No	9	0.00307	0.002078	11.11	No	0.01	Param.
Vanadium (mg/L)	MW-5	0.003	0.0005	0.027	No	9	0.001188	0.0009297	44.44	No	0.002	NP (Cohens/xfrm)
Vanadium (mg/L)	MW-6	0.0008	0.00029	0.027	No	9	0.00059	0.0001748	66.67	No	0.002	NP (NDs)
Vanadium (mg/L)	MW-7 (bg)	0.0007142	0.0005458	0.027	No	9	0.00063	0.00008718	0	No	0.01	Param.
Vanadium (mg/L)	MW-8	0.0008	0.00036	0.027	No	9	0.00055	0.0001488	77.78	No	0.002	NP (NDs)
Vanadium (mg/L)	MW-10	0.002	0.00076	0.027	No	9	0.001337	0.0005458	0	No	0.002	NP (normality)
Vanadium (mg/L)	MW-9	0.0026	0.0005	0.027	No	9	0.0009778	0.0007981	77.78	No	0.002	NP (NDs)
Vanadium (mg/L)	MW-1R	0.003681	0.002457	0.027	No	27	0.003307	0.001658	3.704	ln(x)	0.01	Param.
Zinc (mg/L)	MW-3	2	0.00081	0.27	No	9	0.2368	0.6612	88.89	No	0.002	NP (NDs)
Zinc (mg/L)	MW-4	2	0.003	0.27	No	9	0.237	0.6611	88.89	No	0.002	NP (NDs)
Zinc (mg/L)	MW-2	2	0.0099	0.27	No	9	0.2378	0.6608	88.89	No	0.002	NP (NDs)
Zinc (mg/L)	MW-5	0.22	0.0025	0.27	No	9	0.03917	0.06803	77.78	No	0.002	NP (NDs)
Zinc (mg/L)	MW-6	2	0.011	0.27	No	9	0.2379	0.6608	88.89	No	0.002	NP (NDs)
Zinc (mg/L)	MW-7 (bg)	2	0.0023	0.27	No	9	0.2373	0.6611	77.78	No	0.002	NP (NDs)
Zinc (mg/L)	MW-8	2	0.0026	0.27	No	9	0.237	0.6612	88.89	No	0.002	NP (NDs)
Zinc (mg/L)	MW-10	0.16	0.011	0.27	No	9	0.033	0.04769	77.78	No	0.002	NP (NDs)
Zinc (mg/L)	MW-9	0.02	0.0064	0.27	No	9	0.01716	0.004125	88.89	No	0.002	NP (NDs)
Zinc (mg/L)	MW-1R	0.068	0.02	0.27	No	27	0.07152	0.07787	25.93	No	0.01	NP (normality)

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

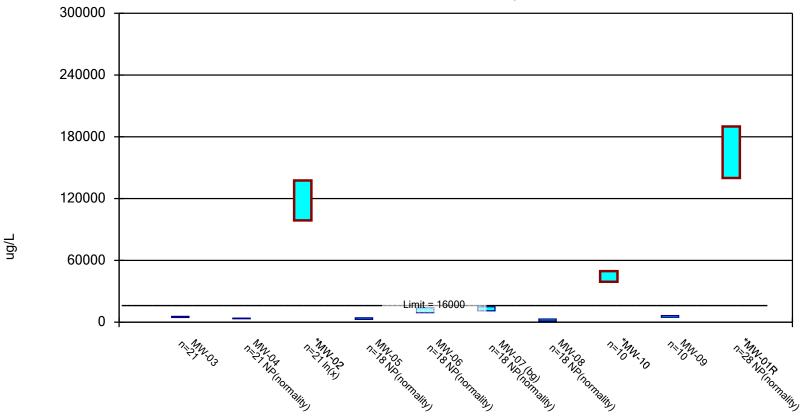

Constituent: Antimony Analysis Run 1/3/2022 1:23 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Arsenic Analysis Run 1/3/2022 1:23 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

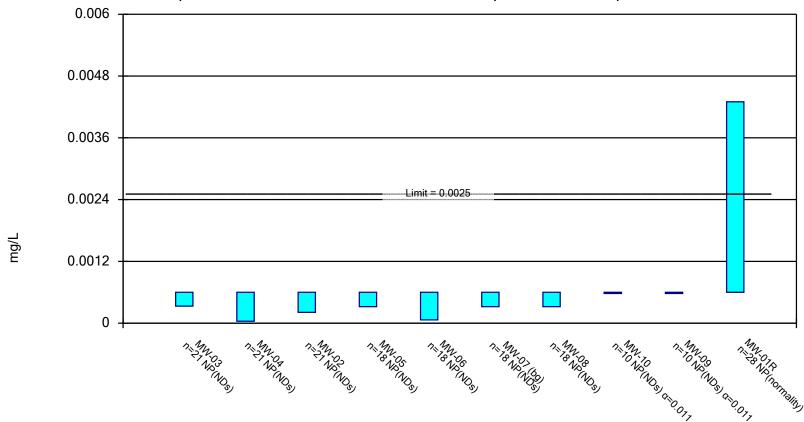

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Barium Analysis Run 1/3/2022 1:23 PM View: MI GWPS

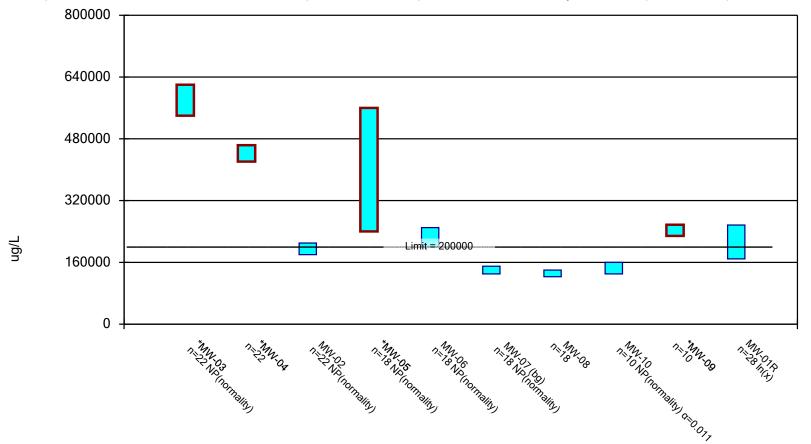

Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

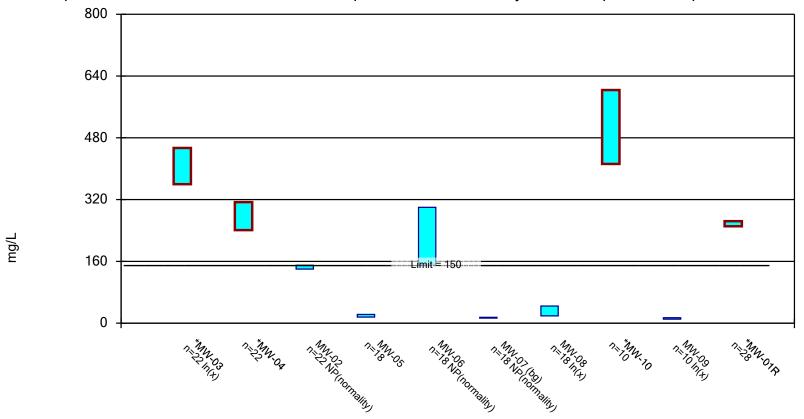
Constituent: Beryllium Analysis Run 1/3/2022 1:23 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

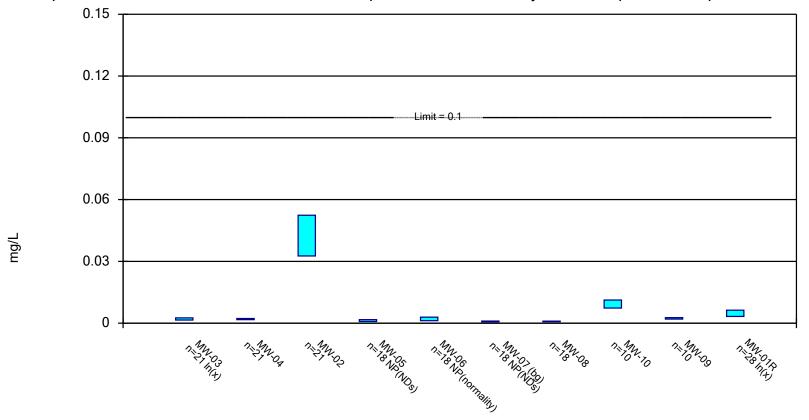
Constituent: Boron Analysis Run 1/3/2022 1:23 PM View: MI GWPS


Non-Parametric Confidence Interval

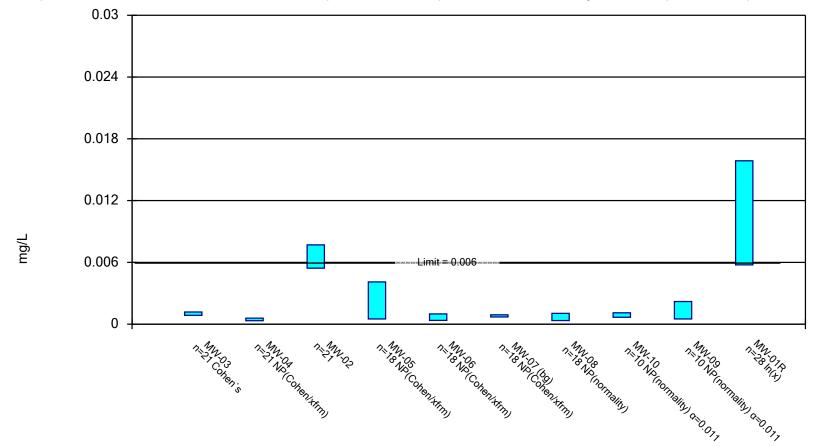
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.


Constituent: Cadmium Analysis Run 1/3/2022 1:23 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

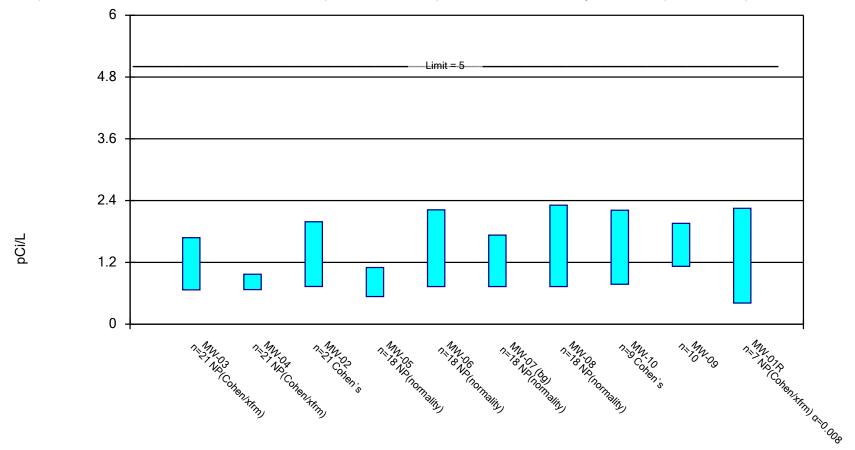
Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Calcium Analysis Run 1/3/2022 1:23 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

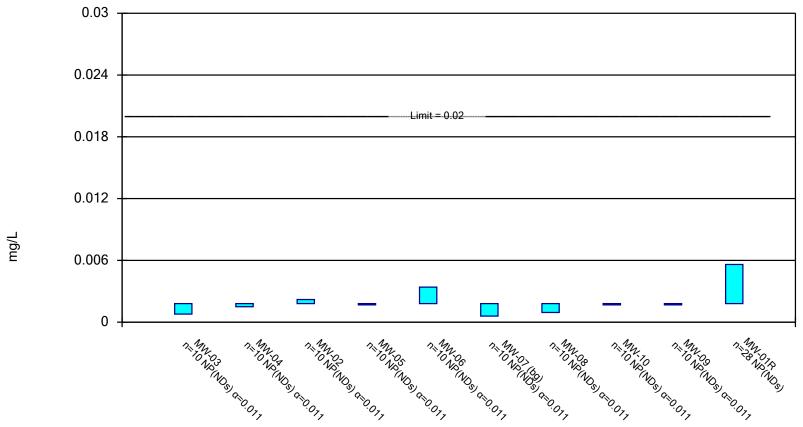

Constituent: Chloride Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

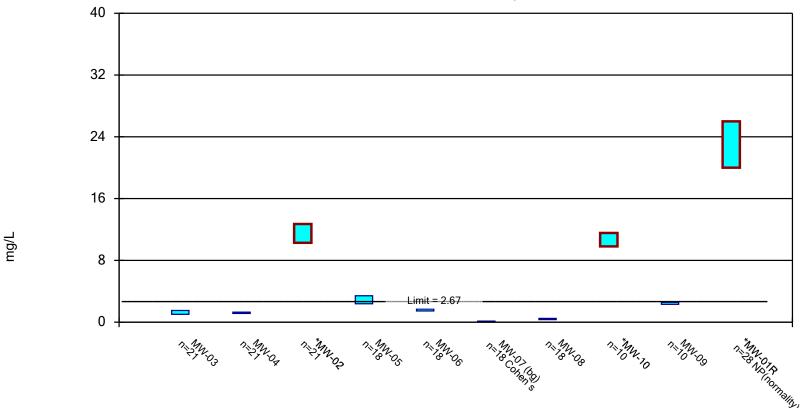

Constituent: Chromium Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

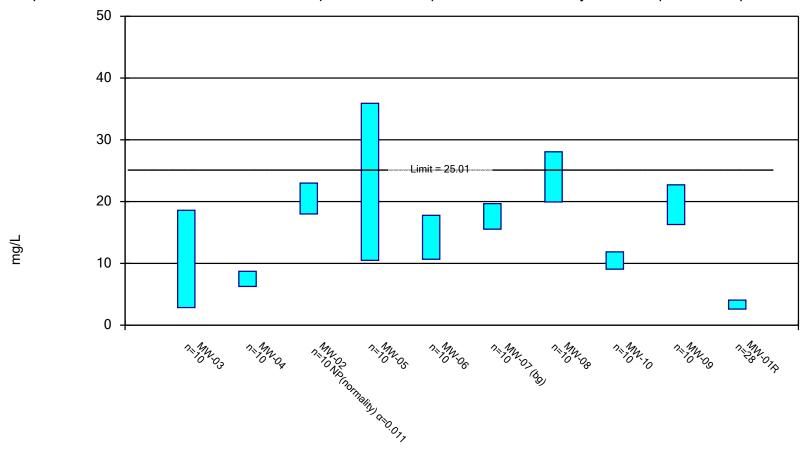
Constituent: Cobalt Analysis Run 1/3/2022 1:24 PM View: MI GWPS


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Combined Radium 226 + 228 Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Non-Parametric Confidence Interval

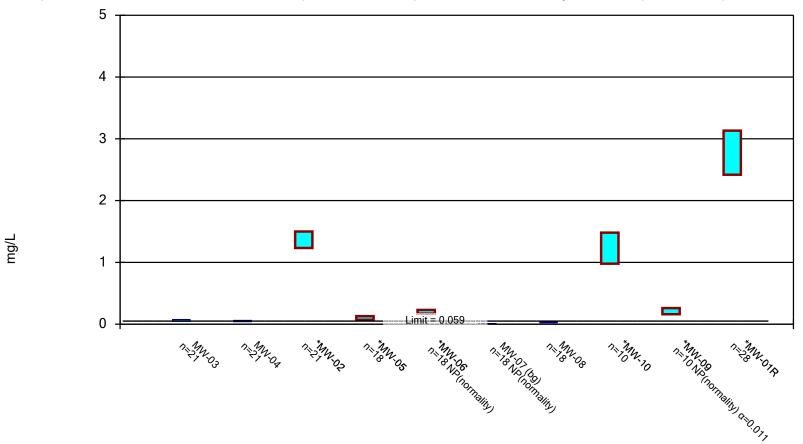
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.


Constituent: Copper Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

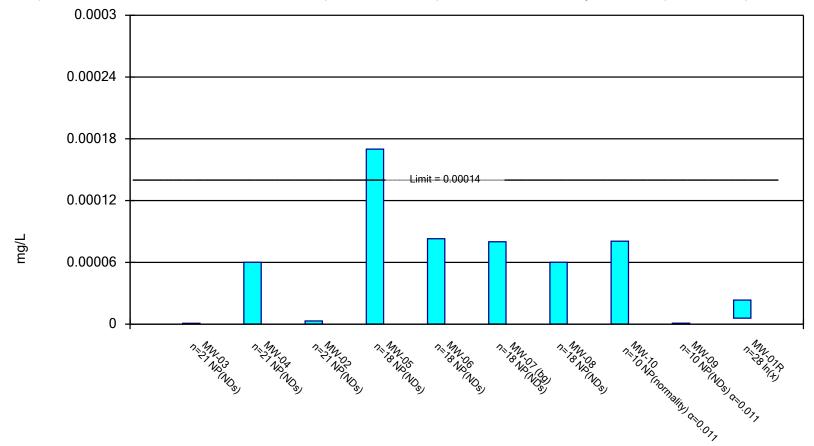
Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Fluoride Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

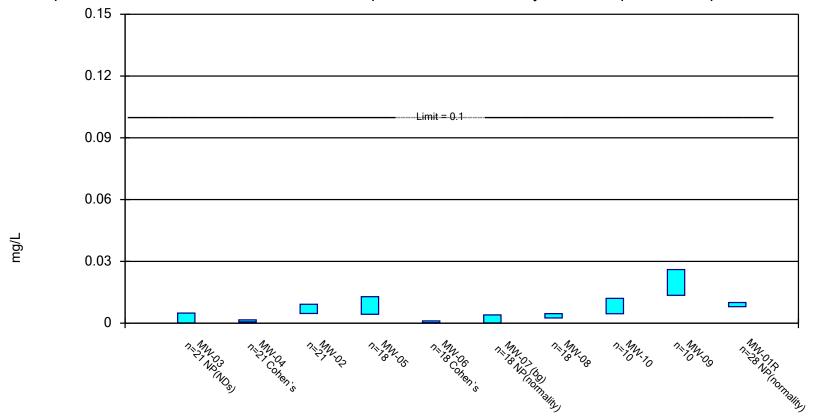
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Iron Analysis Run 1/3/2022 1:24 PM View: MI GWPS

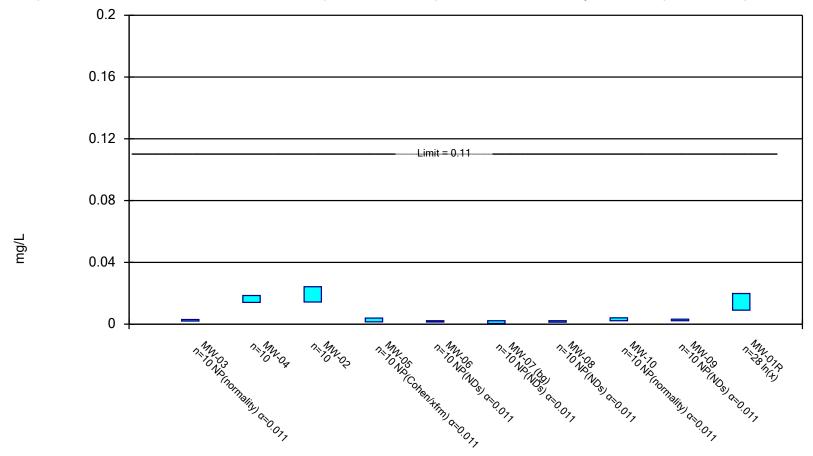
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Lead Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Lithium Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

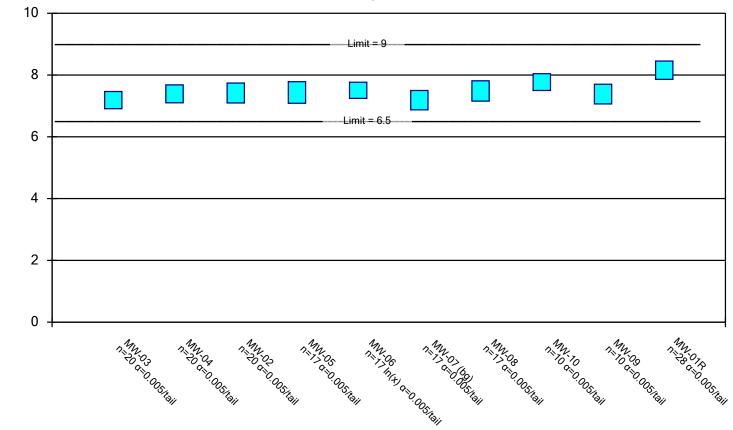
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Mercury Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Molybdenum Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

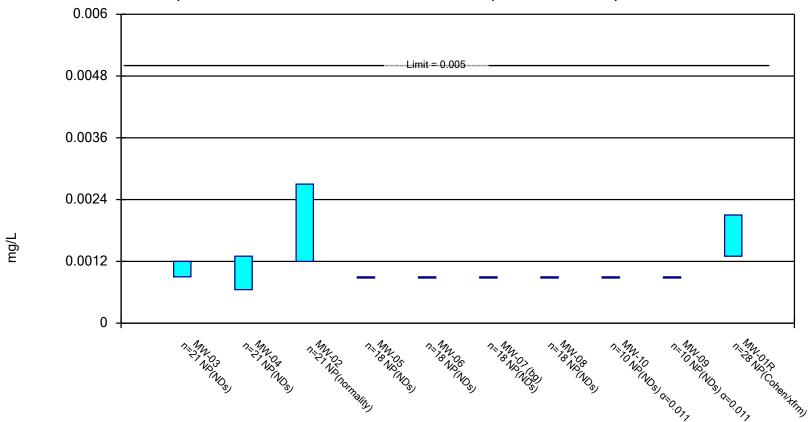
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Nickel Analysis Run 1/3/2022 1:24 PM View: MI GWPS

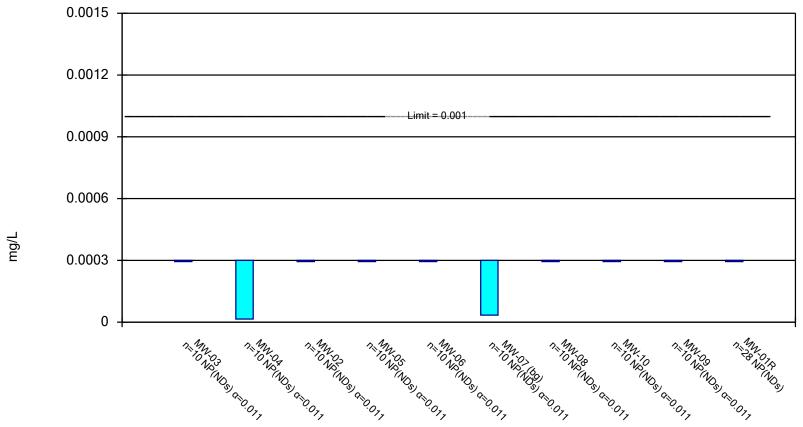
SU

Parametric Confidence Interval

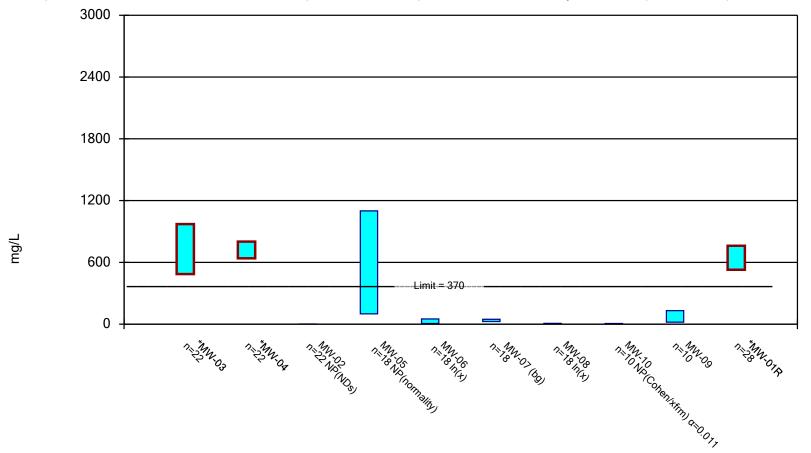

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: pH Analysis Run 1/3/2022 1:24 PM View: MI GWPS

Non-Parametric Confidence Interval

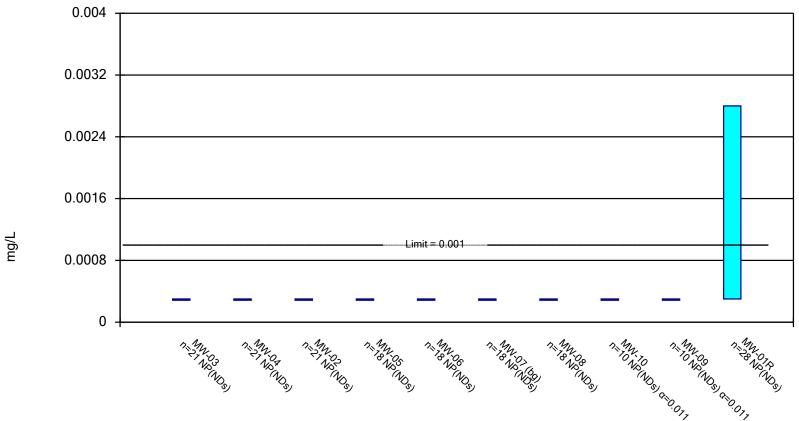

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

Constituent: Selenium Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

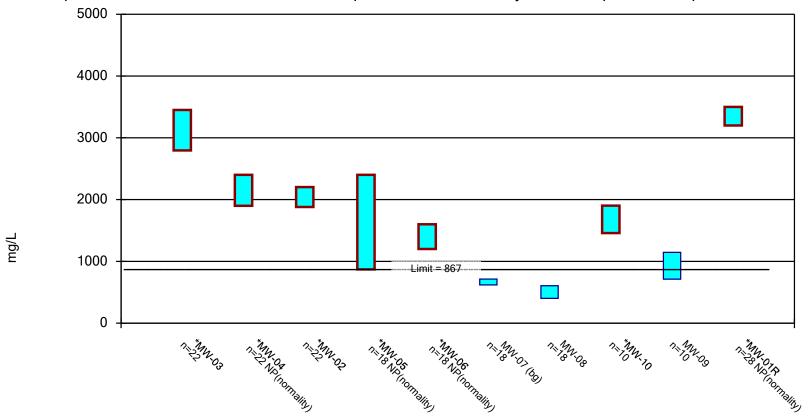

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

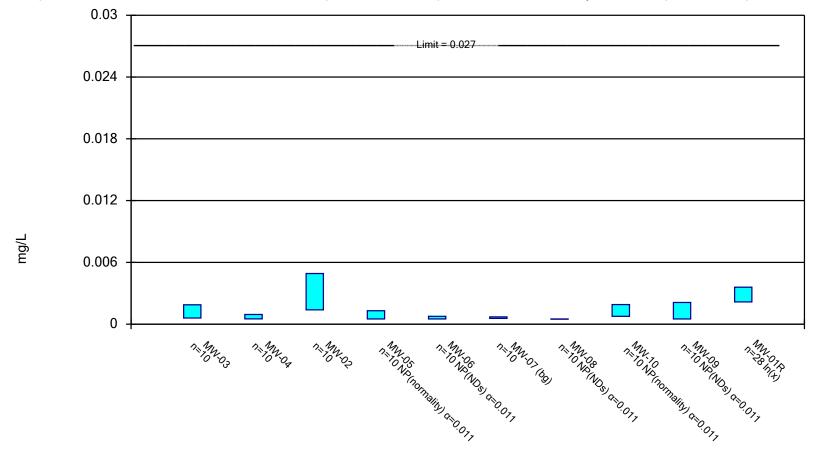
Constituent: Silver Analysis Run 1/3/2022 1:24 PM View: MI GWPS


Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Sulfate Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

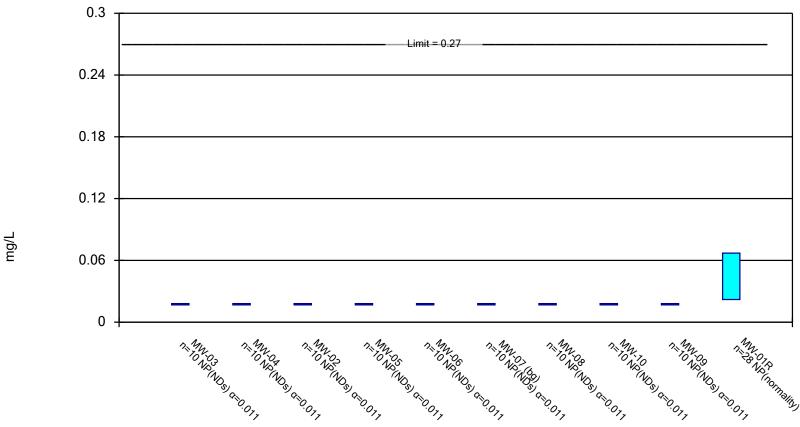

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.


Constituent: Thallium Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Total Dissolved Solids Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Vanadium Analysis Run 1/3/2022 1:24 PM View: MI GWPS Grand Haven BLP Client: Golder Associates Data: DT-Grand Haven BLP

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

Constituent: Zinc Analysis Run 1/3/2022 1:24 PM View: MI GWPS

	Grand Hav	en BLP Clie	ent: Golder As	sociates	Data:	DT-Gr	and Haven BL	P Printed 1	/3/2022,	1:31 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliand	eSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	MW-03	0.000255	0.00021	0.006	No	21	0.0002217	0.00004425	95.24	No	0.01	NP (NDs)
Antimony (mg/L)	MW-04	0.00021	0.000091	0.006	No	21	0.0002043	0.00002597	95.24	No	0.01	NP (NDs)
Antimony (mg/L)	MW-02	0.00033	0.00021	0.006	No	21	0.0002814	0.0001471	66.67	No	0.01	NP (NDs)
Antimony (mg/L)	MW-05	0.000255	0.00021	0.006	No	18	0.000215	0.00001455	100	No	0.01	NP (NDs)
Antimony (mg/L)	MW-06	0.000255	0.00012	0.006	No	18	0.0002194	0.0000607	77.78	No	0.01	NP (NDs)
Antimony (mg/L)	MW-07 (bg)	0.000255	0.00013	0.006	No	18	0.0002853	0.0003289	88.89	No	0.01	NP (NDs)
Antimony (mg/L)	MW-08	0.000255	0.00012	0.006	No	18	0.0002156	0.00003564	88.89	No	0.01	NP (NDs)
Antimony (mg/L)	MW-10	0.00021	0.00021	0.006	No	10	0.000576	0.001168	80	No	0.011	NP (NDs)
Antimony (mg/L)	MW-09	0.00021	0.00021	0.006	No	10	0.00021	0	100	No	0.011	NP (NDs)
Antimony (mg/L)	MW-01R	0.003786	0.001079	0.006	No	28	0.004314	0.005538	10.71	ln(x)	0.01	Param.
Arsenic (mg/L)	MW-03	0.002118	0.001453	0.01	No	21	0.001786	0.0006027	9.524	No	0.01	Param.
Arsenic (mg/L)	MW-04	0.001611	0.001217	0.01	No	21	0.001414	0.0003568	4.762	No	0.01	Param.
Arsenic (mg/L)	MW-02	0.009952	0.006543	0.01	No	21	0.008248	0.00309	4.762	No	0.01	Param.
Arsenic (mg/L)	MW-05	0.16	0.06333	0.01	Yes	18	0.1116	0.07986	0	No	0.01	Param.
Arsenic (mg/L)	MW-06	0.00149	0.0009801	0.01	No	18	0.001235	0.0004214	5.556	No	0.01	Param.
Arsenic (mg/L)	MW-07 (bg)	0.001	0.0005	0.01	No	17	0.001078	0.00114	47.06	No	0.01	NP (normality)
Arsenic (mg/L)	MW-08	0.005661	0.003736	0.01	No	18	0.004878	0.001844	0	In(x)	0.01	Param.
Arsenic (mg/L)	MW-10	0.001296	0.0008498	0.01	No	10	0.001073	0.0002502	0	No	0.01	Param.
Arsenic (mg/L)	MW-09	0.003558	0.002242	0.01	No	10	0.0029	0.0007379	0	No	0.01	Param.
Arsenic (mg/L)	MW-01R	0.0083	0.0067	0.01	No	28	0.006929	0.002187	3.571	No	0.01	NP (normality)
Barium (mg/L)	MW-03	0.4399	0.3268	1.2	No	21	0.3833	0.1025	0	No	0.01	Param.
Barium (mg/L)	MW-04	0.1514	0.1188	1.2	No	21	0.1351	0.02947	0	No	0.01	Param.
Barium (mg/L)	MW-02	0.4828	0.4429	1.2	No	21	0.4629	0.03621	0	No	0.01	Param.
Barium (mg/L)	MW-05	0.2237	0.09223	1.2	No	18	0.1846	0.1329	0	In(x)	0.01	Param.
Barium (mg/L)	MW-06	1.4	0.89	1.2	No	18	1.099	0.379	0	No	0.01	NP (normality)
Barium (mg/L)	MW-07 (bg)	0.4002	0.3264	1.2	No	18	0.3633	0.06097	0	No	0.01	Param.
Barium (mg/L)	MW-08	0.8027	0.5762	1.2	No	18	0.6894	0.1871	0	No	0.01	Param.
Barium (mg/L)	MW-10	1.373	1.167	1.2	No	10	1.27	0.116	0	No	0.01	Param.
Barium (mg/L)	MW-09	3.021	0.9393	1.2	No	10	2.082	1.567	0	In(x)	0.01	Param.
Barium (mg/L)	MW-01R	0.5967	0.3973	1.2	No	28	0.497	0.2134	0	No	0.01	Param.
Beryllium (mg/L)	MW-03	0.001	0.001	0.004	No	21	0.001	0	100	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-04	0.001	0.001	0.004	No	21	0.001	0	100	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-02	0.0015	0.00077	0.004	No	21	0.0009681	0.0002412	85.71	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-05	0.001	0.001	0.004	No	18	0.001	0	100	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-06	0.001	0.001	0.004	No	18	0.001	0	100	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-07 (bg)	0.001	0.001	0.004	No	18	0.001	0	100	No	0.01	NP (NDs)

	Grand Hav	en BLP Clie	ent: Golder As	sociates	Data:	DT-Gr	and Haven BL	P Printed 1	/3/2022,	1:31 PM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliano	eSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	Transform	<u>Alpha</u>	Method
Beryllium (mg/L)	MW-08	0.001	0.000089	0.004	No	18	0.0009494	0.0002147	94.44	No	0.01	NP (NDs)
Beryllium (mg/L)	MW-10	0.001	0.001	0.004	No	10	0.001	0	100	No	0.011	NP (NDs)
Beryllium (mg/L)	MW-09	0.001	0.001	0.004	No	10	0.001	0	100	No	0.011	NP (NDs)
Beryllium (mg/L)	MW-01R	0.001	0.001	0.004	No	28	0.001	0	100	No	0.01	NP (NDs)
Boron (ug/L)	MW-03	5563	4580	16000	No	21	5071	890.6	0	No	0.01	Param.
Boron (ug/L)	MW-04	3900	3300	16000	No	21	3724	574.4	0	No	0.01	NP (normality)
Boron (ug/L)	MW-02	137592	98805	16000	Yes	21	122000	41539	0	In(x)	0.01	Param.
Boron (ug/L)	MW-05	4200	2700	16000	No	18	3906	2641	0	No	0.01	NP (normality)
Boron (ug/L)	MW-06	14000	9200	16000	No	18	11067	3542	0	No	0.01	NP (normality)
Boron (ug/L)	MW-07 (bg)	15000	11000	16000	No	18	12978	3368	0	No	0.01	NP (normality)
Boron (ug/L)	MW-08	3000	1200	16000	No	18	2192	1651	0	No	0.01	NP (normality)
Boron (ug/L)	MW-10	49555	39245	16000	Yes	10	44400	5777	0	No	0.01	Param.
Boron (ug/L)	MW-09	6385	4695	16000	No	10	5540	946.6	0	No	0.01	Param.
Boron (ug/L)	MW-01R	190000	140000	16000	Yes	28	165000	38442	0	No	0.01	NP (normality)
Cadmium (mg/L)	MW-03	0.0006	0.00033	0.0025	No	21	0.0005738	0.00008273	95.24	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-04	0.0006	0.000037	0.0025	No	21	0.0005463	0.0001696	90.48	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-02	0.0006	0.00021	0.0025	No	21	0.0004928	0.0002549	66.67	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-05	0.0006	0.00032	0.0025	No	18	0.0004888	0.0002229	83.33	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-06	0.0006	0.000063	0.0025	No	18	0.0003986	0.0002596	61.11	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-07 (bg)	0.0006	0.00032	0.0025	No	18	0.0005537	0.0001426	94.44	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-08	0.0006	0.00032	0.0025	No	18	0.000525	0.0001799	88.89	No	0.01	NP (NDs)
Cadmium (mg/L)	MW-10	0.0006	0.0006	0.0025	No	10	0.000593	0.0002526	80	No	0.011	NP (NDs)
Cadmium (mg/L)	MW-09	0.0006	0.0006	0.0025	No	10	0.0006	0	100	No	0.011	NP (NDs)
Cadmium (mg/L)	MW-01R	0.0043	0.0006	0.0025	No	28	0.003946	0.005132	32.14	No	0.01	NP (normality)
Calcium (ug/L)	MW-03	620000	540000	200000	Yes	22	589545	86050	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-04	463546	420999	200000	Yes	22	442273	39633	0	No	0.01	Param.
Calcium (ug/L)	MW-02	210000	180000	200000	No	22	203182	34001	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-05	560000	240000	200000	Yes	18	444444	162597	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-06	250000	200000	200000	No	18	215072	59849	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-07 (bg)	150000	130000	200000	No	18	145000	15435	0	No	0.01	NP (normality)
Calcium (ug/L)	MW-08	139933	122845	200000	No	18	131389	14122	0	No	0.01	Param.
Calcium (ug/L)	MW-10	160000	130000	200000	No	10	141000	11972	0	No	0.011	NP (normality)
Calcium (ug/L)	MW-09	257600	228400	200000	Yes	10	243000	16364	0	No	0.01	Param.
Calcium (ug/L)	MW-01R	256657	169040	200000	No	28	230393	114277	0	In(x)	0.01	Param.
Chloride (mg/L)	MW-03	453.6	359.9	150	Yes	22	413.6	97.57	0	In(x)	0.01	Param.
Chloride (mg/L)	MW-04	313.5	241	150	Yes	22	277.3	67.55	0	No	0.01	Param.

	Grand Haven BLP Client: Golder Associates					DT-G	rand Haven Bl	LP Printed	1:31 PM			
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Complian	ceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Chloride (mg/L)	MW-02	150	140	150	No	22	145	8.018	0	No	0.01	NP (normality)
Chloride (mg/L)	MW-05	22.5	15.62	150	No	18	19.06	5.681	0	No	0.01	Param.
Chloride (mg/L)	MW-06	300	150	150	No	18	227.2	66.32	0	No	0.01	NP (normality)
Chloride (mg/L)	MW-07 (bg)	15	13	150	No	18	14.11	0.8324	0	No	0.01	NP (normality)
Chloride (mg/L)	MW-08	44.32	18.9	150	No	18	36.92	28.77	0	ln(x)	0.01	Param.
Chloride (mg/L)	MW-10	603.7	412.3	150	Yes	10	508	107.3	0	No	0.01	Param.
Chloride (mg/L)	MW-09	13.95	10.29	150	No	10	12.15	2.31	0	In(x)	0.01	Param.
Chloride (mg/L)	MW-01R	264.2	250.8	150	Yes	28	257.5	14.3	0	No	0.01	Param.
Chromium (mg/L)	MW-03	0.00256	0.001525	0.1	No	21	0.002202	0.001094	0	In(x)	0.01	Param.
Chromium (mg/L)	MW-04	0.002257	0.001705	0.1	No	21	0.001981	0.0004996	4.762	No	0.01	Param.
Chromium (mg/L)	MW-02	0.05239	0.03262	0.1	No	21	0.0425	0.01791	0	No	0.01	Param.
Chromium (mg/L)	MW-05	0.0017	8000.0	0.1	No	18	0.0009139	0.0002103	77.78	No	0.01	NP (NDs)
Chromium (mg/L)	MW-06	0.0029	0.0012	0.1	No	18	0.001765	0.001003	0	No	0.01	NP (normality)
Chromium (mg/L)	MW-07 (bg)	0.001	0.00068	0.1	No	18	0.000925	0.0005008	66.67	No	0.01	NP (NDs)
Chromium (mg/L)	MW-08	0.0009586	0.0007158	0.1	No	18	0.0008372	0.0002006	27.78	No	0.01	Param.
Chromium (mg/L)	MW-10	0.01121	0.007332	0.1	No	10	0.00927	0.002172	0	No	0.01	Param.
Chromium (mg/L)	MW-09	0.002689	0.001971	0.1	No	10	0.00233	0.0004029	0	No	0.01	Param.
Chromium (mg/L)	MW-01R	0.006266	0.003249	0.1	No	28	0.005689	0.004133	3.571	ln(x)	0.01	Param.
Cobalt (mg/L)	MW-03	0.001178	0.0008524	0.006	No	21	0.0008833	0.0002917	23.81	No	0.01	Param.
Cobalt (mg/L)	MW-04	0.00058	0.00033	0.006	No	21	0.00051	0.0002227	38.1	No	0.01	NP (Cohens/xfrm)
Cobalt (mg/L)	MW-02	0.007702	0.005441	0.006	No	21	0.006571	0.002049	0	No	0.01	Param.
Cobalt (mg/L)	MW-05	0.0041	0.0005	0.006	No	18	0.002205	0.001998	33.33	No	0.01	NP (Cohens/xfrm)
Cobalt (mg/L)	MW-06	0.00099	0.00036	0.006	No	18	0.0006289	0.0002498	50	No	0.01	NP (Cohens/xfrm)
Cobalt (mg/L)	MW-07 (bg)	0.00091	0.0007	0.006	No	18	0.0008239	0.0001295	16.67	No	0.01	NP (Cohens/xfrm)
Cobalt (mg/L)	MW-08	0.00105	0.00035	0.006	No	18	0.00071	0.0005735	50	No	0.01	NP (normality)
Cobalt (mg/L)	MW-10	0.0011	0.00067	0.006	No	10	0.001027	0.0005839	0	No	0.011	NP (normality)
Cobalt (mg/L)	MW-09	0.0022	0.0005	0.006	No	10	0.000981	0.0007477	30	No	0.011	NP (normality)
Cobalt (mg/L)	MW-01R	0.01587	0.005758	0.006	No	28	0.01732	0.0221	0	In(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-03	1.68	0.666	5	No	21	1.21	0.8396	23.81	No	0.01	NP (Cohens/xfrm)
Combined Radium 226 + 228 (pCi/L)	MW-04	0.97	0.671	5	No	21	0.8382	0.4338	38.1	No	0.01	NP (Cohens/xfrm)
Combined Radium 226 + 228 (pCi/L)	MW-02	1.988	0.7317	5	No	21	1.565	0.8717	28.57	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-05	1.1	0.536	5	No	18	0.8472	0.3989	50	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-06	2.22	0.73	5	No	18	1.29	0.8637	33.33	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-07 (bg)	1.73	0.73	5	No	18	1.11	0.5214	50	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-08	2.31	0.73	5	No	18	1.607	1.125	33.33	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-10	2.213	0.7756	5	No	9	1.581	0.6146	22.22	No	0.01	Param.

	Grand Haven BLP Client: Golder Associates		ssociates	Data	: DT-G	rand Haven B	LP Printed 1	1/3/2022,	1:31 PM			
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Complian	ceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Combined Radium 226 + 228 (pCi/L)	MW-09	1.957	1.123	5	No	10	1.54	0.4674	10	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-01R	2.25	0.41	5	No	7	0.9557	0.5965	42.86	No	0.008	NP (Cohens/xfrm)
Copper (mg/L)	MW-03	0.0018	0.00078	0.02	No	10	0.001563	0.0005057	80	No	0.011	NP (NDs)
Copper (mg/L)	MW-04	0.0018	0.0015	0.02	No	10	0.001695	0.0003201	70	No	0.011	NP (NDs)
Copper (mg/L)	MW-02	0.0022	0.0018	0.02	No	10	0.00193	0.0005376	70	No	0.011	NP (NDs)
Copper (mg/L)	MW-05	0.0018	0.0018	0.02	No	10	0.001738	0.0005852	80	No	0.011	NP (NDs)
Copper (mg/L)	MW-06	0.0034	0.0018	0.02	No	10	0.00223	0.001153	70	No	0.011	NP (NDs)
Copper (mg/L)	MW-07 (bg)	0.0018	0.00059	0.02	No	10	0.001545	0.0005385	80	No	0.011	NP (NDs)
Copper (mg/L)	MW-08	0.0018	0.00094	0.02	No	10	0.001618	0.0003844	80	No	0.011	NP (NDs)
Copper (mg/L)	MW-10	0.0018	0.0018	0.02	No	10	0.002027	0.001085	80	No	0.011	NP (NDs)
Copper (mg/L)	MW-09	0.0018	0.0018	0.02	No	10	0.00175	0.0001581	90	No	0.011	NP (NDs)
Copper (mg/L)	MW-01R	0.0056	0.0018	0.02	No	28	0.006071	0.008081	64.29	No	0.01	NP (NDs)
Fluoride (mg/L)	MW-03	1.51	1.017	2.67	No	21	1.263	0.447	0	No	0.01	Param.
Fluoride (mg/L)	MW-04	1.292	1.131	2.67	No	21	1.211	0.1461	0	No	0.01	Param.
Fluoride (mg/L)	MW-02	12.71	10.28	2.67	Yes	21	11.5	2.209	0	No	0.01	Param.
Fluoride (mg/L)	MW-05	3.412	2.377	2.67	No	18	2.894	0.8551	0	No	0.01	Param.
Fluoride (mg/L)	MW-06	1.693	1.452	2.67	No	18	1.572	0.1994	0	No	0.01	Param.
Fluoride (mg/L)	MW-07 (bg)	0.1335	0.07364	2.67	No	18	0.1079	0.04269	16.67	No	0.01	Param.
Fluoride (mg/L)	MW-08	0.4826	0.3318	2.67	No	18	0.4072	0.1246	0	No	0.01	Param.
Fluoride (mg/L)	MW-10	11.55	9.808	2.67	Yes	10	10.68	0.9773	0	No	0.01	Param.
Fluoride (mg/L)	MW-09	2.568	2.312	2.67	No	10	2.44	0.143	0	No	0.01	Param.
Fluoride (mg/L)	MW-01R	26	20	2.67	Yes	28	20.83	7.517	3.571	No	0.01	NP (normality)
Iron (mg/L)	MW-03	18.6	2.843	25.01	No	10	10.72	8.83	0	No	0.01	Param.
Iron (mg/L)	MW-04	8.715	6.265	25.01	No	10	7.49	1.373	0	No	0.01	Param.
Iron (mg/L)	MW-02	23	18	25.01	No	10	19.77	4.869	0	No	0.011	NP (normality)
Iron (mg/L)	MW-05	35.91	10.49	25.01	No	10	23.2	14.24	0	No	0.01	Param.
Iron (mg/L)	MW-06	17.77	10.67	25.01	No	10	14.22	3.983	0	No	0.01	Param.
Iron (mg/L)	MW-07 (bg)	19.67	15.53	25.01	No	10	17.6	2.319	0	No	0.01	Param.
Iron (mg/L)	MW-08	28.06	19.94	25.01	No	10	24	4.546	0	No	0.01	Param.
Iron (mg/L)	MW-10	11.86	9.06	25.01	No	10	10.46	1.569	0	No	0.01	Param.
Iron (mg/L)	MW-09	22.71	16.29	25.01	No	10	19.5	3.598	0	No	0.01	Param.
Iron (mg/L)	MW-01R	4.044	2.599	25.01	No	28	3.321	1.547	0	No	0.01	Param.
Lead (mg/L)	MW-03	0.0005	0.00038	0.014	No	21	0.0004395	0.0001571	66.67	No	0.01	NP (NDs)
Lead (mg/L)	MW-04	0.0005	0.00037	0.014	No	21	0.0004414	0.00009404		No	0.01	NP (NDs)
Lead (mg/L)	MW-02	0.0046	0.001745	0.014	No	21	0.003172	0.002587	14.29	No	0.01	Param.
Lead (mg/L)	MW-05	0.00075	0.00045	0.014	No	18	0.002287	0.006514	55.56	No	0.01	NP (NDs)

	Grand Haven BLP Client: Golder Associates				Data:	DT-G	rand Haven BL	P Printed 1	/3/2022,	1:31 PM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliand	ceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Lead (mg/L)	MW-06	0.0023	0.0005	0.014	No	18	0.001507	0.00107	22.22	No	0.01	NP (normality)
Lead (mg/L)	MW-07 (bg)	0.00062	0.00045	0.014	No	18	0.0005756	0.0005995	72.22	No	0.01	NP (NDs)
Lead (mg/L)	MW-08	0.00067	0.00046	0.014	No	18	0.0008167	0.0008797	50	No	0.01	NP (normality)
Lead (mg/L)	MW-10	0.0089	0.0005	0.014	No	10	0.006608	0.01373	20	No	0.011	NP (Cohens/xfrm)
Lead (mg/L)	MW-09	0.0016	0.0005	0.014	No	10	0.000793	0.0005488	70	No	0.011	NP (NDs)
Lead (mg/L)	MW-01R	0.03128	0.01062	0.014	No	28	0.03329	0.04093	0	ln(x)	0.01	Param.
Lithium (mg/L)	MW-03	0.07409	0.04808	0.059	No	21	0.06108	0.02358	4.762	No	0.01	Param.
Lithium (mg/L)	MW-04	0.05878	0.04167	0.059	No	21	0.05022	0.0155	4.762	No	0.01	Param.
Lithium (mg/L)	MW-02	1.499	1.233	0.059	Yes	21	1.366	0.241	0	No	0.01	Param.
Lithium (mg/L)	MW-05	0.1286	0.07023	0.059	Yes	18	0.09939	0.0482	11.11	No	0.01	Param.
Lithium (mg/L)	MW-06	0.23	0.17	0.059	Yes	18	0.1909	0.06135	5.556	No	0.01	NP (normality)
Lithium (mg/L)	MW-07 (bg)	0.00835	0.0039	0.059	No	18	0.008872	0.01265	44.44	No	0.01	NP (normality)
Lithium (mg/L)	MW-08	0.03732	0.02431	0.059	No	18	0.03082	0.01075	5.556	No	0.01	Param.
Lithium (mg/L)	MW-10	1.481	0.9786	0.059	Yes	10	1.23	0.2818	0	No	0.01	Param.
Lithium (mg/L)	MW-09	0.26	0.16	0.059	Yes	10	0.235	0.04249	0	No	0.011	NP (normality)
Lithium (mg/L)	MW-01R	3.133	2.418	0.059	Yes	28	2.775	0.7644	0	No	0.01	Param.
Mercury (mg/L)	MW-03	8.0e-7	1.6e-7	0.00014	No	21	0.00001079	0.00002658	71.43	No	0.01	NP (NDs)
Mercury (mg/L)	MW-04	0.00006008	1.6e-7	0.00014	No	21	0.00000683	0.00002131	95.24	No	0.01	NP (NDs)
Mercury (mg/L)	MW-02	0.0000031	1.6e-7	0.00014	No	21	0.00001119	0.00002659	71.43	No	0.01	NP (NDs)
Mercury (mg/L)	MW-05	0.00017	1.6e-7	0.00014	No	18	0.000009596	0.00004003	94.44	No	0.01	NP (NDs)
Mercury (mg/L)	MW-06	0.000083	1.6e-7	0.00014	No	18	0.00002561	0.00004623	55.56	No	0.01	NP (NDs)
Mercury (mg/L)	MW-07 (bg)	80000.0	1.6e-7	0.00014	No	18	0.00002347	0.00004661	77.78	No	0.01	NP (NDs)
Mercury (mg/L)	MW-08	0.00006008	1.6e-7	0.00014	No	18	0.00001919	0.00003791	66.67	No	0.01	NP (NDs)
Mercury (mg/L)	MW-10	0.00008055	1.6e-7	0.00014	No	10	0.00001648	0.00003381	40	No	0.011	NP (normality)
Mercury (mg/L)	MW-09	8.8e-7	1.6e-7	0.00014	No	10	0.000008344	0.0000253	60	No	0.011	NP (NDs)
Mercury (mg/L)	MW-01R	0.00002335	0.000005832	0.00014	No	28	0.00002651	0.00003384	3.571	ln(x)	0.01	Param.
Molybdenum (mg/L)	MW-03	0.0049	0.000093	0.1	No	21	0.002009	0.003164	52.38	No	0.01	NP (NDs)
Molybdenum (mg/L)	MW-04	0.00158	0.000607	0.1	No	21	0.001178	0.0007406	19.05	No	0.01	Param.
Molybdenum (mg/L)	MW-02	0.009148	0.004689	0.1	No	21	0.006918	0.004042	9.524	No	0.01	Param.
Molybdenum (mg/L)	MW-05	0.01285	0.004305	0.1	No	18	0.008579	0.007063	11.11	No	0.01	Param.
Molybdenum (mg/L)	MW-06	0.001081	0.000237	0.1	No	18	0.0007473	0.0005699	22.22	No	0.01	Param.
Molybdenum (mg/L)	MW-07 (bg)	0.004	0.000093	0.1	No	18	0.001595	0.00211	27.78	No	0.01	NP (normality)
Molybdenum (mg/L)	MW-08	0.004627	0.002527	0.1	No	18	0.003577	0.001735	11.11	No	0.01	Param.
Molybdenum (mg/L)	MW-10	0.01203	0.004568	0.1	No	10	0.0083	0.004183	0	No	0.01	Param.
Molybdenum (mg/L)	MW-09	0.02601	0.01353	0.1	No	10	0.01977	0.006998	0	No	0.01	Param.
Molybdenum (mg/L)	MW-01R	0.01	0.008	0.1	No	28	0.008514	0.003256	0	No	0.01	NP (normality)

	Grand Hav	en BLP Cli	ent: Golder As	ssociates	Data:	DT-G						
Constituent	Well	Upper Lim.	Lower Lim.	Compliand	ceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	Transform	<u>Alpha</u>	Method
Nickel (mg/L)	MW-03	0.003	0.002	0.11	No	10	0.00282	0.001522	20	No	0.011	NP (normality)
Nickel (mg/L)	MW-04	0.01853	0.01407	0.11	No	10	0.0163	0.002497	0	No	0.01	Param.
Nickel (mg/L)	MW-02	0.02424	0.01436	0.11	No	10	0.0193	0.005539	0	No	0.01	Param.
Nickel (mg/L)	MW-05	0.0039	0.0015	0.11	No	10	0.002594	0.001548	40	No	0.011	NP (Cohens/xfrm)
Nickel (mg/L)	MW-06	0.0022	0.0022	0.11	No	10	0.00219	0.0001197	70	No	0.011	NP (NDs)
Nickel (mg/L)	MW-07 (bg)	0.0022	0.00042	0.11	No	10	0.001842	0.0007547	80	No	0.011	NP (NDs)
Nickel (mg/L)	MW-08	0.0022	0.0013	0.11	No	10	0.002	0.0004243	80	No	0.011	NP (NDs)
Nickel (mg/L)	MW-10	0.0041	0.0022	0.11	No	10	0.00285	0.0011	50	No	0.011	NP (normality)
Nickel (mg/L)	MW-09	0.0032	0.0022	0.11	No	10	0.00246	0.000631	60	No	0.011	NP (NDs)
Nickel (mg/L)	MW-01R	0.01981	0.009064	0.11	No	28	0.0194	0.01951	0	ln(x)	0.01	Param.
pH (SU)	MW-03	7.466	6.91	9	No	20	7.188	0.4345	0	No	0.005	Param.
pH (SU)	MW-04	7.681	7.101	9	No	20	7.391	0.4537	0	No	0.005	Param.
pH (SU)	MW-02	7.742	7.095	9	No	20	7.419	0.5058	0	No	0.005	Param.
pH (SU)	MW-05	7.785	7.087	9	No	17	7.436	0.4927	0	No	0.005	Param.
pH (SU)	MW-06	7.767	7.243	9	No	17	7.509	0.3782	0	ln(x)	0.005	Param.
pH (SU)	MW-07 (bg)	7.501	6.873	9	No	17	7.187	0.4429	0	No	0.005	Param.
pH (SU)	MW-08	7.812	7.156	9	No	17	7.484	0.4631	0	No	0.005	Param.
pH (SU)	MW-10	8.044	7.5	9	No	10	7.772	0.2644	0	No	0.005	Param.
pH (SU)	MW-09	7.701	7.065	9	No	10	7.383	0.3094	0	No	0.005	Param.
pH (SU)	MW-01R	8.454	7.861	9	No	28	8.158	0.566	0	No	0.005	Param.
Selenium (mg/L)	MW-03	0.0012	0.0009	0.005	No	21	0.001026	0.0002179	66.67	No	0.01	NP (NDs)
Selenium (mg/L)	MW-04	0.0013	0.00065	0.005	No	21	0.0008943	0.0001214	85.71	No	0.01	NP (NDs)
Selenium (mg/L)	MW-02	0.0027	0.0012	0.005	No	21	0.002543	0.002738	19.05	No	0.01	NP (normality)
Selenium (mg/L)	MW-05	0.0009	0.0009	0.005	No	18	0.0009	0	100	No	0.01	NP (NDs)
Selenium (mg/L)	MW-06	0.0009	0.0009	0.005	No	18	0.0009	0	100	No	0.01	NP (NDs)
Selenium (mg/L)	MW-07 (bg)	0.0009	0.0009	0.005	No	18	0.0009	0	100	No	0.01	NP (NDs)
Selenium (mg/L)	MW-08	0.0009	0.0009	0.005	No	18	0.0009	0	100	No	0.01	NP (NDs)
Selenium (mg/L)	MW-10	0.0009	0.0009	0.005	No	10	0.0009	0	100	No	0.011	NP (NDs)
Selenium (mg/L)	MW-09	0.0009	0.0009	0.005	No	10	0.0009	0	100	No	0.011	NP (NDs)
Selenium (mg/L)	MW-01R	0.0021	0.0013	0.005	No	28	0.001949	0.001097	17.86	No	0.01	NP (Cohens/xfrm)
Silver (mg/L)	MW-03	0.0003	0.0003	0.001	No	10	0.0002726	0.00008665	90	No	0.011	NP (NDs)
Silver (mg/L)	MW-04	0.0003	0.000015	0.001	No	10	0.0002429	0.0001204	80	No	0.011	NP (NDs)
Silver (mg/L)	MW-02	0.0003	0.0003	0.001	No	10	0.0002736	0.00008348	90	No	0.011	NP (NDs)
Silver (mg/L)	MW-05	0.0003	0.0003	0.001	No	10	0.0002716	0.00008981	90	No	0.011	NP (NDs)
Silver (mg/L)	MW-06	0.0003	0.0003	0.001	No	10	0.0002724	0.00008728	90	No	0.011	NP (NDs)
Silver (mg/L)	MW-07 (bg)	0.0003	0.000034	0.001	No	10	0.0002456	0.0001147	80	No	0.011	NP (NDs)

	Grand Hav	ven BLP Cli	ent: Golder A	ssociates	Data	: DT-G	rand Haven B	LP Printed 1	1/3/2022,	1:31 PM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Complian	ceSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Silver (mg/L)	MW-08	0.0003	0.0003	0.001	No	10	0.0002728	0.00008601	90	No	0.011	NP (NDs)
Silver (mg/L)	MW-10	0.0003	0.0003	0.001	No	10	0.0003	0	100	No	0.011	NP (NDs)
Silver (mg/L)	MW-09	0.0003	0.0003	0.001	No	10	0.0003	0	100	No	0.011	NP (NDs)
Silver (mg/L)	MW-01R	0.0003	0.0003	0.001	No	28	0.0003	0	100	No	0.01	NP (NDs)
Sulfate (mg/L)	MW-03	972	485.9	370	Yes	22	729	452.8	0	No	0.01	Param.
Sulfate (mg/L)	MW-04	801.8	639.1	370	Yes	22	720.5	151.5	0	No	0.01	Param.
Sulfate (mg/L)	MW-02	1.5	0.41	370	No	22	1.98	3.488	54.55	No	0.01	NP (NDs)
Sulfate (mg/L)	MW-05	1100	100	370	No	18	694.8	446.6	0	No	0.01	NP (normality)
Sulfate (mg/L)	MW-06	50.27	6.247	370	No	18	45.39	50.74	5.556	ln(x)	0.01	Param.
Sulfate (mg/L)	MW-07 (bg)	47.04	25.3	370	No	18	36.17	17.96	0	No	0.01	Param.
Sulfate (mg/L)	MW-08	7.348	1.78	370	No	18	6.977	9.683	5.556	ln(x)	0.01	Param.
Sulfate (mg/L)	MW-10	5.8	0.41	370	No	10	7.538	16.09	30	No	0.011	NP (Cohens/xfrm)
Sulfate (mg/L)	MW-09	131	19.54	370	No	10	75.26	62.45	0	No	0.01	Param.
Sulfate (mg/L)	MW-01R	761.3	528	370	Yes	28	644.6	249.6	0	No	0.01	Param.
Thallium (mg/L)	MW-03	0.0003	0.0003	0.001	No	21	0.0003	0	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-04	0.0003	0.0003	0.001	No	21	0.0003	0	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-02	0.0003	0.0003	0.001	No	21	0.0003	0	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-05	0.0003	0.0003	0.001	No	18	0.0003	0	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-06	0.0003	0.0003	0.001	No	18	0.0002869	0.00005563	88.89	No	0.01	NP (NDs)
Thallium (mg/L)	MW-07 (bg)	0.0003	0.0003	0.001	No	18	0.0003	0	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-08	0.0003	0.0003	0.001	No	18	0.0003	0	100	No	0.01	NP (NDs)
Thallium (mg/L)	MW-10	0.0003	0.0003	0.001	No	10	0.0003	0	100	No	0.011	NP (NDs)
Thallium (mg/L)	MW-09	0.0003	0.0003	0.001	No	10	0.000355	0.0001739	90	No	0.011	NP (NDs)
Thallium (mg/L)	MW-01R	0.0028	0.0003	0.001	No	28	0.0003893	0.0004725	96.43	No	0.01	NP (NDs)
Total Dissolved Solids (mg/L)	MW-03	3450	2795	867	Yes	22	3123	610.2	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-04	2400	1900	867	Yes	22	2092	514.9	0	No	0.01	NP (normality)
Total Dissolved Solids (mg/L)	MW-02	2202	1880	867	Yes	22	2041	300.3	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-05	2400	870	867	Yes	18	1760	629.5	0	No	0.01	NP (normality)
Total Dissolved Solids (mg/L)	MW-06	1600	1200	867	Yes	18	1394	201.4	0	No	0.01	NP (normality)
Total Dissolved Solids (mg/L)	MW-07 (bg)	713.3	618.9	867	No	18	666.1	78	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-08	605.9	400.8	867	No	18	503.3	169.5	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-10	1902	1458	867	Yes	10	1680	248.6	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-09	1146	712.3	867	No	10	929	242.9	0	No	0.01	Param.
Total Dissolved Solids (mg/L)	MW-01R	3500	3200	867	Yes	28	3214	470.4	0	No	0.01	NP (normality)
Vanadium (mg/L)	MW-03	0.00188	0.0005939	0.027	No	10	0.001237	0.0007208	10	No	0.01	Param.
Vanadium (mg/L)	MW-04	0.0009392	0.0005128	0.027	No	10	0.000726	0.000239	10	No	0.01	Param.

	Grand Haven BLP Client: Golder Associates		Data:	DT-Gra	and Haven BL	P Printed 1	/3/2022,					
Constituent	Well	Upper Lim.	Lower Lim.	Compliand	eSig.	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Vanadium (mg/L)	MW-02	0.004916	0.00139	0.027	No	10	0.003153	0.001976	10	No	0.01	Param.
Vanadium (mg/L)	MW-05	0.0013	0.0005	0.027	No	10	0.000958	0.0007621	40	No	0.011	NP (normality)
Vanadium (mg/L)	MW-06	0.00076	0.0005	0.027	No	10	0.000554	0.0001553	60	No	0.011	NP (NDs)
Vanadium (mg/L)	MW-07 (bg)	0.0007082	0.0005598	0.027	No	10	0.000634	0.00008316	0	No	0.01	Param.
Vanadium (mg/L)	MW-08	0.0005	0.00049	0.027	No	10	0.000485	0.00004403	80	No	0.011	NP (NDs)
Vanadium (mg/L)	MW-10	0.0019	0.00076	0.027	No	10	0.001383	0.000535	0	No	0.011	NP (normality)
Vanadium (mg/L)	MW-09	0.0021	0.0005	0.027	No	10	0.00087	0.0007889	80	No	0.011	NP (NDs)
Vanadium (mg/L)	MW-01R	0.003589	0.002157	0.027	No	28	0.003179	0.00173	3.571	In(x)	0.01	Param.
Zinc (mg/L)	MW-03	0.018	0.018	0.27	No	10	0.01628	0.005436	90	No	0.011	NP (NDs)
Zinc (mg/L)	MW-04	0.018	0.018	0.27	No	10	0.0165	0.004743	90	No	0.011	NP (NDs)
Zinc (mg/L)	MW-02	0.018	0.018	0.27	No	10	0.01719	0.002561	90	No	0.011	NP (NDs)
Zinc (mg/L)	MW-05	0.018	0.018	0.27	No	10	0.03665	0.06461	80	No	0.011	NP (NDs)
Zinc (mg/L)	MW-06	0.018	0.018	0.27	No	10	0.0173	0.002214	90	No	0.011	NP (NDs)
Zinc (mg/L)	MW-07 (bg)	0.018	0.018	0.27	No	10	0.01673	0.005157	80	No	0.011	NP (NDs)
Zinc (mg/L)	MW-08	0.018	0.018	0.27	No	10	0.01646	0.00487	90	No	0.011	NP (NDs)
Zinc (mg/L)	MW-10	0.018	0.018	0.27	No	10	0.0315	0.0452	80	No	0.011	NP (NDs)
Zinc (mg/L)	MW-09	0.018	0.018	0.27	No	10	0.01684	0.003668	90	No	0.011	NP (NDs)
Zinc (mg/L)	MW-01R	0.067	0.022	0.27	No	28	0.06954	0.07713	28.57	No	0.01	NP (normality)

golder.com